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Abstract

In this work, we present a primary construction of bent functions
based on cellular automata (CA). We consider the well-known charac-
terization of bent functions in terms of Hadamard matrices and employ
some recent results about mutually orthogonal Latin squares (MOLS)
based on linear bipermutive CA (LBCA) to design families of Hadamard
matrices of the form required for bent functions. In particular, the
main question to address in this construction can be reduced to finding
a large enough set of coprime polynomials over Fq, which are used to
define a set of MOLS via LBCA. This set of MOLS is, in turn, used
to define a Hadamard matrix of the specific structure characterizing
a bent function. We settle the existence question of such bent func-
tions by proving that the required coprime sets exist if and only if the
degree of the involved polynomials is either 1 or 2, and we count the
resulting sets. Next, we check if the functions of 8 variables arising
from our construction are EA-equivalent to Maiorana-McFarland func-
tions, observing that most of them are not. Finally, we show how to
represent the support of these bent functions as a union of the kernels
of the underlying linear CA. This allows us, in turn, to prove that the
functions generated by our construction belong to the partial spread
class PS−. In particular, we remark that for degree 1 our construction
is a particular case of the Desarguesian spread construction.

Keywords bent functions, cellular automata, Hadamard matrices, Latin
squares, orthogonal arrays, polynomials, partial spreads
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1 Introduction

Boolean functions play an important role in cryptography, coding theory,
and combinatorial designs [21]. Among them, bent functions are of particular
interest since they lie at the highest possible Hamming distance from the
set of all affine functions, or equivalently they reach the highest possible
nonlinearity. For this reason, bent functions have been extensively used in the
past for designing stream and block ciphers, since highly nonlinear Boolean
functions are useful to withstand fast-correlation and linear cryptanalysis
attacks. Indeed, even though bent functions are unbalanced, highly nonlinear
balanced functions can be derived from them [9]. However, it is known
that such functions are vulnerable to fast algebraic attacks, and thus cannot
be used directly as nonlinear elements in symmetric ciphers [4]. Besides
cryptography, bent functions are connected in coding theory to the covering
radius of first-order Reed-Muller codes, whose codewords are affine Boolean
functions.

Over the last decades, many constructions of bent functions have been
described in the related literature (see, e.g., [3, 21, 4] for a survey of the main
ones). A distinction is usually made between the primary and secondary
constructions. Primary constructions build sets of bent functions from
scratch, usually by leveraging on related combinatorial structures. Some of
the most well-known primary constructions for bent functions include the
Maiorana-McFarland construction [20], which exploits permutations over Fn2 ,
and Dillon’s construction [8], based on the class of partial spreads PS. On
the contrary, secondary constructions build new bent functions starting from
existing ones. For example, Rothaus’s construction [23] takes three bent
functions of n variables whose sum is also bent and yields a bent function of
n+ 2 variables.

Notwithstanding this multitude of constructions, they only cover a tiny
fraction of the total number of bent functions [21]. Moreover, the complete
enumeration of bent functions is still an open question for n ≥ 10 vari-
ables [22]. For these reasons, the search for new constructions is still an
interesting research problem that may contribute to a better understanding
of bent functions’ structure.

This paper presents a primary construction of bent functions based on
cellular automata (CA), that, to the best of our knowledge, has not been
reported before. More specifically, this construction employs a recent result
about families of Mutually Orthogonal Latin Squares (MOLS) defined by
Linear Bipermutive CA (LBCA), which has been described in [15]. These
families of MOLS are used to define Hadamard matrices that correspond to
bent functions. The characterization of bent functions through Hadamard
matrices has been known since Rothaus’s pioneering work on the subject [23].
Similarly, the connection between MOLS sets and Hadamard matrices dates
back at least to the end of the 60s [11, 1]. However, Hadamard matrices
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arising from MOLS, in general, do not have the structure necessary to
characterize a bent function. This lack of appropriate structure could be
one of the reasons why, up to now, no one investigated how to define bent
functions from the several methods known in the combinatorial designs
literature to construct MOLS (see [7] for a survey of such techniques).

The main contributions of this paper are the following:

• We prove that the MOLS families of the CA-based construction of [15]
generate Hadamard matrices of the specific form required to character-
ize bent functions, a result which crucially relies on the linearity of the
CA.

• We remark that the existence question of the bent functions arising
from this construction boils down to finding a large enough family of
pairwise coprime polynomials over Fq with the nonzero constant term,
which defines the local rules of the CA used to construct the MOLS
sets.

• We prove that such coprime families exist if and only if the degree of
the considered polynomials is either 1 or 2, and we count the number of
bent functions resulting from our construction through Gauss’s formula.

Our counting result reveals that the functions obtained from this construction
are quite rare compared to the whole class of bent functions. For example, for
n = 8 input variables, our construction yields 6 435 bent functions when using
coprime polynomials of degree 1, and only 12 functions with polynomials of
degree 2. By contrast, the exact number of 8-variable bent functions, which
has been determined relatively recently in [14], amounts approximately to
2106.

To assess whether the functions generated by our construction are already
known, we first experimentally check their Extended Affine (EA)-equivalence
against functions in the Maiorana-McFarland (MM) class. The results
show that, for n = 8 variables, most of the generated functions are not
EA-equivalent to MM functions. We then explain how to determine the
support of the functions in this construction as a union of the involved linear
CA’s kernels. This compact description allows us to prove that the bent
functions in our construction belong to the partial spread class PS−, and
thus have maximal algebraic degree n/2. Moreover, we show that when the
degree of the coprime polynomials is 1, our construction is a particular case
of the Desarguesian spread construction. Thus the resulting bent functions
are actually in the PSap class. Conversely, there does not seem to be a
straightforward way to show that the functions generated with polynomials
of degree 2 are also in PSap.

The rest of this paper is organized as follows. Section 2 reviews the
background definitions on bent functions, Hadamard matrices, mutually or-
thogonal Latin squares, and cellular automata that are necessary to introduce
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our construction. Section 3 gives an overview of the construction and proves
that the function resulting from it are indeed bent. Section 4 characterizes
the families of pairwise coprime polynomials that are required for the con-
struction and provides the corresponding counting result. Section 5 describes
the experimental assessment of EA-equivalence for the functions of 8 variables
in our construction against Maiorana-McFarland functions. Section 6 defines
the support of the bent functions in this constructions using the kernels of
the underlying linear CA and discusses the connection with partial spreads.
Finally, Section 7 summarizes the main results presented in this paper and
discusses several avenues for future research on the subject. Appendix A
reports a counterexample of a MOLS family not generated through the CA
construction of [15], whose associated Hadamard matrix does not have the
structure related to a bent function. Appendix B reports the truth tables
of the bent functions of 8 variables arising from our construction by using
coprime polynomials of degree 2.

2 Background

In this section, we cover all the necessary background definitions and notions
used throughout the paper. We start by recalling the definition of bent
functions and their characterization in terms of Hadamard matrices. We
then move to mutually orthogonal Latin squares (MOLS) and Hadamard
matrices defined by MOLS sets through their characterization with orthogonal
arrays. Finally, we recall the main definitions of cellular automata (CA) and
summarize the main results of [15] for constructing families of MOLS using
linear CA.

