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Abstract. Cellular Automata (CA) models have been applied to differ-
ent fields of knowledge, from cryptography, arts, to the modelling and
simulation of complex systems. In the latter area, however, sometimes the
ability to properly represent complex interacting but distinct dynamics
taking place within a given area is limited by the need of calibrating
models in which the number of necessary parameters grows. Hidden
costs related to the identification of specific values or plausible ranges for
parameters can become overwhelming.
Here we model the assembly process of plant communities after fire. The
number of elements of plant communities (plants of different species) and
processes involved (seed dispersal, plant recruitment, competence, etc.)
require a high degree of parameterization because all those processes
have great relevance on the evolution of the system, for instance during
post-fire recovery.
The fire, aside negative effects, releases a number of resources (space,
nutrients, . . . ) making them easily available for plants, which promptly
use those resources so they are no longer available to other plants after
a period of time which usually ranges from months to years. In the
meantime, the plasticity of species in relation to fire and environment
and the interactions among species determine the direction of changes to
occur.
In this work we present a novel approach to the assembly of plant commu-
nities after fire using CA. In particular we gather the preliminary results of
their application and give a feasible way to optimize the parameterization
of the model.

1 Introduction

Plant Community Assembly After Fire. The vegetation is the base in the func-
tioning of the majority of terrestrial ecosystems as it captures the energy from
sunlight and makes it available to the other elements of the ecosystem. Despite the
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vegetation being primarily dependent on the environment, as it grows complex,
it modifies the environment to such a degree that it takes control of certain
processes in the ecosystem.

However, plant communities are continuously changing along time following
a patch pattern, where the death of plants creates gaps, so that the temporary
increase of resources (light, space, water, nutrients, . . . ) promotes the growth of
neighbouring plants and the recruitment of new ones until the majority of those
resources are retained, or occupied, by plants or leaked out of the system [18].
These changes are usually slow; however, disturbances trigger large changes in
plant community structure and functioning [15]. Disturbances often produce a
large increase in the availability of resources through plant mortality [26], and
fire is one of the most widespread disturbances [13]. The recovery of vegetation
after fire depends on the regenerative strategies of the species [26,12], that should
be interpreted as a measure of the resistance and resilience of communities and
ecosystems. Indeed, this measure has been used in this way by other authors, for
instance in [25]. Nonetheless, the assembly of plant communities after fire depend
on interactions among species, which have a primary importance but that, up
to now, have barely been considered due to their complexity [16]. In any case
the general trend of vegetation assembly after fire and the involved process have
been outlined in some types of vegetation such as Atlantic ecosystems [26,2].

Plant Communities and Cellular Automata Models: State of the Art. CA models
incorporate both spatial and temporal dynamics [1,7], making them suitable
tools to model space-oriented ecological processes [9,10,17]. The plasticity of
CA models has encouraged researchers tackling new challenges in ecology and
their application has increased during the last decades [10,8,29]. They have
been used for methodological purposes [7,19,21], for modelling vegetation dy-
namics [3,5,9,10,14] and the impact of disturbances [1]. Despite their strong
dependence on parameterization, the main advantage of such models is that they
are less laborious and they can be used for simulating complex systems with only
a few rules. However, the sampling effort and computation requirements have
prevented CA becoming an ordinary tool in ecological research. In this regard,
CA models are not usually intended to reproduce the spatio-temporal patterns
of vegetation; they are just a loose approach to the structure of vegetation, for
instance [7], or to any process.

Objectives. The objective of this work is the development of CA models that
reproduce the assembly of plant communities after fire and shortly discuss a
possible way of optimizing their parameterization.

2 Background Data

The information for the cellular automaton has been recorded by the Fire
Ecology Group of the University of Santiago de Compostela in a high number
of locations in the north-west of the Iberian Peninsula for the last 18 years.

2

https://doi.org/10.1007/978-3-319-99813-8_6


The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99813-8_6

Some of those data have been previously published in scientific journals, for
instance [24,4,26,27,4,23,28,16]. Other data still remain unpublished.

The burnt areas studied cover a wide range of conditions. The main environ-
mental sources of variation in our database are topography and climate, which
ranges from Atlantic to transition climates to Mediterranean. The information
used to build the model covers a broad scope of biological processes along the
biological cycle of plants, from seed production and dispersal, plant regeneration
strategies after fire, plant structure and vegetation structure and assembly. How-
ever, the largest set of information and the main input in the model is species
cover, recorded in burnt shrublands during the first years after fire.

