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Abstract

We present a construction of partial spread bent functions using subspaces
generated by linear recurring sequences (LRS). We first show that the kernels
of the linear mappings defined by two LRS have a trivial intersection if and
only if their feedback polynomials are relatively prime. Then, we characterize
the appropriate parameters for a family of pairwise coprime polynomials to
generate a partial spread required for the support of a bent function, showing
that such families exist if and only if the degrees of the underlying polynomi-
als are either 1 or 2. We then count the resulting sets of polynomials and prove
that, for degree 1, our LRS construction coincides with the Desarguesian
partial spread. Finally, we perform a computer search of all P S− and P S+

bent functions of n = 8 variables generated by our construction and compute
their 2-ranks. The results show that many of these functions defined by poly-
nomials of degree d = 2 are not EA-equivalent to any Maiorana-McFarland
or Desarguesian partial spread function.

Keywords bent functions, partial spreads, cyclic codes, linear recurring se-
quences, polynomials

1 Introduction

Boolean functions play an essential role in cryptography, coding theory, and combi-
natorial designs [15]. Among them, bent functions are of particular interest since
they lie at the highest possible Hamming distance from the set of all affine functions,
or equivalently they reach the highest possible nonlinearity. Even though bent
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functions are unbalanced, highly nonlinear balanced functions can be derived from
them [8]. For this reason, bent functions have been used in the past for designing
stream and block ciphers since highly nonlinear Boolean functions are useful to
withstand fast-correlation and linear cryptanalysis attacks [4]. Besides cryptog-
raphy, bent functions are also studied in coding theory, as they are connected to
the covering radius of first-order Reed-Muller codes, whose codewords are affine
functions.

Over the last decades, many constructions of bent functions have been described
in the related literature (see, e.g., [3, 15, 4] for a survey of the main ones). A
distinction is usually made between primary and secondary constructions. Primary
constructions build sets of bent functions from scratch, usually by leveraging on
related combinatorial structures. Some of the most well-known primary construc-
tions for bent functions include the Maiorana-McFarland construction [14], which
exploits permutations over Fn

2, and Dillon’s construction [7], based on the class
of partial spreads P S . On the contrary, secondary constructions build new bent
functions starting from existing ones. For example, the Rothaus’s construction [17]
takes three bent functions of n variables whose sum is also bent and yields a bent
function of n+2 variables.

The search for novel methods to design bent functions is still an interesting and
active research area nowadays, for a twofold motivation:

• Discovering new functions. Notwithstanding the multitude of existing con-
structions, they only cover a tiny fraction of the total number of bent func-
tions [15], and the complete enumeration of bent functions remains an open
question for n ≥ 10 variables [16]. Therefore, finding new constructions
that yield previously unknown bent functions is still an interesting research
avenue to pursue. However, one must remark that this direction is becoming
increasingly difficult precisely because many constructions are already in
place. This makes the discovery of new bent functions both unlikely and
cumbersome since, in principle, one has to check inequivalence against a
large number of known classes.

• Finding new constructions for known functions. Novel constructions that
generate already known bent functions are an interesting research line as well,
for several reasons. For example, from an implementation point of view, such
constructions could highlight more efficient ways to design the corresponding
bent functions other than by classic lookup tables. More generally, a novel
construction could provide a new perspective on understanding the structure
of a known class of bent functions and spawning new research questions
linked both to the construction of new bent functions and other interesting
combinatorial objects. As we will argue in the following, we deem our work
an example of this approach.

In this paper, we present a new primary construction of bent functions in
the partial spread class P S by using the subspaces spanned by Linear Recurring
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Sequences (LRS) over finite fields. The main idea is to define a linear mapping
through the feedback polynomial of an LRS and then to use its kernel as a subspace
in a partial spread. The main contributions of this paper can be summarized as
follows:

• We prove that the kernels of two linear mappings have a trivial intersection if
and only if the feedback polynomials of their LRS are pairwise coprime.

• We show that a family of pairwise coprime polynomials large enough to
define a partial spread for a bent function exists if and only if the degree of the
involved polynomials is either d = 1 or d = 2, assuming that all polynomials
have a nonzero constant term.

• We prove that for degree d = 1, the functions given by our LRS construction
coincide with the Desarguesian partial spread class.

• We perform a computer search of all bent functions of n = 6,8 variables
generated by our LRS construction, remarking that they always have max-
imal degree n/2. While for P S− functions this is expected, the reason for
P S+ functions lies in the fact that the corresponding partial spreads are not
maximal.

• We analyze the distribution of the 2-ranks for the LRS bent functions of
n = 8 variables. For degree d = 1, we independently verify and extend the
distribution reported by Weng et al. [19] for functions in the Desarguesian
partial spread. For degree d = 2, we remark that many of the obtained bent
functions have a rank higher than 42. Thus, they are not EA-equivalent to any
Maiorana-McFarland or Desarguesian partial spread function.

The remainder of this work is structured as follows. Section 2 reviews the
background definitions on bent functions and linear recurring sequences. Section 3
defines our LRS construction, proving that the kernels of two LRS linear mappings
have a trivial intersection if and only if the associated feedback polynomials are
coprime. Section 4 characterizes the families of pairwise coprime polynomials that
are required for the LRS construction and provides the corresponding counting
result. Section 5 shows that the LRS construction equals the Desarguesian partial
spread construction when using polynomials of degree 1. Section 6 discusses the
computer search experiments for bent functions of n = 6,8 variables generated by
the LRS construction, reporting the distribution of the 2-ranks. Finally, Section 7
summarizes the main results of this paper, points out several avenues for future
research, and discusses the connection with the cellular automata approach used
in [9].

2 Background

This section covers the necessary background notions used throughout the paper.
We begin by introducing the basic definitions and results related to bent Boolean
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functions, describing the main known primary constructions (namely, the Maiorana-
McFarland construction and Dillon’s partial spread class), the extended affine
equivalence relation, and a method to check the inequivalence of a bent function
against a class of other known functions. We then move to linear recurring sequences
and their vector spaces, representing the main combinatorial objects used to define
our new construction of bent functions.