2.1 Bent Functions and Hadamard Matrices

We refer the reader to [3, 4] for a thorough treatment of the results recalled
in this section about Boolean functions. In what follows, let Fq be the finite
field with q elements (where q = pα is a power of a prime number), and
denote by Fnq the n-dimensional vector space over Fq, with 0 being its null
vector. For q = 2, sum and multiplication on F2 correspond to the XOR
and logical AND operations, respectively. Following the convention of the
literature pertaining Boolean functions, we will denote the sum operation
over F2 by ⊕, while for a generic finite field Fq we will adopt the normal sum
symbol +. On the other hand, we will denote the multiplication operation
in all finite fields by concatenation of the operands. A Boolean function of
n variables is a mapping f : Fn2 → F2. The most natural way to represent
a Boolean function f is by means of its truth table, which is the vector
Ωf ∈ F2n

2 that lists the output of f evaluated over all 2n input vectors x ∈ Fn2
in lexicographic order. The support of f is the subset of input vectors that
map to 1, that is, supp(f) = {x ∈ Fn2 : f(x) 6= 0}, while the Hamming weight
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of f is defined as wH(f) = |supp(f)|, i.e., the number of ones in the truth
table of f . Functions with the Hamming weight equal to wH = 2n−1 are also
called balanced, since their truth table is composed of an equal number of
zeros and ones, and they play an important role in the design of stream and
block ciphers. The polarity truth table Ωf̂ of f : Fn2 → F2 is the truth table

of the function f̂ : Fn2 → {−1,+1} defined as f̂(x) = (−1)f(x) for all x ∈ Fn2 .
The Algebraic Normal Form (ANF) is another useful representation which

expresses a Boolean function f : Fn2 → F2 as a multivariate polynomial over
the quotient ring F2[x1, · · · , xn]/(x21 ⊕ x1, · · · , x2n ⊕ xn):

Pf (x) =
⊕

I∈P([n])

aI

(∏
i∈I

xi

)
, (1)

with P([n]) = 2[n] being the power set of [n] = {1, · · · , n}. The algebraic
degree of f is defined as the cardinality of the largest subset I ∈ such that
aI 6= 0. In particular, affine functions are defined as those Boolean functions
with degree at most 1. Notice that the ANF is a unique representation of
a Boolean function, and in particular one can retrieve the truth table back
from the ANF coefficients through the Möbius transform:

f(x) =
⊕

I∈P[n]:I⊆supp(x)

aI , (2)

A third common representation of Boolean functions used in cryptography
is the Walsh-Hadamard transform. Formally, the Walsh-Hadamard transform
of a Boolean function f : Fn2 → F2 is the mapping Wf : Fn2 → Z defined for
all a ∈ Fn2 as

Wf (a) =
∑
x∈Fn

2

(−1)f(x)⊕a·x , (3)

where a · x =
⊕n

i=1 aixi is the scalar product between a and x. One may
easily see that a function f is balanced if and only if its Walsh-Hadamard
transform vanishes on the null vector, i.e., if and only if Wf (0) = 0. In
particular, the Walsh-Hadamard coefficient Wf (a) quantifies the correlation
between f and the linear function a · x. The lower the absolute value of
Wf (a), the lower will be the correlation of f from a · x (and from its affine
counterpart 1 ⊕ a · x), and thus the higher will be the Hamming distance
between the truth tables of the two functions. In particular, the nonlinearity
of a Boolean function f : Fn2 → F2 is defined as the minimum Hamming
distance of f from the set of all affine functions, and it can be computed as
follows:

Nlf = 2n−1 − 1

2
max
a∈Fn

2

{|Wf (a)|} . (4)

Therefore, a Boolean function with high nonlinearity must be char-
acterized by a low maximum absolute value among its Walsh-Hadamard
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coefficients. Parseval’s relation states that the sum of the squared Walsh-
Hadamard spectrum is constant for any Boolean function f : Fn2 → F2, and
it equals: ∑

a∈Fn
2

[Wf (a)]2 = 22n . (5)

From Parseval’s relation one can remark that the lowest maximum absolute
value of the Walsh-Hadamard transform occurs when the constant 22n is
uniformly ”spread” among all 2n coefficients, that is when each coefficient
equals 2

n
2 in absolute value. This observation yields the covering radius

bound for the nonlinearity of a n-variable Boolean function:

Nlf ≤ 2n−1 − 2
n
2
−1 . (6)

Functions satisfying with equality Equation (6) – or equivalently, whose
Walsh-Hadamard coefficients all equal 2

n
2 in absolute value – are called bent

functions. Such functions exist when n is even, since the Walsh-Hadamard
coefficients must be integer numbers. Although achieving the highest possible
nonlinearity granted by the covering radius bound, bent functions cannot be
employed directly in the design of stream or block ciphers, since they are
always imbalanced. As a matter of fact, we have Wf (0) = ±2

n
2 for any bent

function, which means that its Hamming weight is 2n−1 ± 2
n
2
−1.

A Hadamard matrix of order n is an n×n matrix H such that each entry
is ±1 and such that HH> = n · In, where In is the n × n identity matrix.
A necessary condition for H to be a Hadamard matrix of order n is that n
must be equal to 1, 2, or a multiple of 4. The following result is a well-known
characterization of bent functions in terms of Hadamard matrices, originally
discovered by Rothaus [23]:

Theorem 1. Let f : Fn2 → F2 be a Boolean function of n = 2m, and let
f̂(x) = (−1)f(x) for all x ∈ Fn2 . Define the 2n × 2n matrix H as H(x, y) =
f̂(x⊕ y) for all x, y ∈ Fn2 . Then, f is a bent function if and only if H is a
Hadamard matrix of order 2n.

Thus, the input vectors of Fn2 are used to index the rows and the columns of
the Hadamard matrix of Theorem 1, and the entries of the matrix correspond
to the output of the function computed on the XOR of the row and column
coordinates. Consequently, the resulting Hadamard matrix is symmetric,
since x⊕ y is a commutative operation. In particular, both the first column
and the first row of the matrix correspond to the polarity truth table Ωf̂ of
the bent function f .

2.2 Mutually Orthogonal Latin Squares and Orthogonal Ar-
rays

Let X be a finite set of N ∈ N elements. A Latin square of order N is an
N ×N matrix L, where each entry is an element of X such that each row
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and each column of L is a permutation of X. Two Latin squares L1, L2 of
order N are called orthogonal if their superposition yields all the ordered
pairs of the Cartesian product X ×X. A set of Latin squares L1, L2, · · · , Lt
of order N such that Li and Lj are orthogonal for all i 6= j is also called a
set of t Mutually Orthogonal Latin Squares (t MOLS).

An Orthogonal Array OA(t,N) over a finite set of symbols X is a N2× t
matrix A, where each entry is an element of X and such that each pair of
columns contains all ordered pairs in X ×X. MOLS and OA are equivalent
objects. Indeed, given t MOLS L1, · · · , Lt of order N , one can define a N2×t
matrix A by taking the tuples (L1(i, j), · · · , Lt(i, j)) for all (i, j) ∈ [N ]× [N ]
as the rows of A. It is then easy to check that the resulting matrix satisfies the
definition of an OA(t,N)1. The reverse direction to show that an OA(t,N)
defines a set of t MOLS of order N follows a similar argument; we refer the
reader to [24] for the details.

The following result, whose proof can be found in [1], shows how to
construct a Hadamard matrix of order 4t2 from a set of t MOLS of order 2t
via the OA characterization introduced above:

Theorem 2. Let L1, · · · , Lt be a set of t MOLS over X of order N = 2t.
Further, let A be the OA(t, 2t) associated to the t MOLS. Define the 4t2×4t2

matrix H as follows:

H(i, j) =


+1 , if i = j

−1 , if i 6= j and ∃k ∈ {1, · · · , t} s.t. the column

k of A has the same symbol in rows i and j

+1 , otherwise

(7)

for i, j ∈ {1, · · · , 4t2}. Then, H is a symmetric Hadamard matrix of order
4t2.

2.3 Cellular Automata

Cellular Automata (CA) are shift-invariant transformations over an array of
cells defined by a local update rule. Usually, the theoretical analysis of CA
focuses on their long-term dynamical behavior emerging from the parallel
application of the local rule over the whole cellular array for multiple time
steps [13]. However, here we focus instead on the short-term properties of
CA, which allow us to define them as a particular kind of vectorial functions.
More precisely, we will consider the No-Boundary CA model as defined in [19]
in the context of S-boxes:

1More precisely, one can also obtain an OA(t + 2, N) from a set of t MOLS of order
N , by simply adjoining all pairs of the Cartesian product X ×X in lexicographic order
(i.e., (i1, j1) ≤ (i2, j2) if and only if j1 < j2 or j1 = j2 and i1 < i2) as the additional two
columns to the array defined above. Nonetheless, in the rest of this paper, we will only
focus on the construction of an OA(t,N) out of t MOLS.
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1 1 1 0 0 1

f(0, 0, 1) = 1

00 1 1 0 1 0 0

xi, xi+1, xi+2 f(xi, xi+1, xi+2)

000 0
100 1
010 0
110 1
001 1
101 0
011 1
111 0

Figure 1: Example of computation in a CA of length n = 8 equipped with
rule 90 of diameter d = 3, defined as f(xi, xi+1, xi+2) = xi ⊕ xi+2.