3 The Cellular Automaton Model

The probabilistic CA herein developed is defined by the tuple 〈L,H,Q, f, I〉
where L is the lattice structure of the CA, H is the neighbourhood, Q the set
of states, f : Q×Q|H| → Q the local rule, and I is the initial configuration of
the CA. Notice that, differently from traditional probabilistic CA, where the
probabilities of the possible transitions are constant with time, in this case they
can change to better reflect the empirical observations. We are now going to
define in detail each one of this components of the CA model developed.

Lattice L. The post-fire recovery of vegetation is simulated in a bidimensional
square lattice intended to reproduce a 30m × 30m field plot, so that each cell
represents a 0.1m× 0.1m square. Thus, the lattice is defined as L = {(i, j) : 1 ≤
i ≤ N, 1 ≤ j ≤ M} where N = 300 ×M = 300. The sizes of lattice and of
the cells were chosen according to field studies and computation requirements,
because the probability of finding new species is directly related to the size of the
plot [11,30] and the cell size determines the relationships that can be detected
among species [16]. However, a high number of cells increases the number of
computations needed to simulate the whole model.

Neighbourhood H. The growth of plants across the plot was implemented in the
CA model through the transition functions which use the Moore neighbourhood
of radius 1. We assumed that the cells in the neighbourhood are not equidistant
from the central cell. Namely, the cells reachable via a diagonal step are farther
away from the central cell than the other ones. Since this distance has an influence
in the real world, we have considered it when implementing the model.

Cell Values Q. The CA was designed to reproduce the dynamics of aboveground
vegetation; accordingly, belowground characteristics are part of the initial config-
uration of the model and cell values are only concerned by changes aboveground.
In the following, we will use the notation Qi,j,t to denote the state of the cell in
position (i, j) at time t.

Each plant in the CA model, no matter the species or the way it was recruited,
needs to be tracked through the entire simulation in order to display its spreading
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and interactions with other plants. In particular, every plant in the CA model
has its own ID. In particular, for each 1 ≤ v ≤ V where V the maximum number
of species, the set of possible plants is defined as follows:

Spv,rs = {Spv,rs,i}
Zrs

v
i=1 Spv,sd = {Spv,sd,i}

Zsd
v

j=1

Community =
V⋃

v=1
(Spv,rs ∪ Spv,sd)

where Zrs
v is the number of plants recruited by resprouting and Zsd

v is the number
of plants recruited by seed germination; these two values depend on the particular
species v under consideration. Community is the set that includes all plants
in the CA, recruited by resprouting (Spv,rs) of by seed germination (Spv,sd).
Accordingly, the state of a cell is either Bare ground, which means that is empty
of vegetation, or the ID(s) of the plant(s) that occupy the cell. This means
that Qi,j,t ⊂ Community, where Qi,j,t = ∅ designates Bare ground. With this
representation the state of each cell can represent the presence of zero, one, or
more than one plant in the physical space that the cell denotes.

Initial Configuration I. Initially Qi,j,0 = ∅ for (i, j) ∈ L. The recovery of
vegetation strongly depends on the pre-fire situation and fire damages, and thus
the statements which govern the initial configuration of the CA were carefully
conceived.
1. The pre-fire plant community of v species with cover cvv, randomly picked

up from field data, is the target community assuming auto-succession.
2. The pre-fire plants are randomly placed in the plot according to the cover of

each species.
3. The plot is environmentally homogeneous and empty of aboveground vegeta-

tion immediately after fire.
4. A proportion of plants of each species survives and are recruited follow-

ing a temporal distribution obtained via field recruitment data. Post-fire
resprouting mortality is not considered.

5. A number of plants of each species are recruited by seed germination following
a temporal distribution that follows field recruitment data. The distribution
of seeds is randomly uniform across the plot before fire. The number of seeds
is not a limiting factor, and post-fire seedling mortality is not considered.

Thus, for all 1 ≤ v ≤ V , the spatio-temporal location of new plants

Ssd = {x`, y`, T`}
Spv,sd

`=1 Srs = {x`, y`, T`}
Spv,rs

`=1

follows the following distribution:
Ssd, Srs ∼ (U(1, N), U(1,M), f1(t))

where Ssd is the total amount of seedlings in the community, Srs the set of
resprouted plants, and f1(t) probability distribution of plant recruitment along
time, taken from field data (Fig. 1). That is, a new plant is placed in the CA
in a spatial position selected uniformly at random at a time determined by
function f1.
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Fig. 1. Temporal distribution (f1(t)) of recruitment events for seedling (red) and
resprout (green) at the top and the their distribution across the lattice and time at the
bottom.

Rules of the automaton. The transition rules to update the CA model in the
context of the Moore neighbourhood are as follow:

1. A plant j of a species v spreads to neighbouring cells at time t with different
probabilities depending on its origin: with probability pv,rs,i for resprouted
plants (Spv,rs,i) and probability pv,sd,j for plants (Spv,sd,j) recruited by seed
germination.