2.1 Bent Functions

We refer the reader to [4] for a thorough treatment of the results recalled in this
section about Boolean functions. In what follows, let Fq be the finite field with
q elements (where q = pα is a power of a prime number) and denote by Fn

q the
n-dimensional vector space over Fq, with 0 being its null vector. For q = 2, sum
and multiplication on F2 correspond to the XOR and logical AND operations,
respectively. Following the literature convention about Boolean functions, we
will denote the sum operation over F2 by ⊕, while for a generic finite field Fq

we will adopt the normal sum symbol +. On the other hand, we will denote the
multiplication operation in all finite fields by concatenation of the operands. A
Boolean function of n variables is a mapping f : Fn

2→ F2. The most natural way
to uniquely represent a Boolean function f is by means of its truth table, which
is the vector Ω f ∈ F2n

2 that lists the output of f evaluated over all 2n input vectors
x ∈ Fn

2 in lexicographic order. The support of f is the subset of input vectors that
map to 1, that is, supp( f ) = {x ∈ Fn

2 : f (x) 6= 0}, while the Hamming weight of f
is defined as wH( f ) = |supp( f )|, i.e., the number of ones in the truth table of f .
Functions with the Hamming weight equal to wH = 2n−1 are also called balanced
since their truth table is composed of an equal number of zeros and ones, and they
play an important role in the design of stream and block ciphers [4]. The polarity
truth table Ω f̂ of f : Fn

2→ F2 is the truth table of the function f̂ : Fn
2→{−1,+1}

defined as f̂ (x) = (−1) f (x) for all x ∈ Fn
2.

The Algebraic Normal Form (ANF) is another useful representation that ex-
presses a Boolean function f : Fn

2 → F2 as a multivariate polynomial over the
quotient ring F2[x1, · · · ,xn]/(x2

1⊕ x1, · · · ,x2
n⊕ xn):

Pf (x) =
⊕

I∈P ([n])

aI

(
∏
i∈I

xi

)
, (1)

with P ([n]) = 2[n] being the power set of [n] = {1, · · · ,n}, and aI being the coeffi-
cient of the monomial defined by the subset I ∈ P ([n]). The algebraic degree of f is
defined as the cardinality of the largest subset I such that aI 6= 0. In particular, affine
functions are defined as those Boolean functions with degree at most 1. Notice
that the ANF is a unique representation of a Boolean function, and in particular,
one can retrieve the truth table back from the ANF coefficients through the Möbius
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transform:
f (x) =

⊕
I∈P [n]:I⊆supp(x)

aI , (2)

A third common method to uniquely represent Boolean functions used in cryptogra-
phy is the Walsh-Hadamard transform. Formally, the Walsh-Hadamard transform of
a Boolean function f : Fn

2→ F2 is the mapping Wf : Fn
2→ Z defined for all a ∈ Fn

2
as

Wf (a) = ∑
x∈Fn

2

(−1) f (x)⊕a·x , (3)

where a · x =
⊕n

i=1 aixi is the scalar product between a and x. One may easily see
that a function f is balanced if and only if its Walsh-Hadamard transform vanishes
on the null vector, i.e., if and only if Wf (0) = 0. In particular, the Walsh-Hadamard
coefficient Wf (a) quantifies the correlation between f and the linear function a · x.
The lower the absolute value of Wf (a), the lower will be the correlation of f from
a · x (and from its affine counterpart 1⊕ a · x), and thus the higher will be the
Hamming distance between the truth tables of the two functions. In particular, the
nonlinearity of a Boolean function f : Fn

2→ F2 is defined as the minimum Hamming
distance of f from the set of all affine functions, and it can be computed as follows:

Nl f = 2n−1− 1
2

max
a∈Fn

2

(|Wf (a)|) . (4)

Therefore, a Boolean function with high nonlinearity must be characterized by
a low maximum absolute value among its Walsh-Hadamard coefficients. Parseval’s
relation states that the sum of the squared Walsh-Hadamard spectrum is constant
for any Boolean function f : Fn

2→ F2, and it equals:

∑
a∈Fn

2

[Wf (a)]2 = 22n . (5)

From Parseval’s relation, one can remark that the lowest maximum absolute
value of the Walsh-Hadamard transform occurs when the constant 22n is uniformly
“spread” among all 2n coefficients, that is, when each coefficient in absolute value
equals 2

n
2 . This observation yields the covering radius bound for the nonlinearity of

an n-variable Boolean function:

Nl f ≤ 2n−1−2
n
2−1 . (6)

Functions satisfying with equality Equation (6) – or equivalently, whose Walsh-
Hadamard coefficients all equal 2

n
2 in absolute value – are called bent functions.

Such functions exist only when n is even since the Walsh-Hadamard coefficients
must be integer numbers. Although achieving the highest possible nonlinearity
granted by the covering radius bound, bent functions cannot be employed directly
in the design of stream or block ciphers since they are always unbalanced. As a
matter of fact, we have Wf (0) =±2

n
2 for any bent function, which means that its

Hamming weight is 2n−1±2
n
2−1.
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There are several ways to construct bent functions proposed in the literature.
Usually, such methods are divided in primary and secondary constructions. Recall
that a primary construction builds “from scratch” new bent functions by leveraging
other kinds of combinatorial objects. On the other hand, a secondary construction
derives new bent functions starting from already existing ones. This paper focuses
on the former case.

One of the main primary constructions investigated in the literature is the
Maiorana-McFarland construction, which is the set M of all Boolean functions
f : Fn

2→ F2, with n = 2m, defined as:

f (x,y) = x ·π(y)⊕g(y) , (7)

for all x,y ∈ Fm
2 , where π : Fm

2 → Fm
2 is any permutation of Fm

2 and g is any Boolean
function on Fm

2 . Therefore, for any m ∈ N there are (2m)! ·22m
bent functions of 2m

variables in M .
A second well-known primary construction that gives rise to a large number of

bent functions was introduced by Dillon in his PhD thesis [7], and it is based on
partial spreads. A partial spread of Fn

2, with n = 2m, is a family P of m-dimensional
subspaces S1,S2, · · · ,St ⊆ Fn

2 with pairwise trivial intersection (i.e., for all i 6= j one
has Si∩S j = {0}). Further, a partial spread is a spread if the union of its subspaces
results in the whole space Fn

2. The main result proved by Dillon is that one can
construct a bent function f : Fn

2→ F2, with n = 2m, from a partial spread P of Fn
2

by defining the support of f as the union of the subspaces in P. Remark that the
partial spread must be large enough to reach the Hamming weight required for a
bent function. In particular, a bent function f : Fn

2→ F2, n = 2m, belongs to the
class P S− if f (0) = 0 and its support is the union of t = 2m−1 subspaces of a partial
spread P of Fn

2. Functions in the P S− class reach the maximum possible algebraic
degree for a bent function of n = 2m variables, namely m. Bent functions belonging
to the class P S+ are defined similarly, with f (0) = 1 and their support being the
union of t = 2m−1+1 m-dimensional subspaces of a partial spread of Fn

2. The union
of P S− and P S+ gives the whole partial spread class P S . We formally summarize
this in the following definition:

Definition 1. Let n = 2m. A bent function f : Fn
2→ F2 is of type P S− (respectively,

P S+) if its support is defined as:

supp( f ) =
⋃
S∈P

(S\{0})

(
respectively, supp( f ) =

⋃
S∈P

S

)
, (8)

where P is a partial spread of size 2m−1 (respectively, 2m−1 +1).