Definition 1. Let d, n ∈ N such that d ≤ n, and let f : Σd → Σ be a function
of d variables over the finite alphabet Σ. The Cellular Automaton (CA) of
length n and local rule f over Σ is the vectorial function F : Σn → Σn−d+1

defined for all vectors x = (x0, · · · , xn−1) ∈ Σn as:

F (x0, · · · , xn−1) = (f(x0, · · · , xd−1), · · · , f(xn−d, · · · , xn−1)) . (8)

Hence, the output of a CA is computed by evaluating the local rule f
at each coordinate i ∈ {0, · · · , n− d} over the neighborhoods of diameter d
formed by the input variables {xi, xi+1, · · · , xi+d}. In what follows, we will
assume that the alphabet Σ is the finite field Fq. When q = 2, the local
rule is a Boolean function of d variables f : Fd2 → F2. In this case, the CA
literature usually identifies a local rule by the decimal encoding of its truth
table Ωf , which is also called the Wolfram code of f [26].

Figure 1 depicts an example of CA with n = 8 input cells, induced by the
local rule that computes the XOR of the leftmost and rightmost cells in a
neighborhood of diameter d = 3. It can be seen from the truth table on the
right that the Wolfram code of the rule is 90, by reading the output column
from top to bottom and encoding the resulting binary string in decimal form.

A local rule f : Fdq → Fq with d ≥ 2 variables is bipermutive if it is defined

for all x = (x0, · · · , xd−1) ∈ Fdq as follows:

f(x0, · · · , xd−1) = a0x0 + g(x1, · · · , xd−2) + ad−1xd−1 , (9)

where a0 6= 0 and ad−1 6= 0 and g : Fd−2q → Fq is a function evaluated on
the central d − 2 cells. Further, a rule is linear if it is defined as a linear
combination over Fq, i.e., if there exists a vector a = (a0, a1, · · · , ad−2, ad−1) ∈
Fdq such that

f(x0, · · · , xd−1) = a0x0 + a1x1 + · · ·+ ad−2xd−2 + ad−1xd−1 (10)
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for all x ∈ Fq. The polynomial associated to the local rule f of (10) is the
polynomial Pf ∈ Fq[X] defined as

Pf (X) = a0 + a1X + · · ·+ ad−1X
d−1 . (11)

A linear rule is bipermutive if and only if both its coefficients a0 and
ad−1 are not null. In this case, the associated polynomial is of degree d− 1
and has a nonzero constant term. We will denote a CA defined by a linear
bipermutive rule as an LBCA.

Assume now that the vectors in Fd−1q are totally ordered, and given

[N ] = {1, · · · , N} with N = qd−1 suppose that there is a monotone and one-
to-one mapping Ψ : [N ]→ Fd−1q , in order to associate integer coordinates to

vectors in Fd−1q . Given a CA F : F2(d−1)
q → Fd−1q with local rule f : Fdq → Fq,

the square SF is the N ×N matrix with entries in Fd−1q defined as:

SF (i, j) = F (Ψ(i)||Ψ(j)) , (12)

for all i, j ∈ [N ], where || denotes concatenation. In other words, the first half
of the CA input is used to index the row of the square SF , while the second
half is used to index the column. The output of the CA computed over the
concatenation of the two vectors Ψ(i) and Ψ(j) is the entry at coordinates
i, j of SF . The following results, proved in [15], show under which conditions
the squares defined by CA are orthogonal Latin squares:

Theorem 3. Let d ∈ N and b = d− 1. Then:

• The square SF associated to a CA F : F2b
q → Fbq defined by a bipermutive

local rule f : Fdq → Fq is a Latin square over X = Fbq of order qb.

• Given t LBCA F1, · · ·Ft : F2b
q → Fbq, their Latin squares SF1 , · · · ,SFt

are a set of t MOLS if and only if for all i 6= j the polynomials Pfi and
Pfj respectively associated to their local rules fi and fj are relatively
prime.

Figure 2 depicts an example of two Latin squares of order 4 arising from
the LBCA respectively equipped with the local rules 90 and 150, the latter
defined as f150(xi, xi+1, xi+2) = xi ⊕ xi+1 ⊕ xi+2. For simplicity, we mapped
the entries of F2

2 to integer numbers using the encoding 00 7→ 1, 10 7→ 2,
01 7→ 3, 11 7→ 4. It can be seen that the polynomials over F2 associated to
rules 90 and 150 are respectively 1 + X2 and 1 + X + X2; since they are
relatively prime, the corresponding Latin squares are orthogonal.

3 Characterization and Counting Results

We will now show how the characterization of MOLS families based on LBCA
given in Theorem 3 can be employed to derive a primary construction for
bent functions, under specific conditions.

9



1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

(a) Rule 90

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(b) Rule 150

1, 1 2, 4 3, 3 4, 2

2, 2 1, 3 4, 4 3, 1

3, 4 4, 1 1, 2 2, 3

4, 3 3, 2 2, 1 1, 4

(c) Superposition

Figure 2: Orthogonal Latin squares generated by BCA with rules 90 and
150.

Before delving into the details of the construction, let us take a closer
look at the implications of Theorem 2 for obtaining bent functions from
the Hadamard matrices arising from generic MOLS families, not necessarily
defined by CA. First, remark that the Hadamard matrix H of Theorem 2
is symmetric, as in the case of the matrix characterizing a bent function in
Theorem 1. The next result shows that the matrix is also regular, i.e., each
row and each column has the same number −1 occurrences.

Lemma 1. Let H be a Hadamard matrix of order 4t2 constructed as in
Theorem 2. Then, H is regular, and the number of entries equal to −1 in
each row and each column of H is t(2t− 1).

Proof. Let L1, · · · , Lt be the set of t MOLS of order 2t defining H in Theo-
rem 2, and let A be the corresponding OA(t, 2t). We start with the following
observation: if H(i, j) = −1 for i 6= j, then there exists a unique k such that
A(i, k) = A(j, k). Indeed, suppose that there are two distinct k, k′ ∈ [t] such
that A(i, k) = A(j, k) = x and A(i, k′) = A(j, k′) = y. This implies that
the pair (x, y) is repeated twice in the columns k and k′, contradicting the
fact that A is an OA(t, 2t). Consider now the i-th row H(i, ·) of the matrix,
and let mi be the number of entries equal to −1 in this row. To determine
mi, we need to count how many times there is a column k in A such that
A(i, k) = A(j, k) for j 6= i. Since each column k of A corresponds to a Latin
square of order 2t, it follows that each symbol occurs exactly 2t times in
k. Thus, in particular, the symbol A(i, k) occurs 2t− 1 times in column k,
excluding row i. This means that column k accounts for 2t− 1 entries equal
to −1 in the i-th row of H, or equivalently there are 2t− 1 indices j such
that A(i, k) = A(j, k). Since by the above observation there is only a single
column k for any entry H(i, j) = −1, and since the OA is composed of t
columns, it means that mi = t(2t− 1). A similar argument shows that also
the number of −1 in any column of H is t(2t − 1). Hence, the Hadamard
matrix H is regular.

Let us now focus on the case where the order of the Hadamard matrix
H in Theorem 2 is 4t2 = 2n for n ∈ N even. A straightforward consequence
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of Lemma 1 is that the Hamming weight of the Boolean function defined by
taking any row or any column of H as its polarity truth table coincides with
the weight of a bent function:

Corollary 1. Let H be a Hadamard matrix of order 4t2 = 2n, n ∈ N even,
resulting from the MOLS construction of Theorem 2. Given a row i ∈ [2n] of
H (respectively, a column j ∈ [2n]), define the Boolean function f : Fn2 → F2

as:

f(x) =

{
0 , if H(i, x) = +1 (respectively, H(x, j) = +1)

1 , if H(i, x) = −1 (respectively, H(x, j) = −1)
(13)

for all x ∈ Fn2 . Then, the Hamming weight of f is 2n−1 − 2
n
2
−1.

Proof. By Lemma 1, we know that H is regular and the number of −1 in

each row and column is t(2t− 1). Since t = 2
n−2
2 , the Hamming weight of f

equals:

wH(f) = 2
n−2
2

(
2 · 2

n−2
2 − 1

)
= 2 ·

(
2

n−2
2

)2
− 2

n−2
2 = 2n−1 − 2

n
2
−1 .

