
Extending Local Search
in Geometric Semantic Genetic Programming

Mauro Castelli1, Luca Manzoni2, Luca Mariot2, and Martina Saletta1

1 NOVA Information Management School (NOVA IMS)
Universidade Nova de Lisboa

Campus de Campolide, 1070-312 Lisboa, Portugal
{mcastelli,msaletta}@novaims.unl.pt

2 Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo)
Università degli Studi di Milano Bicocca

Viale Sarca 336, 20126 Milano, Italy.
{luca.manzoni,luca.mariot}@unimib.it

Abstract. In this paper we continue the investigation of the effect of
local search in geometric semantic genetic programming (GSGP), with
the introduction of a new general local search operator that can be easily
customized. We show that it is able to obtain results on par with the
current best-performing GSGP with local search and, in most cases, better
than standard GSGP.

1 Introduction

Genetic programming (GP) [12], in particular in the standard tree-based repre-
sentation, has proved to be a powerful method to automatically build symbolic
expressions and programs for solving problems in a wide variety of domains.
Recently, the introduction of Geometric Semantic Genetic Programming (GSGP)
and the new ideas related to the definition of Geometric Semantic Operators
(GSO) [15] allowed to solve problems more efficiently and to produce better
solutions [10,5,3]. Recently, GSGP has been improved by replacing the mutation
GSO with a local search operator: the application of this local search operators
allows the search to rapidly improve in the first few generations, thus increasing
the speed of convergence [6]. However, the effect of local search and the best
way to employ it in conjunction with GSGP are still not well understood. In
fact, among the several possible ways of combining GSGP with local search,
only one, called GSGP-LS, has been investigated in [6]. Here, we introduce a
new method to perform this local search operation, namely by defining a generic
set of functions to locally modify a candidate GP individual. In particular, the
possibility of modifying the set of functions allows one to easily customize the
local search operator, by making it suited for the problem at hand.

We compare our newly proposed method, which we call GSGP-reg, with
GSGP and GSGP-LS, showing that in most cases GSGP-reg outperforms GSGP
and achieves results similar to those of GSGP-LS, although with a different
“fitness profile”. That is, the problems in which GSGP-LS and GSGP-reg produce

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-30241-2_64

overfitting solutions are not the same, showing that the selection of the best local
search operators for GSGP is still an open (and interesting) problem.

The paper is organized as follows: Section 2 recalls the basic concepts of
GSGP, while Section 3 provides a short survey of the existing works linking
local search with GP. Then, Section 4 defines our proposed integration of local
search in GSGP, namely GSGP-reg. In Section 5 the settings of the experiments
performed are then introduced and the datasets used are described in Section 6.
The results of the experiments and their discussion are the topics of Section 7.
Finally, some directions for future research are highlighted in Section 8.

2 Geometric Semantic Genetic Programming

GSGP was originally defined by Moraglio and coworkers in 2012 [15]. The main
idea is that mutation and crossover operators can be defined in such a way that
the effects on the semantics of the individuals are predictable, differently from
the usual syntactic crossover and mutation. They were successful in defining
those operators, and proved that GSO induce a unimodal fitness landscape, in
which the unique global optimum is known and the fitness is derived from the
distance from this global optimum.

In particular, the geometric semantic crossover between two trees T1 and T2

is defined as
R · T1 + (1−R) · T2

where R is a randomly generated tree with outputs in [0, 1]. The geometric
semantic mutation of a tree T is defined as:

T +ms · (R1 −R2)

where ms is a positive constant (called the mutation step) and both R1 and R2

are randomly generated trees with outputs in [0, 1].
While GSGP produces a “nice” fitness landscape, in its original formulation

the crossover operator induces an exponential increase in the size of the individuals
with respect to the number of generations, as already remarked when GSGP
was introduced [15]. A different representation of the individual was introduced
shortly after in [18], where the individuals are still trees at the logical level, but
they are represented in memory as directed graphs. This new way of implementing
GSGP allowed to obtain better performances than classical tree-based GP with
shorter execution times.

3 Related work

This section reports some of the most important works related to the method
described in the rest of this paper. Most of the existing methods were specifically
designed for standard syntax-based GP and taking into account symbolic regres-
sion problems. Thus, it is fundamental to frame the context in which the existing
techniques were developed.