Hence, from a practical point of view, the support of a P S+ function is obtained
by taking the union of the elements in the partial spread. For a P S− function, the
support is also the union, with the exception that the null vector is always discarded
from the elements in the partial spread.
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Contrarily to P S−, functions in P S+ can have algebraic degrees other than
m. More precisely, this depends on whether a P S+ function is defined by a non-
maximal partial spread (i.e., a partial spread that can be extended by adjoining
another subspace) or not. In the former case, the resulting P S+ function also has
degree m. In the latter, the degree might be different, and in particular, when m is
even, P S+ contains the quadratic bent functions. We summarize the relationship
between algebraic degree and P S bent functions in the result below, whose proof
can be found in Dillon’s thesis [7]:

Proposition 1. Let f : Fn
2 → F2, with n = 2m, be a bent function in the partial

spread class P S . Then, the following hold:

• If f ∈ P S−, then f has algebraic degree m.

• If f ∈ P S+ and its partial spread is not maximal, then f has degree m.

Currently, the structure of the class P S is still far from being completely char-
acterized, and several methods have been investigated to define partial spreads
that are large enough to obtain P S− and P S+ bent functions. Here, we introduce
only the Desarguesian spread, which is perhaps the best-known example of spread
used to construct P S− bent functions (see, e.g., [6] for a general overview of other
partial spreads). Given n = 2m, one can use the bivariate form to represent the
Desarguesian spread [15]. The vector space Fn

2 is identified with the Cartesian
product F2m×F2m , and the Desarguesian spread is defined as:

DS = {Ea ⊆ F2m×F2m : a ∈ F2m}∪E∞ , where :

Ea = {(x,ax) ∈ F2m×F2m : x ∈ F2m} ,

E∞ = {(0,y) ∈ F2m×F2m : y ∈ F2m} . (9)

Then, any subset of 2m−1 elements of DS is a partial spread whose union defines
the support of a bent function. More in particular, these functions belong to the
so-called class P S ap (where ap stands for “affine plane”), which is a subset of
P S−. Besides reaching maximal degree n/2, functions in the P S ap class have
the additional interesting property of being hyper-bent, as shown, e.g., in [5]. A
Boolean function f : F2n → F2, n even, is called hyper-bent if the function f (xi) is
bent for all exponent i coprime with 2n−1 [20]. As such, hyper-bent functions have
the highest possible distance not only from all affine functions (which corresponds
to the case i = 1) but also from all bijective monomial functions.

Given the great variety of primary constructions available in the literature, a
crucial question when investigating a new construction is to assess whether the bent
functions produced by it are essentially different from those belonging to other
known classes. This is accomplished by using equivalence relations. The underlying
idea is to classify the bent functions produced by the known constructions up to
equivalence and then verify if the bent functions generated by a new construction
belong to any of these classes or to different ones. The main equivalence relation
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used in this context is the extended affine equivalence (EA-equivalence). Two
Boolean functions f ,g : Fn

2→ F2 are EA-equivalent if there exists a linear permu-
tation L : Fn

2→ Fn
2, two vectors u,v ∈ Fn

2, and an element c ∈ F2 such that, for all
x ∈ Fn

2,
g(x) = f (L(x)⊕u)⊕ (v · x)⊕ c . (10)

A bent function f : Fn
2 → F2, with n = 2m, belongs to the completed Maiorana-

McFarland class M # if it is EA-equivalent to a function in M .
One possible method to check the EA-inequivalence of a function against other

classes resorts to the notion of rank, introduced by Weng et al. [19]. More precisely,
the 2-rank of a Boolean function f : Fn

2→ F2 is the rank of the 2n×2n binary matrix
A f whose rows and columns are indexed by the vectors of Fn

2, and which is defined
as A f (x,y) = f (x⊕ y) for all x,y ∈ Fn

2. In particular, if f is a bent function, then
A f is the incidence matrix of a symmetric 2-design, and it is called the translate
design of the difference set, which is the support of f . Weng et al. proved that
EA-equivalent bent functions have the same rank. Therefore, one can prove that
two bent functions are not equivalent by checking that their ranks differ. The paper
by Weng et al. further characterizes the lower and upper bounds for different types
of bent functions. In particular, the rank of any Maiorana-McFarland bent function
of n = 2m variables ranges between LBM = 2m+ 2 and UBM = 2m+1− 2. On
the other hand, bent functions defined over the Desarguesian partial spread have
ranks between LBDS = 2m+1− 2 and UBDS = ∑

m
i=0
(m

i

)
2min{i,m−i}. An interesting

consequence of the fact that the two intervals overlap only on 2m+1−2 is that almost
all bent functions arising from the Desarguesian partial spread class are inequivalent
to any Maiorana-McFarland function. Moreover, one can show that a bent function
is inequivalent to all Maiorana-McFarland and Desarguesian spread functions by
showing that its rank is higher than UBDS.

2.2 Linear Recurring Sequences

This section covers only the basic notions of linear recurring sequences essential to
present our construction. An excellent overview of this topic can be found in the
book by Lidl and Niederreiter on finite fields [11].

Let d ∈ N, and a,a0, · · · ,ad−1 ∈ Fq. A sequence {xi}i∈N of elements in Fq is
called a linear recurring sequence (LRS) of order d if it satisfies the following
relation:

a+a0xi +a1xi+1 + ...+ad−1xi+d−1 = xi+d , (11)

for all i∈N. The first d elements x0, · · · ,xd−1 act as the initial values of the sequence,
while all subsequent ones are determined by applying the linear recurrence defined
in Equation (11). In what follows, we will assume that a = 0, i.e., that the LRS is
homogeneous, and that Fq is a field of characteristic 2. In this case, the feedback
polynomial of the LRS (11) can be defined as:

f (X) = a0 +a1X + · · ·ad−1Xd−1 +Xd , (12)
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that is, f (X) is the monic polynomial in Fq[X ] of degree d whose monomials are
defined by the coefficients of the LRS.