Corollary 1 cues to the idea that the Boolean functions defined from
the Hadamard matrices of Theorem 2, when 4t2 = 2n and n is even, could
be in principle bent functions, since they have the right Hamming weight.
However, Theorem 1 states that the first row (or the first column) of H
defines a bent function if and only if H is of the specific form f̂(x ⊕ y).

Therefore, it can be the case that not all families of t = 2
n−2
2 MOLS of order

2t generate a Hadamard matrix of order 2n that correspond to bent functions
of n variables. Appendix A provides a concrete counterexample of a set of
t = 4 MOLS of order 2t = 8, not defined by the LBCA construction, whose
corresponding Boolean functions of n = 6 variables is not bent.

In the rest of this section, we show that the MOLS families resulting
from the LBCA construction of Theorem 3 indeed give rise to bent functions,
i.e., their associated Hadamard matrix has the required f̂(x⊕ y) form. The
proof relies mainly on the linearity of the underlying CA. Indeed, an LBCA
F : Fnq → Fn−d+1

q can be considered as a linear transformation defined by
the following transition matrix :

MF =


a0 · · · ad−1 0 · · · · · · · · · · · · 0
0 a0 · · · ad−1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 a0 · · · ad−1

 , (14)

where a0, · · · , ad−1 ∈ Fq are the coefficients defining the linear local rule.
The application of the CA F to a configuration x ∈ Fnq corresponds to the
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multiplication y = MFx
>. Incidentally, remark also that MF has the same

structure of a generator matrix for a linear cyclic code, as shown in [16].
As a first step of our construction, we are interested in obtaining a

large enough family of coprime polynomials to apply Theorem 2 to define a
Hadamard matrix. Let us take the finite field Fq with q = 2l, for l ∈ N. This
is due to the fact that the order of the matrix in Theorem 2 is 4t2. Moreover,
we have that 4t2 = 2n with n ∈ N even, to be in the case of a Hadamard
matrix associated with a Boolean function as in Corollary 1. Additionally,
the order of the t MOLS in Theorem 2 is 2t, which must also be equal to qb

when using the linear CA construction of Theorem 3. Recalling that q = 2l,
we have the following relation between the field extension exponent l, the
degree b and the number of MOLS t:

2lb = 2t⇔ lb = 1 + log2 t . (15)

Since both l and b are integers, it follows that t must be a power of 2, i.e.,
t = 2w for w ∈ N. Hence, Equation (15) becomes lb = 1 + w, and we obtain
the following result:

Lemma 2. Let l, b, w ∈ N such that lb = 1+w, and let q = 2l. If there exists
a family of t = 2w pairwise coprime polynomials of degree b and nonzero
constant term over Fq, then there exists a Hadamard matrix H of order
4t2 = 22(w+1), which is defined for all i, j ∈ F2b

q as:

H(i, j) =


+1 , if i = j

−1 , if i 6= j and ∃k ∈ {1, · · · , t} s.t. Fk(i) = Fk(j)

+1 , otherwise

(16)

where F1, · · · , Ft : F2b
q → Fbq are the LBCA defined by the t polynomials.

Proof. By Theorem 3, the LBCA F1, · · · , Ft induced by the set of t = 2w

pairwise coprime polynomials of degree b and nonzero constant term over
Fq define a set of 2w MOLS of order 2lb = 2w+1 with entries in Fbq. By

Theorem 2, the OA(2w, 2(w+1)) associated to this set of MOLS generates the
Hadamard matrix H of order 22(w+1) defined in Equation (16).

We now need to show that the Hadamard matrix constructed in Lemma 2
has the f̂(x⊕y) structure associated to a bent function f . To this end, let us
remark that the rows and columns of the matrix in Equation 16 are indexed
by elements in F2b

q , i.e., we have H(i, j) for i, j ∈ F2b
q where q = 2l, while

the Hadamard matrix in Theorem 1 is indexed by vectors in Fn2 . Hence,
given m ∈ N, we first need to change the representation of elements in Fm

2l

to elements in Flm2 . A natural choice is to identify F2l with the vector space

12



Fl2. In this way, a vector x in Fm
2l

is a m-tuple whose components are in turn
binary l-tuples:

x = ((x1,1, · · · , x1,l), · · · , (xm,1, · · · , xm,l)) . (17)

We now associate to each element x ∈ Fm
2l

an element of Flm2 through the

flattening operator ϕm : Fm
2l
→ Flm2 which simply drops the parentheses

inside the vector representation of x:

ϕm(x) = (x1,1, · · · , x1,l, · · · , xm,1, · · · , xm,l) . (18)

It is then easy to see that ϕm is bijective and preserves the sum operation,
that is, for all x, y ∈ Fm

2l
it holds:

ϕ(x+ y) = ϕ(x)⊕ ϕ(y) . (19)

In particular, notice that ϕm is not an isomorphism of vector spaces, since
Fm
2l

and Flm2 are defined over different ground fields. However, in what follows
we will only need the fact that the sum is preserved.

We can now prove the characterization of the Hadamard matrices arising
from LBCA as bent functions:

Theorem 4. Let H be the Hadamard matrix of order 22(w+1) defined by
the t LBCA F1, · · ·Ft : F2b

q → Fbq in Lemma 2. Further, for all x ∈ Fn2 with
n = 2(w + 1) define the Boolean function f : Fn2 → F2 as:

f(x) =


0 , if x = 0

1 , if x 6= 0 and ∃k ∈ {1, · · · , t} s.t. Fk(ϕ
−1
2b (x)) = 0

0 , otherwise

, (20)

where ϕ−12b : F2lb
2 → F2b

2l
is the inverse mapping of the flattening operator ϕ2b

defined in Equation (18). Then, it holds that:

H(i, j) = f̂(x⊕ y) (21)

for all i, j ∈ F2b
q with x = ϕ2b(i) and y = ϕ2b(j), and thus f is a bent

function.

Proof. The matrix f̂(x⊕ y) is defined as follows:

f̂(x⊕ y) =


+1 , if x⊕ y = 0⇔ x = y

−1 , if x 6= y and ∃k ∈ {1, · · · , t} s.t. Fk(ϕ
−1
2b (x⊕ y)) = 0

+1 , otherwise

.

(22)
Given i, j ∈ F2b

q , let us first address the case where i = j. By Equation (16),
we have that H(i, j) = +1, and since ϕ2b(i) = ϕ2b(j), by (22) it follows that
f̂(x⊕ y) = f̂(ϕ2b(i)⊕ ϕ2b(j)) = +1.

13



Next, suppose that i 6= j with Fk(i) = Fk(j) for k ∈ [t]. By Equation (16)
this is the only case where H(i, j) = −1. Recalling that Fq is a field of
characteristic 2 (in fact we have q = 2l) we can rewrite Fk(i) = Fk(j) as
Fk(i) + Fk(j) = 0. Since the LBCA Fk is a linear map from F2b

q → Fbq, the
condition becomes:

H(i, j) = −1⇔ i 6= j and ∃k ∈ [t] : Fk(i+ j) = 0 . (23)

Remarking that i+ j = ϕ−12b (x⊕ y) (where x = ϕ2b(i) and y = ϕ2b(j)), we
can further rewrite (23) as:

H(i, j) = −1⇔ i 6= j and ∃k ∈ [t] : Fk(ϕ
−1
2b (x⊕ y)) = 0 , (24)

from which we finally deduce that H(i, j) = −1⇔ f̂(x⊕ y) = −1. For all
remaining cases, we have H(i, j) = +1 = f̂(x⊕ y). Since H(i, j) = f̂(x⊕ y),
by Theorem 1 it follows that f is a bent function.

Remark that the polarity truth table of the bent function defined in
Equation (20) corresponds to the first row and to the first column of the
Hadamard matrix H(i, j). Indeed, since all the CA F1, · · · , Ft are linear,
we have that Fi(0) = 0 for all i ∈ [t] and thus each entry of the first row
in the OA(2w, 2w+1) associated to the MOLS set is the null vector of Fbq.
Consequently, checking if there exists a k ∈ [t] such that Fk(ϕ

−1
2b (x)) = 0 is

equivalent to verifying if there is a column k in the OA(2w, 2w+1) such that
the symbol in the row indexed by x equals the symbol in the first row, i.e.,
the null vector.