2

https://doi.org/10.1007/978-3-030-30241-2_64

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-30241-2_64

The main objective in addressing a symbolic regression problem is to search
for the symbolic expression KO : Rp → R that best fits a particular training set
T = {(x1, y1), . . . , (xn, yn)} of n input/output pairs with xi ∈ Rp and yi ∈ R.

Then, following the same formulation proposed by Castelli and coauthors [6],
a symbolic regression problem can be formally defined as

(KO,θO)← arg min
K∈G;θ∈Rm

f(K(xi, θ), yi) with i = 1, . . . , p ,

where G is the solution or syntactic space defined by the primitive set P (functions
and terminals), while f is the fitness function based on the distance between a
program’s output K(xi, θ) and the expected output yi (such as the root mean
square error–RMSE), and θ ∈ Rm is a particular parametrization of the symbolic
expression K.

Standard GP operators work at the syntax level, without taking into account
the effects on the semantics. Nonetheless, GP was able to successfully solve
problems in different domains [13]. Despite that, the impossibility to optimize
the parameters of the model translates into significant limitations, such as
search stagnation, bloat [19] and solutions that are poorly understandable [14,6].
This is mostly due to the fact that GP performs a highly-exploratory search,
characterized by large fitness changes when a modest syntactic modification
occurs and vice-versa [6].

Different works were proposed to include a local search strategy into evolu-
tionary algorithms [9,16]. The common idea shared by these methods consists of
defining an operator that, given a candidate solution, is able to exploit the local
region around that solution to search for the best neighbor.

Considering the particular case of GP, it is possible to distinguish two main
methods for applying a local search (LS) strategy: apply LS either on the syntax
or on the numerical parameters of the program [14,6].

With respect to the first approach, Azad and Ryan [2] proposed the use of
local search to change the fitness of individuals during their lifetime. While the
proposed system was not the first attempt to include LS in GP, it was easy to
understand and cheap to implement [2]. Their results show that GP with LS
outperforms standard GP over different symbolic regression problems. Moreover,
they show that the system uses the available genetic material more efficiently
than standard GP, and that the training process produces smaller individuals.

With respect to the second approach, several works are worth to be mentioned.
In [17], authors studied the effectiveness of gradient search optimization of numeric
leaf values in GP individuals. The results reported by the authors showed that
local learning yielded an improved approximation accuracy, even if they optimized
only the value of the terminal nodes of the trees.

A similar approach was proposed in the work of Zhang and Smart [22], where
a LS algorithm was integrated into the GP search process to optimize the value
of the terminal nodes.

In [21] the authors investigated a Lamarckian memetic GP, incorporating a
LS strategy to refine GP individuals expressed as syntax trees. The authors tested
different heuristic methods to determine which individuals should be subject to

3

https://doi.org/10.1007/978-3-030-30241-2_64

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-30241-2_64

LS, showing that better results can be obtained by applying LS to all individuals
in the population or to a subset of the best individuals. All in all, the results
demonstrated that including a LS strategy in GP is beneficial both in terms of
convergence and performance, as well as limiting code growth.

The use of LS in GP for symbolic regression was also proposed in [14], where
the authors integrated a LS optimizer as an additional search operator. The
results showed that the use of the LS operator helps improving the convergence
and performance of tree-based GP, while reducing the size (i.e., the number of
nodes) of the trees.

With respect to GSGP, to the best of our knowledge, the only work published
in this line of research is the one proposed in [6], where the authors modified the
original geometric semantic mutation (GSM) operator to integrate a greedy LS
optimizer. Given an individual T , the resulting operator (called GSM-LS) was
defined as follows:

T ′ = α0 + α1 · T + α2 · (R1 −R2)

where R1 and R2 are random trees with output in [0, 1], while αi ∈ R. In
particular, α2 replaces the mutation step parameter ms that characterizes the
geometric semantic mutation operator.

As reported in [6], the GSM-LS operator tries to determine the best linear
combination of the parent tree and the random trees used to perturb it, and it
is local in the sense of the linear problem defined by the GSM operator. When
compared against the original GSM operator, GSM-LS was able to improve the
convergence speed of the search process, and reduced the size of the resulting
solution [6,8,11,4].

4 A New Way to Perform Local Search

In this paper we build on top of the GSGP-LS idea, whereby differently from the
work described in [6], we apply LS to all the individuals during a separate step
after mutation and crossover.