It is known that the family S( f (X)) of all sequences {xi} satisfying the linear
recurrence with feedback polynomial f (X) as in (12) forms a d-dimensional vector
space over Fq (see Chapter 6, Section 5 in [11]). In this work, we consider the
projection of such sequences onto their first 2d coordinates. Therefore, we obtain a
subspace S f ⊆F2d

q of dimension d which is the kernel of the linear map F :F2d
q →Fd

q
defined as:

F(x0, · · · ,x2d−1)i = a0xi +a1xi+1 + ...+ad−1xi+d−1 + xi+d , (13)

for all output coordinates i ∈ {0, · · · ,d− 1}. Since the map F is linear, we can
describe it as F(x) = MF · x>, where MF is the d×2d matrix of the form:

MF =


a0 · · · ad−1 1 0 · · · · · · · · · · · · 0
0 a0 · · · ad−1 1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
0 · · · · · · · · · · · · 0 a0 · · · ad−1 1

 , (14)

Therefore, we can compactly represent the linear map F by the coefficients of
the feedback polynomial f , i.e., f 7→ MF . Notice that MF has the form of the
parity-check matrix of a cyclic code, with f playing the role of the parity check
polynomial. However, the code associated with f is not cyclic in general. This
happens, in particular, if and only if the generator polynomial (which is defined as
the reciprocal of f ) divides XN−1, where N = 2d. On the other hand, evaluating F
on a particular vector x ∈ F2d

q corresponds to computing the syndrome of x. In what
follows, we will also consider the special cases where the feedback polynomial
is respectively Xd and 1. The former is still a feedback polynomial of degree
d—although not a typical one—and thus, the definition of the d× 2d matrix in
Equation (14) still holds. In particular, the linear map F is defined by the matrix
MF = [0|I], where I denotes the d×d identity matrix; the corresponding kernel is
the subspace {(x0, · · · ,xd−1,0, · · · ,0) : xi ∈ Fq}, i.e. all those vectors whose right
half is set to 0. On the other hand, the case f (X) = 1 is different since here we have
a polynomial of degree 0. However, we can still define a d×2d matrix with d ≥ 1
of the form (14) as MF = [I|0]. The function F maps each vector of dimension 2d
to its first d coordinates. Therefore, symmetrically to the case of Xd , the kernel of
the linear map for f (X) = 1 is the subspace {(0, · · · ,0,xd , · · ·x2d−1) : xi ∈ Fq}, that
is, all vectors whose left half is set to 0.

Remark 1. Suppose that we have a feedback polynomial g(X) of degree d ≥ 1 and
f (X) = 1. Then, the kernels of the linear maps G and F respectively defined by
g(X) and f (X) have a trivial intersection. In fact, the rightmost d coordinates of
the vectors in the kernel of F are linear functions of the leftmost d ones. The only
vector in this kernel that also has its left half equal to 0 is thus the null vector.
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As a final note, remark that F may also be regarded as a linear cellular automa-
ton (CA) [13]. The connection between the LRS used here to define bent functions,
and the CA approach will be briefly discussed in the conclusions.

3 The LRS Construction

The first step of our construction requires characterizing when the kernels of two
LRS subspaces have a trivial intersection. The next result shows that this is equiva-
lent to computing the greatest common divisor of the respective feedback polynomi-
als.

Lemma 1. Let f ,g ∈ Fq[X ] be two polynomials over Fq both of degree d ≥ 1,
respectively defined as:

f (X) = a0 +a1X + · · ·+ad−1Xd−1 +Xd , (15)

g(X) = b0 +b1X + · · ·+bd−1Xd−1 +Xd , (16)

with ai,bi ∈ Fq. Further, let F,G : F2d
q → Fd

q be the linear maps defined by the
polynomials f and g, respectively. Then, the kernels of F and G have trivial
intersection if and only if gcd( f ,g) = 1, i.e., if and only if f and g are coprime.

Proof. The linear maps F and G are respectively defined as F(x) = MF · x> and
G(x) = MG · x> for all x ∈ F2d

q , where MF and MG are the two d×2d matrices of
the form (14). Define now the linear function H : F2d

q → F2d
q as H = MH · x> for all

x ∈ F2d
q , where

MH =

(
MF

MG

)
=



a0 · · · ad−1 1 0 · · · · · · · · · · · · 0
0 a0 · · · ad−1 1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
0 · · · · · · · · · · · · 0 a0 · · · ad−1 1
b0 · · · bd−1 1 0 · · · · · · · · · · · · 0
0 b0 · · · bd−1 1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
0 · · · · · · · · · · · · 0 b0 · · · bd−1 1


.

(17)
In other words, the matrix MH is simply the superposition of the two matrices MF

and MG. It is clear that the nullspace of MH is the intersection of the nullspaces of
MF and MG. Hence, the kernels of F and G have trivial intersection if and only if
MH is invertible. Remark that MH is also the Sylvester matrix of the polynomials
f and g. It is a well-known fact that the determinant of the Sylvester matrix (also
called the resultant in this context) is nonzero if and only if f and g do not have a
common factor [10]. Therefore, one has that ker(F)∩ ker(G) = {0} if and only if
f and g are coprime.
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Consequently, we need to find a family of pairwise coprime polynomials that is
large enough to define a bent function. Following what we recalled in Section 2.1,
for a P S− function we need t = 2m−1 coprime polynomials of degree d. To this
aim, let us take the finite field Fq with q = 2l , for l ∈ N. This is because a partial
spread for a bent function must be defined over the vector space Fn

2, n = 2m. In
particular, each vector x ∈ F2d

2l must also be converted into a corresponding binary
vector x ∈ Fn

2 since the union of the vectors in the partial spread will form the
support of the bent function. In other words, we require that ld = m. By identifying
F2l with the vector space Fl

2, a vector x in F2d
2l is a 2d-tuple whose components are

in turn binary l-tuples:

x = ((x0,0, · · · ,x0,l−1), · · · ,(x2d−1,0, · · · ,x2d−1,l−1)) . (18)

We now associate to each element x ∈ F2d
2l an element of F2ld

2 through the flattening
operator ϕ : F2d

2l → F2ld
2 , which simply drops the parentheses inside the vector

representation of x:

ϕ(x) = (x0,0, · · · ,x0,l−1, · · · ,x2d−1,0, · · · ,x2d−1,l−1) . (19)

It is then easy to see that ϕ is bijective. We can now characterize the partial spreads
arising from our construction:

Theorem 1. Let m, l,d ∈ N such that m = ld. If there are t = 2ld−1 (respectively,
t = 2ld−1 +1) coprime polynomials of degree d ≥ 1 over Fq where q = 2l , possibly
including the constant polynomial 1 of degree 0, then there exists a partial spread
P over Fn

2, n = 2m, whose union of its subspaces with the null vector discarded
(respectively, with the null vector included) defines a bent function in the class P S−
(respectively, P S+).