In the remainder of this section, we show an example of a bent function
obtained through our construction.

Example 1. Let w = 1, n = 2(w+1) = 4, l = 1 and b = 2. Since lb = 1+w,
in this case we need to find t = 2w = 2 relatively prime polynomials p, q ∈
F2[X] with nonzero constant term of degree b = 2 to apply our construction.
Let p(X) = 1+X2 and q(X) = 1+X+X2. As already remarked in Section 2.3,
these coprime polynomials are associated respectively to the local rules 90 and
150, and the orthogonal Latin squares L1, L2 given by the LBCA F90 and F150

are reported in Figure 2. Figure 3 depicts the corresponding OA(2, 4), denoted
by A, and the Hadamard matrix H of order 16 resulting from the construction
of Lemma 2. By Theorem 4, the first row and the first column of this matrix
correspond to the polarity truth table of a bent function f of n = 4 variables,
whose ANF is f(x1, x2, x3, x4) = x1x3 ⊕ x2x3 ⊕ x2x4. It is possible to verify
that this function is bent in a number of ways. For example, one can observe
that f is equivalent to the function g(x1, x2, x3, x4) = x1x2⊕x2x3⊕x3x4, up
to a permutation of the input variables (in particular, it suffices to permute x2
with x3). It is well known in the literature (see, e.g., [24]) that the function
g(x1, · · · , xn) = x1x2 ⊕ x2x3 ⊕ · · · ⊕ xn−1xn is bent for any n ∈ N even.
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L1

1

2

3

4

2

1

4

3

3

4

1

2

4

3

2

1

1

L2

4

3

2

2

3

4

1

4

1

2

3

3

2

1

4

A =

H =



+++ +++ +++ +++ +++−−−−−−+++ +++ +++−−−−−−+++−−−+++−−−
+++ + + +−+ +−+ +−−−+−+
+++ + + +−+ +−−−+ + +−+−
+++ + + + +−−+−−+ +−+−+
+++−−+ + + + + +−+−+ +−−
−−−+ +−+ + + +−+−+ + +−−
−−−+ +−+ + + + +−+−−−+ +
+++−−+ + + + +−+−+−−+ +
+++ +−−+−+−+ + + + +−−+
+++ +−−−+−+ + + + +−+ +−
−−−−+ + +−+−+ + + +−+ +−
−−−−+ +−+−+ + + + + +−−+
+++−+−+ +−−+−−+ + + + +
−−−+−+ + +−−−+ +−+ + + +
+++−+−−−+ +−+ +−+ + + +
−−−+−+−−+ + +−−+ + + + +


Ωf = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1)

⇓

f(x1, x2, x3, x4) = x1x3 ⊕ x2x3 ⊕ x2x4

Figure 3: Example of bent function of n = 4 variables generated by the
t = 2 MOLS of order 2t = 4 defined by the LBCA with rule 90 and 150,
respectively. The two Latin squares are represented on the left in the OA
form. The first row and the first column of the Hadamard matrix H coincide
with the polarity truth table of the function.

4 Finding Suitable Families of Coprime Polynomi-
als

The first research question spawning from Theorem 4 is whether for all even
n ∈ N there are at least t = 2w pairwise coprime polynomials of degree
b = (w + 1)/l with nonzero constant term over F2l , where w = (n− 2)/2. In
what follows, we focus on the case of monic polynomials.

The authors of [15] proposed a construction for families of monic coprime
polynomials of degree b with nonzero constant term based on the multiplica-
tion of two irreducible polynomials of degree k and b− k, respectively. In
particular, they showed that the maximum size of the families that can be
generated through this construction equals:

Nb = Ib +

b b
2
c∑

k=1

Ik . (25)

In particular, Ik denotes the number of irreducible monic polynomials of
degree n and with nonzero constant term over Fq, which is Ik = q − 1 for
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k = 1, while for k ≥ 2 it is given by Gauss’s formula:

Ik =
1

k

∑
d|k

µ(d) · q
k
d , (26)

with µ denoting the Möbius function. Further, in [15] it is proved that
such construction is optimal, meaning that Nb actually corresponds to
the maximum size attainable by any family of monic coprime polynomials
of degree b with nonzero constant term over Fq. Thus, one can study
Equation (25) with respect to the parameters l, b, and w to address the
existence question for families of polynomials that satisfy the conditions of
Theorem 4. We now characterize such families in terms of the degrees of
their polynomials:

Theorem 5. Let l, b, w ∈ N such that lb = 1 + w, and let q = 2l. Then
there exists a family of t = 2w pairwise coprime polynomials of degree b and
nonzero constant term over Fq if and only if b ∈ {1, 2}.

Proof. We need to show that Nb ≥ 1
2q
b if and only if b ≤ 2. We first settle

the cases of b ≤ 4 one by one.
For b = 1, we obtain

N1 = I1 = q − 1 ≥ 1

2
q.

For b = 2, we obtain

N2 = I2 + I1 =
1

2
(q2 − q) + (q − 1) =

1

2
q2(1 + q−1 − 2q−2) ≥ 1

2
q2.

For b = 3, we obtain

N3 = I3 + I1 =
1

3

(
q3 − q

)
+ (q − 1)

<
1

3
q3
{

1 + 2q−2
}
≤ 1

3
q3

3

2

=
1

2
q3.

For b = 4, we obtain

N4 = I4 + I2 + I1 =
1

4

(
q4 − q2

)
+

1

2
(q2 − q) + (q − 1)

<
1

4
q4
{

1 + q−2 + 2q−3
}
≤ 1

4
q4

3

2

=
3

8
q4.
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We now move on to the case where n ≥ 5. Denoting the smallest nontrivial
divisor of b by p, we first get the following upper bound on Ib:

Ib ≤
1

b

{
qb − qb/p + (qb/p−1 + · · · q + 1)

}
<

1

b
qb.

We also obtain the following upper bound:

bb/2c∑
k=1

Ik ≤ qbb/2c+1 ≤ qb−2 ≤ 1

4
qb .

Combining, we obtain

Nb = Ib +

bb/2c∑
k=1

Ik < qb
{

1

b
+

1

4

}
<

1

2
qb .

Hence, bent functions can be obtained from the LBCA construction for
all number of variables n = 2(w + 1), where w = l − 1 when b = 1 and
w = 2l − 1 when b = 2. This leads us to the following counting result:

Theorem 6. Let l, w ∈ N and b ∈ {1, 2} such that lb = 1 +w, and let q = 2l.
Then, the number of bent functions of n = 2(w + 1) variables that can be

obtained by Theorem 4 is
(
2w+1−1

2w

)
when b = 1 and

I2∑
A=0

(
I2
A

) 2w−A∑
B=0

(
I1
B

)(
I1 −B

2(2w −B −A)

)
(2(2w −B −A))!

(2w −B −A)!22w−B−A
, (27)

where I2 = 1
2(q2 − q) and I1 = q − 1, when b = 2.

Proof. By Theorem 5 b = 1 and b = 2 are the only cases we need to address.
Let b = 1 (and thus w = l − 1). Then, by Equation (25) the largest family
F1 of coprime polynomials of degree 1 with nonzero constant term over Fq
is composed of N1 = q − 1 = 2w+1 − 1 elements. The number of subsets of

2w elements of F1 that can be selected to apply Theorem 4 is
(
2w+1−1

2w

)
. For

b = 2, any family of t = 2w coprime polynomials of degree 2 with nonzero
constant term over Fq consists of:

1. A ≤ I2 irreducible polynomials of degree 2;

2. B ≤ I1 polynomials of the form f2, where f is an irreducible polynomial
of degree 1;

3. C = t−B−A polynomials of the form gh, where g and h are irreducible
polynomials of degree 1;
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and obviously the same irreducible polynomial of degree 1 only appears once.
There are

(
I2
A

)
choices for the first part of the family,

(
I1
B

)
choices for the

second part of the family, and

1

C!

(
I1 −B

2

)(
I1 −B − 2

2

)
. . .

(
I1 −B − 2C + 2

2

)
=

(
I1 −B

2C

)
(2C)!