Let T : Rp → R be a GP individual encoded by a tree which is defined over
a set of primitives P, and let s(T) = (T (x1), T (x2), . . . , T (xn)) be its semantic
vector computed on the inputs X = (x1, . . . , xn), where xi ∈ Rp and T (xi) ∈ R
for all i ∈ {1, · · · , p}. Further, let Y = (y1, . . . , yn) ∈ Rn be the vector of target
values associated to X. In particular, the training set T = {(x1, y1), · · · , (xn, yn)}
is the diagonal of the Cartesian product X × Y . In what follows, we assume
that the fitness f of the individual T is the mean squared error (MSE) of T in
predicting Y from X, i.e.

f(T) =
1

n

n∑
i=1

(T (xi)− yi)2 .

Remark that, however, our local search method can be defined with any order-
preserving transformation of the MSE as the underlying fitness function, such as
the RMSE.

4

https://doi.org/10.1007/978-3-030-30241-2_64

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-30241-2_64

A first idea to introduce a local search step in GSGP is to define a regression
problem that aims at minimizing the error between the values in the vector
s(T) and Y as follows: find two coefficients α∗, β∗ ∈ R that minimize the sum
of the squares of the differences between αT (xi) + β and yi. Formally, for all
i ∈ {1, · · · , n} we have

T ′(xi) = α∗T (xi) + β∗ , where (α∗, β∗) = arg min
α,β∈R

{f(αT (xi) + β)} .

In other words, the original tree T is replaced by an affine transformation T ′,
which is then encoded as a new GP individual. Since α = 1 and β = 0 is a valid
solution, the resulting individual T ′ will not have a worse fitness than that of
the original individual T over the training set.

The idea of replacing a tree with an affine transformation of it can be
generalized to allow more complex transformations of a GP tree. In particular,
let F = {f1, . . . , fk : R → R} be a collection of k real functions. We can thus
define the semantic vectors for all 1 ≤ i ≤ k as

s(fi ◦ T) = (fi(T (x1)), fi(T (x2)), · · · , fi(T (xn))) .

Similarly to the affine transformation case, one can define a regression problem
using the components of the vectors s(fi ◦ T) in the following way: find k
coefficients α∗1, · · · , α∗k ∈ R that minimize the sum of the squares of the differences
between yi and T ′(xi), where

T ′(xi) =

k∑
j=1

αjfj(T (xi)) = α∗1f1(T (xi)) +α∗2f2(T (xi)) + · · ·+α∗kfk(T (xi)) (1)

for all 1 ≤ i ≤ n. Therefore, the formulation of the regression problem becomes

(α∗1, · · · , α∗k) = arg min
α1,···αk∈R

f
 k∑
j=1

αjfj(T (xi))

 . (2)

Clearly, one obtains a direct generalization of the previous regression problem
if set F includes both a non-zero constant function and the identity function.
The goodness of the solutions obtained by solving this linear regression problem
depends on the particular set F , which can include non-linear functions as well.

Our modified version of GSGP uses the linear regression problem defined
by Equations (1), with coefficient given by Equation (2), as an additional local
search step that tries to exploit the structure of the candidate solutions. In
particular, this step is applied at each generation over all individuals in the
current population after having applied semantic crossover and mutation, and
before the insertion in the new population.

5 Experimental Settings

In the following, GSGP denotes standard Geometric Semantic GP, GSGP-LS
the variant of GSGP with the local search mutation operator introduced in [6],
and GSGP-reg the regression-based method described in Section 4.

5

https://doi.org/10.1007/978-3-030-30241-2_64

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-30241-2_64

The set of functional symbols employed in the experiments was {+,−,×,÷},
where ÷ is division, protected by returning 1 when the denominator is sufficiently
close to 0. The set of terminal symbols was the set of all input variables over which
the symbolic expression encoded by a GP individual is defined. In particular, no
fixed constant was used in the terminal set. All GSGP variants investigated in
our experiments adopted a generational evolutionary strategy, using tournament
selection with tournament size t = 4. Each offspring individual was created by
applying either semantic crossover or mutation, with a probability respectively of
0.6 and 0.4. The population size was set at 250 individuals, generated through a
ramped half-and-half method with a maximum initial depth of 6. Survival of the
best candidate solution in the population was assured by employing elitism with
replacement of a random individual. The trees used in the semantic mutation
and crossover operators were randomly generated with a maximum depth of 6,
and their values constrained between 0 and 1 by using a logistic function.