Proof. Let us first consider the case where f1, · · · , ft are all coprime polynomials
of degree d ≥ 1 over Fq, and let F1, · · · ,Ft : F2d

q → Fd
q be the corresponding linear

maps associated to them. Define the following family of subspaces of Fn
2, with

n = 2m = 2ld:
P = {Φ(ker(Fi))⊆ Fn

2 : 1≤ i≤ t} , (20)

where Φ(ker(Fi)) = {y ∈ Fn
2 : y = ϕ(x),x ∈ ker(Fi)}, for 1≤ i≤ t. In other terms,

the subspace Φ(ker(Fi)) is obtained by taking the kernel of Fi and applying the
flattening operator to each vector in it. Since the polynomials f1, · · · , ft are pairwise
coprime, by Lemma 1, the kernels of the Fi have pairwise trivial intersection.
Clearly, the same property holds for the subspaces Φ(ker(Fi)) in P since they are
just a different representation of the same kernels through the flattening operator.
Therefore, P is a partial spread over Fn

2, and depending on its size (t = 2ld−1 or
t = 2ld−1 +1), it can be used to define the support of a P S− or P S+ bent function
as per Definition 1.

Suppose now that one of the t polynomials is fi(X) = 1, while all others f j(X)
for j 6= i are pairwise coprime polynomials of degree d ≥ 1. By Remark 1, the

11
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kernel of Fi has trivial intersection with the kernel of Fj for all j 6= i. Thus, one can
construct a partial spread also in this case using Equation (20).

An alternative way of considering the inclusion of the constant polynomial
f (X) = 1 in Theorem 1 is that one can define a variant of the Sylvester resultant for
two polynomials of different degrees e < d, with d ≥ 1, such that the corresponding
matrix still has size 2d×2d. The idea, explained by Sylvester in [18, pp. 425–426],
is to augment the matrix of the linear map related to the polynomial of smaller
degree e by postpending d− e ghost terms equal to zero in the first row and then
sliding as usual to construct the rows below. Equivalently, in the polynomial notation
the additional ghost terms are 0 · xi for e+ 1 ≤ i ≤ d. This is precisely how we
defined the matrix in Section 2.2 for f (X) = 1, i.e. as MF = [I|0].

In the remainder of this section, we show two examples of bent functions
obtained through our construction.

Example 1. Let m = 2, n = 2m = 4, l = 1, and d = 2. Since ld = m, in this case
we need to find t = 2m−1 = 2 relatively prime polynomials f1, f2 ∈ F2[X ] of degree
d = 2 to apply our construction. Let f1(X) = X2 +1 and f2(X) = X2 +X +1. In
this case, there is no need to apply the flattening operator since the ground field for
the polynomials is already F2. The two linear maps F1,F2 : F4

2→ F2
2 are respectively

defined by the following two matrices:

MF1 =

(
1 0 1 0
0 1 0 1

)
, MF2 =

(
1 1 1 0
0 1 1 1

)
The kernels of F1 and F2 are the following ones:

ker(F1) = {0000,1010,0101,1111},
ker(F2) = {0000,1011,0110,1101},

which clearly have a trivial intersection. Therefore, the union of ker(F1) and ker(F2)
(excluding the null vector) defines the support of the Boolean function g : F4

2→ F2
with the following truth table:

Ωg = (0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,1) .

The ANF of g is defined as follows:

g(x1,x2,x3,x4) = x1x3⊕ x2x3⊕ x2x4.

It is possible to verify that this function is bent in a number of ways. For example,
by applying the linear transformation x4← x3⊕ x4 the function g is equivalent to
the canonical nondegenerate quadratic form g′(x1,x2,x3,x4) = x1x3⊕ x2x4, which
by Equation (7) is a Maiorana-McFarland function.
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Example 2. The bent function g defined in Example 1 belongs to the P S− class,
since its support is the union of 22−1 = 2 subspaces of dimension 2 with trivial
intersection, stripping out the null vector. If we want to obtain a P S+ function, we
need an additional polynomial of degree d = 2 that is coprime both to f1 and f2. To
this end, we can select for instance f3(X) = X2. The kernel of the associated linear
map F3 is as follows:

ker(F3) = {0000,0100,1000,1100} ,

which again has trivial intersection with both ker(F1) and ker(F2). Therefore, we
can define a P S+ bent function h : F4

2→ F2 by setting h(0000) = 1 and defining the
rest of its support as the union of the three kernels minus their trivial intersection.
We thus obtain the following truth table:

Ωh = (1,1,1,1,0,1,1,0,0,0,1,1,0,1,0,1) ,

with the ANF of h being:

h(x1,x2,x3,x4) = x1x2⊕ x1x3⊕ x2x3⊕ x2x4⊕ x1⊕ x2⊕1 .

4 Counting Bent Functions in the LRS Construction

Recall from Theorem 1 that, given m, l,d ∈ N such that m = ld, one can construct a
P S− (respectively, P S+) bent function if there are at least t = 2ld−1 (respectively,
t = 2ld−1 +1)) coprime polynomials of degree d over Fq where q = 2l . Thus, the
first research question is whether for all even n ∈ N there are enough pairwise
coprime polynomials to obtain a bent function. In what follows, we focus on the
case of monic polynomials with nonzero constant term that are pairwise coprime to
exploit the counting results proved in [12]. There, the authors proposed construction
for such families of polynomials based on the multiplication of two irreducible
polynomials of degree k and d− k, respectively. In particular, they showed that
the maximum size of the families that can be generated through this construction
equals:

Nd = Id +
b d

2 c

∑
k=1

Ik . (21)

In the formula above, Ik denotes the number of irreducible monic polynomials of
degree k and with a nonzero constant term over Fq, which is Ik = q−1 for k = 1,
while for k ≥ 2 it is given by Gauss’s formula:

Ik =
1
k ∑

e|k
µ(e) ·q

k
e , (22)

with µ denoting the Möbius function. Further, in [12], it is proved that such con-
struction is optimal, meaning that Nd actually corresponds to the maximum size
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attainable by any family of monic coprime polynomials of degree d with a nonzero
constant term over Fq. Thus, one can study Equation (21) with respect to the param-
eters l, d, and m to address the existence question for families of polynomials that
satisfy the conditions of Theorem 1. We now characterize such families for the case
of P S− functions in terms of the degrees of their polynomials:

Theorem 2. Let l,d,m ∈ N such that ld = m, and let q = 2l . Then there exists a
family of t = 2m−1 pairwise coprime polynomials of degree d and nonzero constant
term over Fq if and only if d ∈ {1,2}.

Proof. We need to show that Nd ≥ 1
2 qd if and only if d ≤ 2. We first settle the cases

of d ≤ 4 one by one.
For d = 1, we obtain

N1 = I1 = q−1≥ 1
2

q.

For d = 2, we obtain

N2 = I2 + I1 =
1
2
(q2−q)+(q−1) =

1
2

q2(1+q−1−2q−2)≥ 1
2

q2.