C!2C

choices for the third part of the family. Combining all three parts, we obtain
the formula.

5 Inequivalence to Maiorana-McFarland Functions

As a preliminary assessment of our construction, we experimentally studied
the bent functions arising from it concerning the notion of extended affine
equivalence (EA-equivalence), to investigate whether some of them belong
to the completed Maiorana-McFarland class M#. Recall that two Boolean
functions f, g : Fn2 → F2 are EA-equivalent if there exists a linear permutation
L : Fn2 → Fn2 , two vectors u, v ∈ Fn2 and an element c ∈ F2 such that:

g(x) = f(L(x)⊕ u)⊕ v · x⊕ e , (28)

for all x ∈ Fn2 . The Maiorana-McFarland class is the set M of functions
f : Fn2 → F2, with n = 2m, of the form:

f(x, y) = x · π(y)⊕ g(y) , (29)

for all x, y ∈ Fm2 , where π : Fm2 → Fm2 is any permutation of Fm2 . Each
function of M is bent, and a function f : Fn2 → F2 belongs to the completed
Maiorana-McFarland class M# if it is EA-equivalent to a function in M.
In practice, EA-equivalence with functions in M can be verified using the
notion of second-order derivative. Given f : Fn2 → F2 and a, b ∈ Fn2 , the
second-order derivative of f in the directions of a and b is the function defined
for all x ∈ Fn2 as:

DaDbf(x) = f(x)⊕ f(x⊕ a)⊕ f(x⊕ b)⊕ f(x⊕ a⊕ b) . (30)

Then, a function f : Fn2 → F2, n = 2m, belongs to the completed Maiorana
McFarland class M# if and only if there exists an m-dimensional subspace
E ⊆ Fn2 such that the second order derivative DaDbf vanishes for all a, b ∈ E
(see, e.g., [2] for a proof of this fact).

We started by generating all bent functions of n = 2(w + 1) = 6, 8
variables given by our construction, i.e., with w = 2, 3. By Theorem 6, when

b = 1 there are respectively
(
22+1−1

22

)
=
(
7
4

)
= 35 bent functions of n = 6

variables and
(
23+1−1

23

)
=
(
15
8

)
= 6 435 bent functions of n = 8 variables, while

for degree b = 2 and w = 3 Equation (27) yields 12 bent functions of n = 8
variables.
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After generating these functions, we noticed that all of them have degree
n/2, which is the highest possible degree for a bent function [23]. It is known
that up to n = 6 variables, all bent functions of degree n/2 belong to the
completed Maiorana-McFarland class [22]. Therefore, the smallest interesting
case to check for EA-equivalence in our construction is n = 8 variables and
degree b = 1, 2. We thus implemented a program to check the condition
on the second-order derivative in Equation (30) computationally. To prove
EA-inequivalence with MM functions of 8 variables, for each of our functions,
we needed to visit

(
255
4

)
= 172 061 505 4-dimensional subspaces of F8

2, and
verify that for each of them, the second-order derivative did not vanish for
at least one choice of the vectors a, b. In our implementation, checking this
condition for a single function required approximately four days on a 64-bit
Linux machine with a 16-core AMD Ryzen processor running at 3.5 GHz
and 48 GB of RAM. Hence, we could not exhaustively check the condition
for all 6 435 bent functions of degree b = 1, which is why we tested a random
sample of 30 functions from this set by running the program in parallel on
each core. Out of these 30 bent functions, only one of them turned out to
be EA-equivalent to a Maiorana-McFarland function. Conversely, for degree
b = 2, we tested all 12 bent functions resulting from our construction, and
none of them resulted in being EA-equivalent to any Maiorana-McFarland
function. Appendix B reports the truth tables of these 12 bent functions.

6 Linear Algebraic Description and Link with Par-
tial Spreads

Let us summarize the process of our CA-based construction described in the
previous two sections:

1. Find a large enough family of coprime polynomials of degree either 1
or 2 and with a nonzero constant term.

2. Construct the MOLS based on the LBCA defined by such polynomials.

3. Define the Hadamard matrix induced by the set of MOLS.

4. Retrieve the first row (or column) of this matrix as the function’s polar
truth table.

The above procedure is rather complicated to construct a bent function.
We now show how to shorten this convoluted route to directly obtain the
support of the function by leveraging on the linear algebraic characterization
of LBCA.

Remark 1. Recall from Section 3 that an LBCA F : Fnq → Fn−d+1
q is

defined by a transition matrix MF of the form reported in Equation (14).
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Further, denote by ker(F ) = {x ∈ Fnq : F (x) = 0} the kernel of F , which is a
subspace of Fnq . The dimension of this kernel equals d− 1, since bipermutive
CA are surjective (see, e.g., [17]). Hence, the image of F coincides with
the whole space Fn−d+1

q , and by the nullity-rank theorem it follows that
dim(ker(F )) = d− 1.

One can see from Equation (20) that the bent functions arising from our
construction evaluates to 1 if and only if x 6= 0 and there exists an LBCA
Fi : F2b

q → Fq among t ones such that the image of x according to ϕ−12b belongs
to ker(Fi). Therefore, we obtain the following corollary of Theorem 4:

Corollary 2. Let f : Fn2 → F2 with n = 2(w+1) be the bent function defined
in Equation (20) of Theorem 4, and let F1, · · · , Ft : F2b

q → Fbq be the t LBCA
generating the Hadamard matrix associated to f . Then, the support of f is
given by the union of the kernels of the t LBCA:

supp(f) =

t⋃
i=1

ker(Fi) . (31)

Thus, one can compute the support of a bent function of n = 2(w + 1)
variables generated with our construction by following these steps:

1. Choose t coprime polynomials with nonzero constant term f1(X), · · · , ft(X)
over Fq, each of degree either b = 1 or b = 2, where q = 2l and lb = 1+w.

2. For each i ∈ {1, · · · , t}, determine the kernel ker(Fi) of the linear CA
Fi : F2b

q → Fbq defined by the associated polynomial fi(X).

3. Compute the union of the t kernels ker(F1), · · · , ker(Ft).

In other words, it is not necessary to pass through the Hadamard matrix
characterization to obtain the support of the function (although of course this
is useful to prove that the function is actually bent, as we did in Section 3).
From an algorithmic point of view, step 2 amounts to computing the preimage
of the null vector under the action of the LBCA Fi, which can be performed
through Linear Feedback Shift Registers (LFSR) as shown in [17].

Remark 2. Depending on the application, one may desire to evaluate the
bent function on a specific input x ∈ Fn2 \ {0} ”on the fly”, without having
to look up its truth table or support, since their size is exponential in n.
This can be achieved by slightly modifying the steps above: once a suitable
family of t coprime polynomials has been found, it suffices to convert x to
the F2b

q -based representation ϕ−12b (x), and then evolve in parallel the t LBCA
on this same input. If at least one of the CA outputs the null vector, then
f(x) evaluates to 1, otherwise it evaluates to 0.
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Defining the support of a bent function as a union of subspaces, as granted
by Corollary 2, is reminiscent of the partial spread construction introduced
by Dillon [8]. A partial spread of Fn2 , with n = 2m, is a family P of m-
dimensional subspaces S1, S2, · · · , St ⊆ Fn2 with pairwise trivial intersection
(i.e., for all i 6= j one has Si∩Sj = {0}). Further, a partial spread is a spread
if the union of its subspaces results in the whole space Fn2 .

A bent function f : Fn2 → F2, n = 2m, belongs to the class PS− if
f(0) = 0 and its support is the union of t = 2m−1 subspaces of a partial
spread P of Fn2 . Bent functions belonging to the class PS+ are defined
similarly, with f(0) = 1 and their support being the union of 2m−1 + 1
m-dimensional subspaces of a partial spread of Fn2 . The union of PS− and
PS+ gives the partial spread class of bent functions PS.

The next result shows that the functions generated by our CA-based
construction are a subset of the PS− class:

Lemma 3. Let f : Fn2 → F2 be a bent function defined as in Equation (20)
of Theorem 4, with n = 2m = 2(w + 1), and let F1, · · · , Ft : F2b

q → Fbq be the

t = 2w LBCA generating f , where q = 2l and lb = 1 + w. Then, f ∈ PS−.