Both GSGP-LS and GSGP-reg performed the local search step only for the first
10 generations; then, the algorithm switched to GSGP. As shown in [6], this limits
the overfitting introduced by the local search procedure. Further possibilities,
like the application every k generations, will be the aim of future investigations.
As for GSGP-reg, we performed some preliminary explorations with different sets
of functions for the regression step. This showed that a good trade-off between
performances on the training set and the avoidance of overfitting was given by
the four functions f1(x) = 1 (constant), f2(x) = x (identity), f3(x) = max(0, x)
(positive part), and f4(x) = min(0, x) (negative part).

In all considered problems, a 70/30 random split between train and test sets
was used. To ensure the statistical validity of the results, we performed 100 runs
of 500 generations on each test problem, using a different random split of training
and test sets in each run. We used the RMSE as the fitness function to minimize
in all problems.

For all test problems we recorded the median and the median absolute
deviation (MAD) of the fitness obtained by the best individual of the population,
since they are more resistant to outliers than the average and the standard
deviation. The results obtained by the three methods on the test sets were
also compared among themselves using the Mann-Whitney U-test, adopting the
alternative hypothesis that the fitness achieved by the first method (either GSGP
or GSGP-LS) was greater, and thus worse, than the fitness achieved by the
second method (either GSGP-LS or GSGP-reg). The significance level adopted
for the tests was α = 0.05. The Mann-Whitney U-test was used since it makes
no assumption on the distribution underlying the samples.

6 Regression Problems Used for Testing

We performed our experiments over five regression problems. In particular, the
first three come from the domain of pharmacokinetics, and concern the prediction
of three different parameters featured by a set of chemical compounds that are
considered for potential drug development, and which are represented by their

6

https://doi.org/10.1007/978-3-030-30241-2_64

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-30241-2_64

Table 1. Sizes of the considered datasets.

%F %PPB TOX COMP SLUMP

#Instances 260 131 234 1030 102
#Features 242 627 627 8 9

molecular structure. On the other hand, the last two problems pertain civil
engineering, and specifically consist in predicting two parameters of concrete
based on the mix of ingredients used to produce it. We briefly describe each
of the considered problems, and summarize in a table the dimensions of the
respective datasets at the end of this section. For further information, the reader
may refer to [1,6] for the pharmacokinetics problems and to [7,20] for the concrete
problems. In our experiments we adopted the same datasets used in those works.
Table 1 summarizes the sizes of the five considered datasets. The “#Features”
row includes both the input features and the output value of the parameter.

Human Oral Bioavailability (%F). Human Oral Bioavailability (shortened as %F)
is a pharmacokinetic parameter which measures the quantity of an orally-
administered drug that actually reaches blood circulation after being processed by
the liver. The dataset adopted in our experiments is composed of 260 molecules
instances, each of them represented by 241 molecular descriptors and the corre-
sponding value of %F.

Plasma Protein Binding (%PPB). Plasma Protein Binding (indicated as %PPB
in what follows) is a parameter more specific than %F, since it measures the
quantity of drug that reaches circulation and further attaches to plasma proteins
in the blood. The dataset is composed of 131 molecules instances, where each
instance is described by 626 features and the associated value of %PPB.

Median Lethal Dose (TOX). Median Lethal Dose (informally referred to as
toxicity, and abbreviated as TOX) measures the quantity of drug which is
necessary to kill half of the test organisms. As noted in [1], one can have different
toxicity parameters depending on the specific test organism and administration
route. The parameter considered in our experiments is the one used in [1,6],
which concerns mice as test organisms and oral supplying as an administration
route. The dataset is composed of 234 molecules instances which, as in the %PPB
dataset, are described by 626 features and the corresponding value of TOX.

Concrete Compressive Strength (COMP). Concrete Compressive Strength (ab-
breviated as COMP in the following) is a parameter that measures how much
a particular mix of concrete can resist compression forces. The dataset of our
experiments is composed of 1030 instances of concrete mix, each described by 7
features (i.e. the ingredients composing the mix) and the corresponding value of
COMP.