For d = 3, we obtain

N3 = I3 + I1 =
1
3
(
q3−q

)
+(q−1)

<
1
3

q3 (1+2q−2)≤ 1
3

q3 3
2

=
1
2

q3.

For d = 4, we obtain

N4 = I4 + I2 + I1 =
1
4
(
q4−q2)+ 1

2
(q2−q)+(q−1)

<
1
4

q4 (1+q−2 +2q−3)≤ 1
4

q4 3
2

=
3
8

q4.

We now move on to the case where d ≥ 5. Denoting the smallest nontrivial
divisor of d by p, we first get the following upper bound on Id :

Id ≤
1
d

{
qd−qd/p +(qd/p−1 + · · ·+q+1)

}
<

1
d

qd .

We also obtain the following upper bound:

bd/2c

∑
k=1

Ik ≤ qbd/2c+1 ≤ qd−2 ≤ 1
4

qd .
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Combining, we obtain

Nd = Id +
bd/2c

∑
k=1

Ik < qd
(

1
d
+

1
4

)
<

1
2

qd .

Hence, bent functions can be obtained from our LRS construction using polyno-
mials with nonzero constant terms for all number of variables n = 2m, where m = l
when d = 1, and m = 2l when d = 2. This leads us to the following counting result:

Theorem 3. Let l,m ∈ N and d ∈ {1,2} such that ld = m, and let q = 2l . Then,
the number of P S− bent functions of n = 2m variables that can be obtained by
Theorem 1 with polynomials of degree d and nonzero constant term is

(2m−1
2m−1

)
when

d = 1 and

I2

∑
A=0

(
I2

A

) 2m−1−A

∑
B=0

(
I1

B

)(
I1−B

2(2m−1−B−A)

)
(2(2m−1−B−A))!

(2m−1−B−A)!22m−1−B−A
, (23)

where I2 =
1
2(q

2−q) and I1 = q−1, when d = 2.

Proof. By Theorem 2 the only cases we need to address are d = 1 and d = 2.
Let d = 1 (and thus m = l). Then, by Equation (21), the largest family F1 of
coprime polynomials of degree 1 with nonzero constant term over Fq is composed
of N1 = q−1 = 2m−1 elements. The number of subsets of 2m−1 elements of F1
that can be selected to apply Theorem 1 is

(2m−1
2m−1

)
. For d = 2, any family of t = 2m−1

coprime polynomials of degree 2 with nonzero constant term over Fq consists of:

1. A≤ I2 irreducible polynomials of degree 2;

2. B≤ I1 polynomials of the form f 2, where f is an irreducible polynomial of
degree 1;

3. C = t −B−A polynomials of the form gh, where g and h are irreducible
polynomials of degree 1;

and obviously, the same irreducible polynomial of degree 1 only appears once.
There are

(I2
A

)
choices for the first part of the family,

(I1
B

)
choices for the second part

of the family, and

1
C!

(
I1−B

2

)(
I1−B−2

2

)
. . .

(
I1−B−2C+2

2

)
=

(
I1−B

2C

)
(2C)!
C!2C

choices for the third part of the family. Combining all three parts, we obtain the
formula.
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The results above refer to the number of families of coprime polynomials with
a nonzero constant term that is large enough to construct P S− bent functions.
Although such functions will be the focus of our computer investigations in the next
sections, one could also augment such families with other types of polynomials,
as long as they are pairwise coprime with all the others. This could be used, for
instance, to construct further P S− functions or P S+ functions with polynomials
of degree d = 1,2. Additionally, one could combine these other types of coprime
polynomials with families of degrees higher than 2.

One simple idea to achieve this is to augment each family with the constant
polynomial 1 and the polynomial Xd , which we already treated in Section 2.2 and
considered in Theorem 1. Although the former is not of degree d while the latter
does not have a constant term, it is easy to see that they are coprime both among
themselves and to all other polynomials in the families considered in Theorems 2
and 3. This idea spawns from the orthogonal array (OA) characterization of our
construction adopted in [9], where the first two columns of the OA correspond to the
LRS subspaces defined by 1 and Xd . We will elaborate further on this connection in
the conclusions section.

We already used in Example 2 the polynomial X2 to construct a P S+ function
of 4 variables, by adding it to the family {X2 +1,X2 +X +1}. One could also add
the constant polynomial 1, thereby obtaining a family of 4 coprime polynomials.
Since to define a P S+ function of 4 variables with our LRS construction we need
22−1 +1 = 3 pairwise coprime polynomials, we can build

(4
3

)
= 4 P S+ functions

by selecting all subsets of three polynomials in {1,X2,X2 +1,X2 +X +1}. Alter-
natively, one could build

(4
2

)
= 6 P S− functions since, in this case, we only need a

subset of two polynomials.
The next example shows how the two polynomials 1 and Xd can be used to

augment a family of coprime polynomials with a nonzero constant term of degree
d > 2 so that we have enough of them to apply our construction.

Example 3. Let m = 3, and l,d such that ld = m. There are only two possibilities,
namely l = 3 and d = 1, and l = 1 and d = 3. The first one is already covered
by Theorem 2 since d = 1. Let us consider the case l = 1 and d = 3. From
Equation (21), we have N3 = I3 + I1 = 2+1 = 3 coprime polynomials of degree 3
over F2 with nonzero constant term, which are the following ones:

f1(X) = X3 +X2 +1

f2(X) = X3 +X +1

f3(X) = (X +1)(X2 +X +1) = X3 +X2 +X +1 .

To obtain a P S− (respectively, a P S+) function we need 23−1 = 4 (respectively,
23−1 +1 = 5) coprime polynomials. By adding 1 and X3 to the set { f1, f2, f3}, we
can thus build

(5
4

)
= 5 P S− functions and one P S+ function.
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5 Equivalence to DS Functions for Degree d = 1

We now show that our LRS construction coincides with the Desarguesian partial
spread class when considering polynomials of degree d = 1. In this case, to generate
a bent function f : Fn

2→ F2 of n = 2m variables, by Theorem 1 we need to find a set
of t = 2m−1 irreducible polynomials of degree 1 over F2m . This basically amounts
to choosing a subset of cardinality t from the family:

I1 = {a+X ∈ F2m [X ] : a ∈ F∗2m} . (24)

Thus, let P = { f1(X), · · · , ft(X)} be a subset of I1. Recall that each polynomial is
used as an abstract representation for the coefficients of an LRS of order d = 1, used
to define the corresponding linear map. In particular, for fi(X) = ai +X , we have
that Fi equals:

Fi(x0,x1) = aix0 + x1 , (25)

for all pairs (x0,x1) ∈ F2m ×F2m . By Theorem 1, the kernels of Fi ≡ fi for i ∈
{1, · · · , t} form a partial spread, and each of them is obtained by taking all pairs
(x0,x1) ∈ F2m×F2m such that x1 = aix0, since F2m is a field of characteristic 2. We
have that:

ker(Fi) = {(x0,x1) ∈ F2m×F2m : x1 = aix0}
= {(x,aix) ∈ F2m×F2m : x ∈ F2m}= Eai , (26)

where Eai is a member of the Desarguesian spread as defined by Equation (9) in
bivariate form. We have thus obtained the following result:

Lemma 2. Let f : Fn
2→ F2, n = 2m, be a bent function defined as in Theorem 1

with degree d = 1. Then, f ∈ P S ap.