2. Any cell that is occupied by a plant j remains occupied by that plant till
the end of the simulation. This means that mortality and pruning are not
considered in the model.

3. The probabilities pv,rs,i and pv,sd,j depend on the age of the plant, the
biological type and the way the plant was recruited after fire. Since the
simulations run in a square lattice using the Moore neighbourhood, the
distance from the central cell of the neighbourhood was also taken into
account as a correction factor. Thus,

Qi,j,t+1 = F
(
Qi,j,t,Wt, Q

|H|
i,j,t, S

sd
t , Srs

t

)
for (i, j) ∈ L and t ∈ N

where Wt is the matrix containing the relationships and transition probabili-
ties of elements in Qi,j,t and Q|H|

i,j,t at time t and the growth of plants through
time follow the functions dSpv,rs,i = f2(t)Spv,rs,i and dSpv,rs,j = f2(t)Spv,rs,j ,
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Fig. 2. Mean plant diameter of species and regenerative traits in the CA along time,
fitted from field data. Species were coded with different colours; solid lines indicate plant
growth of resprouts and dotted lines the growth of plants recruited by seed germination.

where the family of functions fSpv,rs,i

2 and fSpv,rs,j

2 provide a time-dependant
value obtained via field data.

4. Any cell occupied by a plant A can be occupied by another plant B in
the neighbourhood with probability pB if t > 36 and BB > BA and with
probability βpB otherwise, where t is a time span (years after fire), BA is the
biological type of plant A and BB the type of plant B, and β is a correction
factor.

Parametrization. The whole CA was parameterized by measuring the error with
respect to field data values. The growth along time of each species and the
regenerative trait in the CA were parameterized using a sigmoid distribution
with the aim that one loop in the CA equals one month (Fig. 2); then, the whole
community was simulated.

The cellular automata model can potentially reproduce the post-fire dynamics
of any plant community because it gathers the main ecological processes in
the post-fire recovery; it only requires some information about the species in
that community. However, the availability of data limited the scope of plant
communities to be modelled, being heathlands, broomlands and gorselands the
best represented communities. The average number of woody species in those
communities was relatively high (x = 10.6, σx = 0.4 ) and the majority of the
woody species involved (33 out of 37) are able to regenerate through resprouting
and seed germination. Thus, about 20 parameters (one for each species and
regenerative trait) would be required in an average simulation, if independent
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Fig. 3. Outputs of a random simulation at different time steps during the first 5 years
after fire. Colours represent different cell states, that is plants or combination of plants.
The background colour represents bare soil.

growth among species was considered. Nevertheless, overlayering among species
in nature is common and the competence among species usually decreases the
rate of spreading of plants, indicating a non-independent growth and occurrence
of species. Within this new context, having just two species coexisting in a single
cell would already increase the mean number of parameters up to 2′2 = 400.
Even though the number of species in a 0.1m× 0.1m cell is usually low in nature,
it has been reported to be greater than 5 in some cases. As a result, a highly
complex parameterization should be used in order to fit real data. In order to
reach a compromise among the number of parameters, data, and computation
requirements, instead of parameterizing all the interactions among species, we
decided to parameterize each species and regenerative trait in isolation and to
use a one-off correction factor to fit the spreading rate in presence of any other
species, as indicated in the rules of the automaton.
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The squared error of the overall cover of woody species in the pre-fire com-
munity and the post-fire communities was used to validate the model because
the model assumes autosuccession. We have chosen field data around 3 years
after fire to validate the community model because it is a critical period in the
post-fire recovery and has a high impact on the overall recovery of the vegeta-
tion. Afterwards, the increase in cover of woody species tends to decrease and
changes tend to occur slowly. Furthermore, it is a suitable subset of data for
validation since a high percentage of field data focuses on the development of
plant communities around the first three years after fire.

4 Results and Discussion

The average value of pre-fire community around 3 years after fire in the validation
subset was 88.1± 2.7 (mean± SEM) and the average cost of the simulations,
i.e., the squared error, was 5.16. The error of validation simulations was relatively
low having into account the large variation of field data [24,4,23,16], particularly,
around 3 years after fire.