7

https://doi.org/10.1007/978-3-030-30241-2_64

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-30241-2_64

Table 2. Median and MAD of the fitness obtained by the best individual.

Dataset GSGP GSGP-LS GSGP-reg

%F
Training set

Median 31.5945 22.8211 23.4196
MAD 0.7531 0.3585 0.3733

Test set
Median 33.2053 30.7070 30.7311
MAD 1.2162 2.0702 3.2942

%PPB
Training set

Median 20.5467 4.8129 5.2265
MAD 0.7768 0.7783 1.0574

Test set
Median 36.5051 38.2085 56.3562
MAD 5.0257 4.0538 25.0935

TOX
Training set

Median 2159.6356 1650.8873 1768.6019
MAD 68.2308 48.0973 52.6530

Test set
Median 2223.4332 2290.4879 2209.9571
MAD 157.9263 328.4134 210.1360

COMP
Training set

Median 8.3835 5.5940 5.8519
MAD 0.4053 0.1002 0.1618

Test set
Median 8.9826 6.3625 6.6204
MAD 0.6422 0.2255 0.2179

SLUMP
Training set

Median 1.6911 0.8124 0.8956
MAD 0.2336 0.0757 0.0746

Test set
Median 4.4309 2.8535 2.9441
MAD 0.8338 0.4305 0.4482

Concrete Slump (SLUMP). Concrete Slump (indicated as SLUMP) is a parameter
that measures the consistency of fresh concrete. The dataset employed for our tests
is composed of 102 instances described by 8 input features, plus the corresponding
SLUMP value.

7 Experimental Results

Figures 1 to 5 report the plots of the median fitness for the three compared
methods (GSGP, GSGP-LS and GSGP-reg) over the five considered datasets.
In particular, the left part (respectively, right part) of each figure refers to the
median fitness achieved by each method in 500 generations over 100 experimental
runs on the training set (respectively, test set) of the relevant problem. The
median fitness is also reported in Table 2 for each problem, along with the
associated median absolute deviation (MAD). In general, one can see from the
plots of the training sets that both GSGP-LS and GSGP-reg perform better than
pure GSGP over all considered datasets. This is an expected outcome, since as
observed in [6] local search tends to overfit the datasets when applied to each
generation of the GSGP algorithm. As discussed in Section 5, this is the reason
why we investigated a hybrid version of both GSGP-LS and GSGP-reg, where
the local search step is not applied after 10 generations. On the other hand,
one can still observe on the test sets that GSGP-LS and GSGP-reg generally
fare better than pure GSGP, except over the %PPB and TOX datasets. In the

8

https://doi.org/10.1007/978-3-030-30241-2_64

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-30241-2_64

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300 350 400 450 500

F
itn
e
s
s
 (
R
M
S
E
)

Generations

GSGP
GSGP-LS
GSGP-reg

 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48

 0 50 100 150 200 250 300 350 400 450 500

F
itn
e
s
s
 (
R
M
S
E
)

Generations

GSGP
GSGP-LS
GSGP-reg

Fig. 1. Median fitness on the training (left) and test (right) sets for the %F dataset.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450 500

F
itn
e
s
s
 (
R
M
S
E
)

Generations

GSGP
GSGP-LS
GSGP-reg

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 50 100 150 200 250 300 350 400 450 500

F
itn
e
s
s
 (
R
M
S
E
)

Generations

GSGP
GSGP-LS
GSGP-reg

Fig. 2. Median fitness on the training (left) and test (right) sets for the %PPB dataset.

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 0 50 100 150 200 250 300 350 400 450 500

F
itn
e
s
s
 (
R
M
S
E
)

Generations

GSGP
GSGP-LS
GSGP-reg

 2050

 2100

 2150

 2200

 2250

 2300

 0 50 100 150 200 250 300 350 400 450 500

F
itn
e
s
s
 (
R
M
S
E
)

Generations

GSGP
GSGP-LS
GSGP-reg

Fig. 3. Median fitness on the training (left) and test (right) sets for the TOX dataset.

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400 450 500

F
itn
e
s
s
 (
R
M
S
E
)

Generations

GSGP
GSGP-LS
GSGP-reg

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400 450 500

F
itn
e
s
s
 (
R
M
S
E
)

Generations

GSGP
GSGP-LS
GSGP-reg

Fig. 4. Median fitness on the training (left) and test (right) sets for the COMP dataset.