Proof. By Corollary 2 the support of f is the union of the 2w = 2m−1 kernels
of F1, · · · , Ft, and by Remark 1 each kernel ker(Fi) is a b-dimensional
subspace of F2b

q . Hence, the image Fi of ker(Fi) according to ϕ−12b is an
m-dimensional subspace of Fn2 . Moreover, we have that ker(Fi) and ker(Fj)
have trivial intersection for all i 6= j. In fact, assume by contradiction that
ker(Fi) ∩ ker(Fj) 6= {0}. Considering the Latin squares generated by Fi
and Fj , this implies that the pair (1, 1) is repeated more than once in their
superposition, contradicting the fact that the Latin squares are orthogonal.
This also means that the corresponding subspaces Fi and Fj under the map
ϕ−12b have trivial intersection. Therefore, the support of f is the union of
2m−1 subspaces of a partial spread of Fn2 . Finally, since by Equation (20) we
have f(0) = 0, it follows that f ∈ PS−.

An interesting property of bent functions in the PS− class is that they
achieve maximum algebraic degree n/2 [8]. Hence, Lemma 3 explains what
we experimentally observed in the functions tested for EA-equivalence in
Section 5.

Several constructions generating subsets of the PS− class have been given
in the literature (see, e.g., [6] for a general overview). Thus, it makes sense
to analyze the partial spreads arising from LBCA more in detail to assess
whether the bent functions of our construction are already known.

Let us first introduce the Desarguesian spread, which is perhaps the best
known example of spread used to construct bent functions since Dillon’s
work on the PS class in [8]. Given n = 2m, there are two main ways to
characterize the Desarguesian spread DS of Fn2 [21]. The first one is the
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univariate form, where Fn2 is identified with the finite field F2n , and DS is
defined as the family

DS = {uF2n : u ∈ U}, where U = {u ∈ F2n : u2
m+1 = 1} . (32)

For our purposes, however, the bivariate form is more useful. In this case
the vector space Fn2 is identified with the Cartesian product F2m × F2m , and
the Desarguesian spread is defined as:

DS = {Ea ⊆ F2m × F2m : a ∈ F2m} ∪ E∞ , where :

Ea = {(x, ax) ∈ F2m × F2m : x ∈ F2m} ,
E∞ = {(0, y) ∈ F2m × F2m : y ∈ F2m} . (33)

Then, any subset of 2m−1 elements of DS is a partial spread whose union
defines the support of a bent function. More in particular, these functions
belong to the so-called class PSap (where ap stands for ”affine plane”), which
is a subset of PS−. Besides reaching maximal degree n/2, functions in the
PSap class have the additional interesting property of being hyper-bent, as
shown, e.g., in [5]. A Boolean function f : F2n → F2, n even, is called
hyper-bent if the function f(xi) is bent for all exponent i coprime with
2n − 1 [27]. As such, hyper-bent functions have the highest possible distance
not only from all affine functions (which corresponds to the case i = 1), but
also from all bijective monomial functions.

Let us now consider our construction with degree b = 1. In this case, to
generate a bent function f : Fn2 → F2 of n = 2m = 2(w + 1) variables, by
Theorem 4 we need to find a set of t = 2w = 2m−1 irreducible polynomials of
degree 1 over F2m . This basically amounts to choose a subset of cardinality
t from the family

I1 = {a+X ∈ F2m [X] : a ∈ F∗2m} . (34)

Thus, let P = {p1(X), · · · , pt(X)} be a subset of I1. Recall that each
polynomial is used as an abstract representation for the coefficients of an
LBCA local rule. In particular, for pi(X) = ai +X, we have that the local
rule fi (which in this case corresponds to the whole CA Fi) is defined as:

fi(x1, x2) = aix1 + x2 , (35)

for all pairs (x1, x2) ∈ F2m × F2m . By Lemma 3 the kernels of Fi ≡ fi for
i ∈ {1, · · · , t} form a partial spread, and each of them is obtained by taking
all pairs (x1, x2) ∈ F2m × F2m such that x2 = aix1, since F2m is a field of
characteristic 2. Therefore, we have that

ker(Fi) = {(x1, x2) ∈ F2m × F2m : x2 = aix1}
= {(x, aix) ∈ F2m × F2m : x ∈ F2m} = Eai , (36)

where Eai is a member of the Desarguesian spread as defined by Equation (33)
in bivariate form. We have thus obtained the following result:
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Lemma 4. Let f : Fn2 → F2, n = 2m, be a bent function defined as in
Theorem 4 with degree b = 1. Then, f ∈ PSap.

Therefore, when the degree of the involved polynomials is 1, our CA-
based construction is a particular case of the partial spread construction
induced by the Desarguesian spread. This further explains our experimental
findings on EA-equivalence discussed in Section 5, in particular that for
b = 1 only one bent function out of a random sample of 30 turned out to be
EA-equivalent to Maiorana-McFarland functions. As a matter of fact, Weng
et al. [25] showed that almost all bent functions generated by subsets of the
Desarguesian spread DS are EA-inequivalent to MM functions.

On the other hand, remark that for degree 2, the above reasoning on the
Desarguesian spread does not hold. When b = 2, the local rule is defined
by three coefficients instead of two, with the CA composed of four cells.
Consequently, the local rule is evaluated over three variables x1, x2, x3, and
there does not seem to be a straightforward way to express the CA’ kernel
as a set of pairs of the type (x, ax). To the best of our knowledge, there are
no other constructions in the literature that represent partial spreads in a
way analogous to our construction with degree b = 2.

7 Conclusions

In this paper, we described a method to construct bent functions from linear
cellular automata. The construction leverages on a recent characterization
of mutually orthogonal Latin squares families from linear CA proposed
in [15], which here are, in turn, used to construct a Hadamard matrix. The
connection between MOLS and Hadamard matrices has been known for a
long time [11, 1]. However, in general, the Hadamard matrices arising from
MOLS families do not possess the particular structure associated with a bent
function.

In this work, we proved that the MOLS families originating from the
CA construction of [15] indeed generate Hadamard matrices of the form
f̂(x⊕ y), which in turn tells us that the first row or column of such matrices
correspond to the truth table of a bent function. In particular, the proof
of this fact relies on the linearity of the involved CA. We also showed that
such families of linear CA exist if and only if the degree of the coprime
polynomials defining their local rules is either 1 or 2, and we derived the
counting formulas for both cases. After remarking experimentally that all
bent functions given by our construction have maximal degree n/2 and that
most of them are EA-inequivalent to Maiorana-McFarland functions, we
described a method to directly obtain their support, as a union of the linear
CA kernels. This characterization further allowed us to observe that these
functions are a subset of the partial spread class PS−. In particular, for
degree b = 1, we proved that our construction is a particular case of the
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Desarguesian spread, meaning that its functions belong to the class PSap.
On the other hand, the functions obtained with polynomials of degree 2 do
not seem amenable to the Desarguesian spread case.

There are multiple directions for further research stemming from the
results of this paper. The first and most natural one is to analyze more closely
the bent functions generated with polynomials of degree b = 2, to completely
classify our construction and verify if at least some of its functions were
previously unknown in the existing literature. This could be accomplished, for
example, by checking EA-equivalence of the 12 bent functions of 8 variables
against those yielded by other existing constructions based on partial spreads,
a list of which can be found in [21].

Another interesting direction is to investigate, more in general, the
construction of Hadamard matrices based on MOLS induced by cellular
automata, which one can pursue in at least two different ways. First, one could
study if there exist other classes of nonlinear bipermutive CA whose MOLS
generate Hadamard matrices with the structure of bent functions. Since up
to now, there are no known algebraic characterizations of MOLS based on
nonlinear CA, it could be useful to approach this direction experimentally.
In particular, it would be interesting to use heuristic techniques to design
nonlinear CA families that yield bent functions when plugged into our
construction. In this regard, examples are genetic algorithms and genetic
programming, which the authors of [18] have successfully applied to design
single pairs of orthogonal Latin squares based on nonlinear CA. Second, it
would be interesting to study in general the Hadamard matrices arising from
CA since they have many applications in cryptography and coding theory
besides bent functions. An idea worth exploring would be, for instance, to see
if some of these Hadamard matrices are also Maximum Distance Separable
(MDS), which have applications in the diffusion layers of block ciphers [12].
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A Appendix: Counterexample for non-CA based
MOLS families

Let n = 6 and t = 2
n−2
2 = 4. Figure 4 depicts a set of t MOLS of order

2t = 8, taken from [10]2, which is not generated by the LBCA construction

2The actual set of MOLS can be retrieved from the webpage associated to the paper:
https://users.monash.edu.au/~iwanless/data/MOLS/, under the link “1 species of non-
maximal 4 MOLS of order 8.”
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of [15].