From an ecological point of view, the CA based model matches the objective
of reproducing the main patterns of the plant community assembly after fire.
There are strong differences in the occupation of available space among species
and biological traits. In this regard, the growth of plants along time changes in
the same way as field data do. As a result, CA models can be very useful for
hypothesis testing and for exploring different scenarios, but it reproduces an
idealized and oversimplified community, not in terms of the number of elements
(plants and populations) but in terms of their interactions. Despite the high
quality of data, the huge variation of ecosystems drives to the impossibility of
sampling all the possible situations, resulting in missing information. Thus, some
factors and processes have been simplified in order to get a good compromise
among model performance and computing requirements. One useful performance
for the model has been finding a good correspondence between plant growth
and growth probability for each loop in the CA. In our model one month equals
one loop, which makes it worthy in terms of computing resources requirements
and ecological interpretation of the results. A relatively low number of loops is
recommended due to the high number of parameters and the extent and number
of cells in the lattice, which is predefined in this work. The size of plot and cells
successfully fit our purpose of reproducing the vegetation recovery. Too small plots
would produce results that are due to the specific vegetation patterns [30], not to
ecological processes; instead, large cells would not reproduce plant competition for
resources, following other studies [16], and would result in unreal morphologies.
Hence, the spatial scale have a crucial role in the interpretation of interactions
among the plants, and species, in the community [16]. Furthermore, the spatial
structure cannot be neglected when an analysis of their sensitivity with respect to
their inputs and parameters is performed [6]. The number of processes, parameters
and data required by the model would increase exponentially, when considering
the influence of other processes or even the environment, which is often the
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hidden force modulating biological processes and interactions, and has multiple
feedbacks with the biological component.

4.1 Proposal for Parameter Optimization

As it is possible to observe, there are multiple parameters that are necessary for
the model to provide a realistic simulation of real world phenomena. In particular,
the functions that regulates the rates of spreading of the plants are an essential
part of the model and should be estimated accurately. While field data provide
some values for those functions, it is necessary to provide them for all possible
input values (i.e., time, in this case).

Machine Learning Methods. Genetic Algorithms (GA) [22] are a well-known
nature-inspired optimization method where a collection (called population) of
solutions (called individuals) to an optimization problems is represented as fixed
length vectors of bits. An initial random population is iteratively evolved using
operators inspired by the Darwinian theory of evolution: first of all, a subsection
of the population is selected via a selection process that mimics natural selection,
where better solutions have better survival probabilities. This sampled individuals
are then combined via the operations of crossover, which mimics reproduction,
and mutation that, similarly to natural occurring mutations in DNA, changes
bits in the individuals. This process is repeated until one of the termination
criteria is met, for example once a good enough solution has been found.

Genetic Programming (GP) was introduced by Koza [20] as a mean to evolve
not only arrays of bits, as in traditional GA, but entire programs. In GP a program
is usually represented by a tree, by its parsing tree. As in GA, a population
of is evolved by mean of selection, crossover, and mutation, where the last two
operators, depending on the actual representation used, are specific to GP.

Parameter Optimization Architecture. To perform the parameter optimization
process, a two-level method has been devised. Initially, for each species GP is
employed to provide a function estimating the rate of spreading in isolation. That
is, for each species we are estimating functions that provide a realistic spreading
rate when no competition is present. While this is not a sufficient condition to
obtain realistic solutions when other species are present, it is, nevertheless, a
necessary condition. This first step is performed to limit the computational costs:
the evaluation of the solutions can be performed by running a smaller and simpler
simulation (since only one species is involved).

Once a large enough number m of solutions has been obtained for each species,
we consider the following matrix:

f1,1 f1,2 · · · f1,V

f2,1 f2,2 · · · f2,V

...
...

...
fm,1 fm,2 · · · fm,V
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where the i-th column represents the collection of m solutions for the i-th species
that were found in the previous step. Now, it is possible to select via GA an
element for each column to provide a solution to the problem of optimizing the
spreading rates of the different species. For example, for 3 species the vector
(1, 3, 3) will represent the three functions f1,1, f3,2, f3,3, one for each species. This
second phase does not require to re-compute the spreading rates of the different
species in isolation, but only to find a subset of them that produces a realistic
simulation when they are combined. This two phase process should help reduce
the computational burden of finding the correct parameters.

Field data will be separated into training, testing, and validation sets in
the proportions 70%, 20% and 10% to deal with data dependence. Plant level
data, particularly plant dimensions along time, will be used in the first phase to
fit species spreading, while species abundance (cover data) will be used in the
second phase. Furthermore, the cover of each woody species and their combined
occurrence will be used to compute the cost of the parameters for the simulations
unlike the current model, which only uses overall cover.

5 Conclusions

Ecosystems are highly complex systems that can be successfully simulated using
cellular automata models. However there are two limiting factors: the availability
of information about biological processes and the optimization of a high number
of parameters. The balance between both of them (sampling effort and computa-
tional requirements) has to be met in order to make CA valuable for ecological
research.

In the future we plan to apply the proposed two-level optimization procedure
to correctly set the parameters. We think that this procedure can be generalised to
other kinds of CA models where there are multiple distinct processes interacting
in complex ways.
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