9

https://doi.org/10.1007/978-3-030-30241-2_64

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-30241-2_64

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400 450 500

F
itn
e
s
s
 (
R
M
S
E
)

Generations

GSGP
GSGP-LS
GSGP-reg

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400 450 500

F
itn
e
s
s
 (
R
M
S
E
)

Generations

GSGP
GSGP-LS
GSGP-reg

Fig. 5. Median fitness on the training (left) and test (right) sets for the SLUMP
dataset.

Table 3. p-values obtained with the Mann-Whitney U test.

Dataset GSGP vs GSGP-LS GSGP vs GSGP-reg GSGP-LS vs GSGP-reg

%F 3.0863E−7 0.0933 0.7386
%PPB 0.7159 0.9999 0.9999
TOX 0.9952 0.8231 0.0316
COMP 2.5092E−33 2.0975E−28 0.9999
SLUMP 1.1896E−16 2.4460E−20 0.7425

former case, our generalization of local search is the worse performer among
the three algorithms, the median fitness values of GSGP and GSGP-LS being
lower than GSGP-reg and close to each other. In the latter, GSGP-reg actually
scores the best performance, while GSGP-LS achieves the highest median fitness
after 500 generations. Regarding the comparison of the two versions of GSGP
with local search, one cannot rely on the plots alone, except for the %PPB and
TOX datasets. In fact, as it can be seen in the right parts of Figures 1, 4 and 5,
the plots of the median fitness values of GSGP-LS and GSGP-reg are almost
superimposed. For this reason, we performed a more thorough comparison using
the Mann-Whitney U-test. Table 3 reports the p-values of all three comparisons
(GSGP vs. GSGP-LS, GSGP vs. GSGP-reg and GSGP-LS vs. GSGP-reg) over
the test sets of the five considered problems. However, by looking at the fourth
column of Table 3, it can be seen that under the considered significance level
(α = 0.05) one cannot reject the null hypothesis, i.e. that the performance of
GSGP-LS is not worse than that of GSGP-reg over %F, COMP and SLUMP.
The p-value corresponding to the %PPB dataset actually shows that GSGP-LS
is not worse than GSGP-reg as well. On the other hand, the null hypothesis is
rejected for the TOX dataset (p = 0.0316), thereby confirming our observation
above regarding the median fitness plot on the test set of Figure 3. As a final
note, for both GSGP-LS and GSGP-reg, the additional computational resources
needed did not increase significantly the time required to perform the evolution.

10

https://doi.org/10.1007/978-3-030-30241-2_64

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-30241-2_64

8 Conclusion

In this paper we have defined a new local search operator for GSGP called
GSGP-reg, and compared it with both the classical version of GSGP and the
current best performing combination of GSGP with local search, called GSGP-LS,
as defined in [6]. We were able to outperform classical GSGP in most cases, and
our proposed method is on par with the performances of GSGP-LS. However,
the problems in which GSGP-reg and GSGP-LS show overfitting are different.
Therefore, it would be interesting to understand what causes similar performances
in certain datasets and remarkably different generalization behavior in others.

There are multiple interesting research directions still open. First of all, an
in-depth study of the best functions families F to be employed for regression
should be performed, thereby expanding the preliminary exploration presented
here, and analyzing how each of these families influences the learning process and
the ability to generalize. The regression method can also be tuned in multiple
ways. For example, one could generate multiple regression models on different
subsets of the training data and select one with the best generalization on the part
of the training set that was not used for the generation of the linear regression
model. Finally, for classification problems a similar method can be employed by
using logistic regression instead of the traditional linear regression.

Acknowledgments. This work was partially supported by national funds through
FCT (Fundação para a Ciência e a Tecnologia) under project
DSAIPA/DS/0022/2018 (GADgET).