Therefore, when considering the family I1 of 2l−1 irreducible polynomials of
degree 1 over F2l with a nonzero constant term, our LRS construction is a particular
case of the partial spread induced by the Desarguesian spread. Further, the two
classes coincide if one adds the polynomials 1 and X to the family I1 since in that
case, one can construct

(2l+1
2l−1

)
P S ap functions.

However, the above reasoning on the Desarguesian spread does not hold for
degree 2. In this case, the LRS is defined by three coefficients instead of two, with
the input vector of the linear map consisting of 4 coordinates. Consequently, the
LRS is evaluated over three variables x0,x1,x2, and there does not seem to be a
straightforward way to express the kernel of the linear map as a set of pairs of the
type (x,ax). To the best of our knowledge, there are no other constructions in the
literature that represent partial spreads in a way analogous to our construction with
degree d = 2.
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Table 1: Distribution of 2-ranks for bent functions of n = 8 variables in the Desar-
guesian spread, obtained through the LRS construction with irreducible polynomials
of degree d = 1 over F24 . The bold value corresponds to the upper bound for the
rank of a Maiorana-McFarland function.

Rank #Functions

30 510
36 4080
40 2040
42 17680

Total 24310

6 Computational Results on Ranks and EA-Equivalence
for n = 8

To investigate more in detail the bent functions induced by our LRS construction,
we performed a computer search for n = 6 and n = 8 variables, with polynomials
of degrees d = 1,2, generating only P S− functions for d = 1 and both P S− and
P S+ functions for d = 2. This is due to the fact that for degree d = 1 the P S+

functions are the complements of P S− functions. For degree d = 2, we noticed that
all P S+ functions also have degree n/2. This is because the partial spreads which
define these functions are not maximal, and therefore by Proposition 1, they must
have the same algebraic degree of P S− functions. Moreover, it is known that up to
n = 6 variables, all bent functions belong to the completed Maiorana-McFarland
class [17]. Therefore, the smallest interesting case to consider is n = 8 variables.

As a first assessment, we generated all P S− functions by using families of
coprime polynomials of degree d = 1. Although by Lemma 2, we know that all
such functions are in P S ap and coincide with the Desarguesian spread class, we
computed their ranks to independently verify the count reported by Weng et al. [19].
In this case, we have m = l = 4 and t = 2m−1 = 8. Hence, to construct a function
from the Desarguesian spread, we need 8 coprime polynomials. Since there are 16
irreducible polynomials of degree d = 1 with coefficients over F24 and the constant
polynomial 1, one can obtain

(17
8

)
= 24310 P S ap functions with our construction.

Table 1 reports the distribution of the 2-ranks for all such functions. The upper
bound on the rank of a Maiorana-McFarland function of n= 8 variables given in [19]
is 2m+1−2 = 30. Hence, one can see from Table 1 that most of the functions in the
Desarguesian spread are inequivalent to Maiorana-McFarland functions. Remark
also that the numbers in Table 1 are higher than those reported by Weng et al. in [19]
because we are actually considering more functions. As a matter of fact, Weng
et al. computed the

(16
8

)
= 12870 bent functions in the class P S− arising from

the Desarguesian spread components x1 = ax0, with a ∈ F24 . This corresponds to
our LRS construction when considering only the 24− 1 irreducible polynomials
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of degree 1 over F24 with nonzero constant term and the polynomial X . On the
other hand, here, as mentioned above, we also consider the polynomial 1, which
is coprime with all such polynomials, although it does not have degree 1. This
allows us to construct

(16
7

)
= 11440 additional functions. Therefore, the distribution

reported in Table 1 independently verifies and extends Weng et al.’s result in [19].
Moreover, since the functions of P S+ type are the complements of those of type
P S−, Table 1 actually gives a complete account of the rank distribution of all P S ap

functions in 8 variables.
Next, we focused our attention on coprime polynomials of degree d = 2. As we

discussed in Section 5, this case is not directly amenable to the Desarguesian spread,
and it is, therefore, an interesting candidate to find potentially new P S− and P S+

functions. By Theorem 2, we have m = 4, t = 8, and l = 2. Consequently, a P S−
bent function is obtained by finding a set of eight pairwise coprime polynomials over
F4 of degree 2. Let F4 = {0,1,α,α2}, where α is a root of a primitive polynomial
p(X) ∈ F2[X ] of degree 2. Then, by Gauss’s formula, there are six irreducible
polynomials of degree 2 over F4:

p1(X) = X2 +α
2X +α

2 ,

p2(X) = X2 +α
2X +1 ,

p3(X) = X2 +αX +α ,

p4(X) = X2 +X +α
2 ,

p5(X) = X2 +αX +1 ,

p6(X) = X2 +X +α .

These polynomials are, of course, pairwise coprime since they are irreducible. Let
us denote them by I2 = {p1, p2, p3, p4, p5, p6}. Further, there are three irreducible
polynomials of degree 1 and nonzero constant term over F4 that can be squared to
obtain polynomials of degree 2 that are coprime among themselves and with those
in I2:

p7(X) = (X +1)2 = X2 +1 ,

p8(X) = (X +α)2 = X2 +α
2 ,

p9(X) = (X +α
2)2 = X2 +α .

Analogously, we denote by I 2
1 the set {p7, p8, p9}. Moreover, we can augment our

set with the polynomials 1 and X2. Although the former is not of degree 2 and
the latter does not have a constant term, they are coprime with all polynomials in
I2∪ I 2

1 . Finally, we can take the
(3

2

)
= 3 pairs of I1 and multiply the polynomials in

them, obtaining:

p10(X) = (X +1)(X +α
2) = X2 +αX +α

2 ,

p11(X) = (X +1)(X +α) = X2 +α
2X +α ,

p12(X) = (X +α)(X +α
2) = X2 +X +1 ,
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Table 2: Distribution of 2-ranks for P S− and P S− bent functions of n = 8 variables
obtained through the LRS construction with coprime polynomials of degree d =
2 over F4. The bold value corresponds to the upper bound for the rank of the
Desarguesian bent function.