1 2 3 4 5 8 6 7
2 1 4 3 8 5 7 6
3 4 1 2 7 6 8 5
4 3 2 1 6 7 5 8
5 8 7 6 1 2 4 3
8 5 6 7 2 1 3 4
6 7 8 5 4 3 1 2
7 6 5 8 3 4 2 1

(a) L1

1 2 3 4 5 6 7 8
3 4 1 2 8 7 6 5
5 6 8 7 1 2 4 3
8 7 5 6 3 4 2 1
4 3 2 1 7 8 5 6
2 1 4 3 6 5 8 7
6 5 7 8 2 1 3 4
7 8 5 6 4 3 1 2

(b) L2

1 2 3 4 5 6 7 8
4 3 2 1 7 8 5 6
8 7 5 6 3 4 2 1
6 5 7 8 2 1 3 4
7 8 6 5 4 3 1 2
5 6 8 7 1 2 4 3
3 4 1 2 8 7 6 5
2 1 4 3 6 5 8 7

(c) L3

1 2 3 4 5 6 7 8
5 6 8 7 1 2 4 3
4 3 2 1 7 8 5 6
7 8 6 5 4 3 1 2
8 7 5 6 3 4 2 1
3 4 1 2 8 7 6 5
2 1 4 3 6 5 8 7
6 5 7 8 2 1 3 4

(d) L4

Figure 4: A set of t = 4 MOLS of order 2t = 8.

By constructing the associated Hadamard matrix according to Theorem 2
and taking the first row, one obtains a Boolean functions with the following
truth table in hexadecimal format:

Ωf = 0x9CD8E8361E66E200 ,

whose algebraic normal form is:

f(x1, x2, x3, x4, x5, x6) = 1⊕ x6 ⊕ x5 ⊕ x4x6 ⊕ x3x6 ⊕ x3x5x6 ⊕ x2x6 ⊕ x2x5
⊕ x2x5x6 ⊕ x2x4x5 ⊕ x2x3 ⊕ x2x3x6 ⊕ x2x3x5
⊕ x2x3x4x5 ⊕ x1 ⊕ x1x6 ⊕ x1x5 ⊕ x1x5x6 ⊕ x1x4
⊕ x1x4x6 ⊕ x1x3x5 ⊕ x1x3x4 ⊕ x1x2 ⊕ x1x2x6
⊕ x1x2x5 ⊕ x1x2x5x6 .

It can be easily seen that this function is not bent, since it has algebraic
degree 4, while bent functions of 6 variables can have degree at most 3. Thus,
as remarked in Section 3, not all MOLS families give rise to a Hadamard
matrix of the f̂(x⊕ y) form associated to a bent function.

B Appendix: Bent functions of n = 8 variables
generated by our construction with degree b = 2

In this section, we report the truth tables of the 12 bent functions of n = 8
variables arising from our CA construction when the degree of the involved
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polynomials is b = 2. By Theorem 4, we have w = 3, t = 8 and l = 2.
Consequently, a bent function in this case is obtained by finding a set of
eight pairwise coprime polynomials over F4 of degree 2 and with nonzero
constant term. Let F4 = {0, 1, α, α2}, where α is a root of an irreducible
polynomial p(X) ∈ F2[X] of degree 2. Then, by Gauss’s formula there are
six irreducible polynomials of degree 2 over F4, which are the following:

p1(X) = X2 + α2X + α ,

p2(X) = X2 + α2X + 1 ,

p3(X) = X2 + αX + α ,

p4(X) = X2 +X + α2 ,

p5(X) = X2 + αX + 1 ,

p6(X) = X2 +X + α .

Being irreducible, these polynomials are of course pairwise coprime. Let
us denote by I2 = {p1, p2, p3, p4, p5, p6}. Further, there are four irreducible
polynomials of degree 1 over F4 that can be squared in order to obtain
polynomials of degree 2 that are coprime among themselves and with those
in I2. Discarding the polynomial X (because it has a null constant term),
we are left with these three additional polynomials:

p7(X) = (X + 1)2 = X2 + 1 ,

p8(X) = (X + α)2 = X2 + α2 ,

p9(X) = (X + α2)2 = X2 + α .

Analogously, we denote by I21 the set {p7, p8, p9}. Finally, we can take the(
3
2

)
= 3 pairs of I1 and multiply the polynomials in them, obtaining:

p10(X) = (X + 1)(X + α2) = X2 + αX + α2 ,

p11(X) = (X + 1)(X + α) = X2 + α2X + α ,

p12(X) = (X + α)(X + α2) = X2 +X + 1 ,

with I1,1 = {p10, p11, p12}. These three polynomials are not pairwise coprime
among themselves, but each of them is relatively prime to all polynomials in
I2, and to exactly one polynomial in I21 . Summarizing, we can construct the
following families of t = 8 coprime polynomials:

• The
(
9
8

)
= 9 subsets of 8 elements in the union I2 ∪ I21 .

• The 3 families obtained by adjoining to I2 one element from I21 and
one from I1,1, so that these last two polynomials are coprime, i.e.,
I2 ∪ {p7, p12}, I2 ∪ {p8, p10}, and I2 ∪ {p9, p11}.
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Table 1: Truth tables and polynomial families of the 12 bent functions of 8
variables obtained from the CA construction with degree b = 2.

Truth table Polynomials

0xE5165E1C39AA7DA0C95C1E3A13E6CB70

E19A365691ECB6D00EECE0E6EE0A0000

p1, p2, p3, p4, p5, p6, p7, p8

0xE1365C9C31EA7CB0E91C9E1A5366DB60

A39A1E5615ECA7D00EEAE0ECEE060000

p1, p2, p3, p4, p5, p6, p7, p9

0x65361E9C19EA6DB0E15C9A3A51E6DA70

E31A3E1695CCB7C00EE6E0EAEE0C0000

p1, p2, p3, p4, p5, p6, p8, p9

0xA5365E8C39E875B0E9549C3A43E6DB30

E29A3E52956C97D00ECE60EEEA0E0000

p1, p2, p3, p4, p5, p7, p8, p9

0xE532569C29EA7D90E85C9E3853A65B70

C39A3E4695E4B3D00E6EA0EEEC0E0000

p1, p2, p3, p4, p6, p7, p8, p9

0xC5365E9838EA7D30E94C963A53E49B70

E3922E5695ACB5D00AEEE0CE6E0E0000

p1, p2, p3, p5, p6, p7, p8, p9

0xE5265A9C39E25DB0E9588E3A53C6D370

639A3E5494ECB7900CEEE06EAE0E0000

p1, p2, p4, p5, p6, p7, p8, p9

0xE5344E9C396A79B0A95C9E3252E6DB50

E38A3C5695E837D006EEE0AECE0E0000

p1, p3, p4, p5, p6, p7, p8, p9

0xE4365E9439CA3DB0695C9E2A53E2D970

E3983A5685ECB7500EAEC0EEE60E0000

p2, p3, p4, p5, p6, p7, p8, p9

0xF1165E1C31EA7CA8E91C1F1A13E6CB64

E19A1E5611FCA6D28EE8E4E4EE220000

p1, p2, p3, p4, p5, p6, p7, p12

0xE5161F1C19EA6DA2E15C1E3A11F6CA78

F11A3E1691ECB6C44EE4E2E2EE880000

p1, p2, p3, p4, p5, p6, p8, p10

0xE1361E9C11FA6CB4F11C9E1A51E6DA62

E31A1F1615ECA7C82EE2E8E8EE440000

p1, p2, p3, p4, p5, p6, p9, p11

Hence, we obtain 12 families of 8-MOLS of order 16 generated by LBCA
over F4, which give rise to 12 bent functions as stated in Theorem 6. Table 1
reports the truth tables of these functions in hexadecimal format and the
corresponding families of polynomials that define them.
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