References

1. Archetti, F., Lanzeni, S., Messina, E., Vanneschi, L.: Genetic programming for
computational pharmacokinetics in drug discovery and development. Genetic Pro-
gramming and Evolvable Machines 8(4), 413–432 (2007)

2. Azad, R.M.A., Ryan, C.: A simple approach to lifetime learning in genetic
programming-based symbolic regression. Evolutionary Computation 22(2), 287–317
(2014)

3. Castelli, M., Manzoni, L., Vanneschi, L., Silva, S., Popovič, A.: Self-tuning geometric
semantic genetic programming. Genetic Programming and Evolvable Machines
17(1), 55–74 (2016)

4. Castelli, M., Trujillo, L., Vanneschi, L.: Energy consumption forecasting using
semantic-based genetic programming with local search optimizer. Computational
Intelligence and Neuroscience 2015, 57 (2015)

5. Castelli, M., Trujillo, L., Vanneschi, L., Popovič, A.: Prediction of relative position
of ct slices using a computational intelligence system. Applied Soft Computing 46,
537 – 542 (2016)

6. Castelli, M., Trujillo, L., Vanneschi, L., Silva, S., et al.: Geometric semantic genetic
programming with local search. In: Proceedings of the 2015 Annual Conference on
Genetic and Evolutionary Computation. pp. 999–1006. ACM (2015)

7. Castelli, M., Vanneschi, L., Silva, S.: Prediction of high performance concrete
strength using genetic programming with geometric semantic genetic operators.
Expert Syst. Appl. 40(17), 6856–6862 (2013)

11

https://doi.org/10.1007/978-3-030-30241-2_64

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-30241-2_64

8. Castelli, M., Vanneschi, L., Trujillo, L., Popovič, A.: Stock index return forecasting:
semantics-based genetic programming with local search optimiser. International
Journal of Bio-Inspired Computation 10(3), 159–171 (2017)

9. Chen, X., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic
computation. Transactions on Evolutionary Computation 15(5), 591–607 (2011)

10. Enŕıquez-Zárate, J., Trujillo, L., de Lara, S., Castelli, M., Emigdio, Z., Muñoz, L.,
Popovič, A., et al.: Automatic modeling of a gas turbine using genetic programming:
An experimental study. Applied Soft Computing 50, 212–222 (2017)

11. Hajek, P., Henriques, R., Castelli, M., Vanneschi, L.: Forecasting performance of
regional innovation systems using semantic-based genetic programming with local
search optimizer. Computers & Operations Research 106, 179 – 190 (2019)

12. Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection. MIT press (1992)

13. Koza, J.R.: Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines 11(3-4), 251–284 (2010)

14. Leonardo, T., Z-Flores, E., Juarez Smith, P.S., Legrand, P., Silva, S., Castelli,
M., Vanneschi, L., Schütze, O., Munoz, L.: Local Search is Underused in Genetic
Programming. In: Arbor, A. (ed.) Genetic Programming Theory and Practice XIV.
Springer (2017)

15. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming.
In: International Conference on Parallel Problem Solving from Nature. pp. 21–31.
Springer (2012)

16. Neri, F., Cotta, C., Moscato, P.: Handbook of memetic algorithms, vol. 379. Springer
(2012)

17. Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient search
of numeric leaf values. In: Proceedings of the 3rd Annual Conference on Genetic and
Evolutionary Computation. pp. 155–162. GECCO’01, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (2001)

18. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of
geometric semantic GP and its application to problems in pharmacokinetics. In:
European Conference on Genetic Programming. pp. 205–216. Springer (2013)

19. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional
complexity in genetic programming. In: Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation. pp. 877–884. ACM (2010)

20. Yeh, I.C.: Modeling of strength of high-performance concrete using artificial neural
networks. Cement and Concrete Research 28(12), 1797 – 1808 (1998)

21. Z-Flores, E., Trujillo, L., Schütze, O., Legrand, P.: Evaluating the effects of local
search in genetic programming. In: Tantar, A.A., Tantar, E., Sun, J.Q., Zhang, W.,
Ding, Q., Schütze, O., Emmerich, M., Legrand, P., Del Moral, P., Coello Coello,
C.A. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation V. pp. 213–228. Springer International Publishing,
Cham (2014)

22. Zhang, M., Smart, W.: Genetic programming with gradient descent search for
multiclass object classification. In: Keijzer, M., O’Reilly, U.M., Lucas, S., Costa, E.,
Soule, T. (eds.) Genetic Programming. pp. 399–408. Springer Berlin Heidelberg,
Berlin, Heidelberg (2004)

12

https://doi.org/10.1007/978-3-030-30241-2_64

	Extending Local Searchin Geometric Semantic Genetic Programming