Type Rank #Functions

P S−

36 20
40 24
42 28
44 123
46 78

Total 273

P S+
40 45
44 19
46 18

Total 82

with I1,1 = {p10, p11, p12}. These three polynomials are not pairwise coprime
among themselves, but each of them is relatively prime to all polynomials in
I2∪{1,X2}, and to exactly one polynomial in I 2

1 . Summarizing, for the P S− case,
we can construct 273 functions with the following families of t = 8 pairwise coprime
polynomials:

•
(11

8

)
= 165 subsets of 8 elements in the union I2∪ I 2

1 ∪{1,X2}.

•
(3

1

)(9
7

)
= 108 families obtained by choosing one element p from I1,1 and

adjoining to it 7 polynomials from I2∪{1,X2}∪{p′1}, where p′1 is the one
element in I 2

1 which is coprime to p.

Similarly, we can obtain 82 P S+ functions by the following families of t = 9
pairwise coprime polynomials:

•
(11

9

)
= 55 subsets of 9 elements in the union I2∪ I 2

1 ∪{1,X2}.

•
(3

1

)(9
8

)
= 108 families obtained by choosing one element p from I1,1 and

adjoining to it 8 polynomials from I2∪{1,X2}∪{p′1}, where p′1 is again the
one element in I 2

1 that is coprime to p.

Table 2 reports the distribution of the ranks for the P S− and P S+ functions
obtained from the families of polynomials described above. The first significant
observation that can be drawn from the table is that none of these bent functions is
equivalent to a Maiorana-McFarland function, since the smallest rank is 36. It is
even more interesting to observe that many functions are inequivalent to the ones
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induced by the Desarguesian spread, namely those reaching a rank higher than 42.
In particular, of the 355 P S bent functions given by our construction, 238 have a
rank greater than 42, so they are not equivalent to either Maiorana-McFarland or
Desarguesian spread functions. While this is not sufficient to conclude that we found
a class of previously unknown bent functions, we consider it the first step toward
that goal. Hopefully, our results will motivate further research in this direction.

7 Conclusions and Perspectives

This paper described a method to construct bent functions from linear recurring
sequences. The construction leverages on the subspaces spanned by linear mappings
defined by a family of LRS. In particular, we proved that if the polynomials defining
the linear recurrence equations are pairwise coprime, the kernels of the correspond-
ing linear mappings have a pairwise trivial intersection. This result depends on the
observation that the superposition of two LRS mappings is the Sylvester matrix
associated with their polynomials, which is invertible if and only if the polynomials
are coprime. Consequently, the kernels induced by a family of LRS subspaces
whose polynomials are pairwise coprime form a partial spread, and thus a bent
function in the class P S .

The key question concerning our LRS construction is to determine when a large
enough family of LRS kernels exists, depending on the number of variables of the
function, the degree of the polynomials, and the extension field of their coefficients.
Assuming that all polynomials have a nonzero constant term, we showed that such
families exist if and only if the degree of the polynomials is either 1 or 2, and
we derived the counting formulas for both cases. We then remarked that at least
two other polynomials can always be added to these families, namely Xd and 1.
This allows one to obtain also P S+ functions and, in certain situations, to employ
families of polynomials with degrees larger than 2. We then proved that our LRS
construction coincides with the Desarguesian partial spread when the degree of
the involved polynomials is d = 1, and thus the functions obtained in this case all
belong to the class P S ap. Therefore, candidates for potentially new bent functions
generated by our construction should be sought with polynomials of degree d = 2.

After remarking that the bent functions of n = 6,8 variables given by our LRS
construction always have maximal degree n/2 even for the P S+ case (which is
explained by the non-maximality of the related partial spreads), we performed
a computational analysis of the 2-ranks of the functions for the n = 8 case, to
determine the rank distributions. In particular, for degree d = 1, we verified and
extended the rank distribution reported by Weng et al. [19] for bent functions in
the Desarguesian spread, remarking that most of them are not EA-equivalent to
any Maiorana-McFarland function. For degree d = 2, we generated both P S− and
P S+ types of functions and remarked that many of them have a rank greater than
42, which means that they are not EA-equivalent to functions in the Desarguesian
spread either. Hence, such bent functions are the most promising candidates to be
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potentially novel.
There are several open questions for future research on this LRS construction.

The first interesting direction is to investigate more in detail the functions obtained
by polynomials of degree d = 2. Indeed, although we showed that many of them
are inequivalent to both Maiorana-McFarland and Desarguesian spread functions,
it could still be the case that they are EA-equivalent to some other known classes.
To this end, it would be interesting to compare our functions to those generated
by other partial spread-based constructions, a list of which can be found in [15].
Besides computing the 2-rank, employing more discriminating invariants would
also be interesting. These include, for instance, the Smith normal form of the
development of the graph G f of a Boolean function f , which is used by Polujan and
Pott in [16] to classify homogeneous cubic bent functions. The goal here would be
to find a complete invariant that allows one to give a complete classification of the
equivalence classes arising from our construction of bent functions.

We conclude by discussing the connection of our LRS construction with the
cellular automata (CA) approach that we adopted in [9]. Our initial idea was to
start from a recent construction of Mutually Orthogonal Latin Squares (MOLS)
based on linear CA that we set forth in [12]. A cellular automaton can be defined
as a shift-invariant vectorial transformation, where the same local rule is applied
at all sites (or cells) of the input array. If the local rule is linear, then the CA
global function is defined by a transition matrix with the same form of the matrix in
Equation (14). In particular, the CA global function may be regarded as the linear
map induced by an LRS kernel, with Equation (13) representing the application of
the local rule on the i-th cell of the input.

In [12], we first showed that such a linear CA F : F2d
q → Fd

q defines a Latin
square of order qd if and only if the leftmost and rightmost coefficients a0,ad−1 of
its local rule are not null. Further, they proved that the Latin squares generated by
two such CA are orthogonal if and only if the polynomials associated with their
local rules are relatively prime. Thus, determining the maximum size of a family
of pairwise coprime polynomials of degree d and the nonzero constant term is
equivalent to finding the size of the largest family of MOLS of order qd induced by
linear CA1.

The connection between MOLS generated by linear CA and bent functions
traces back to a theorem proved by Bush [2], where he showed that a large enough
orthogonal array (OA, which is equivalent to a set of MOLS) could be used to define
a Hadamard matrix. It is well known that a Boolean function is bent if and only if
the polar form of its translate design is a Hadamard matrix. What we proved in [9]
is that the Hadamard matrix defined by the MOLS of a family of linear CA indeed
has the translate design structure required for a bent function. This result is the “CA
version” of Theorem 1 proved here.

1Remark that in [12] d is used to denote the diameter of the CA rather than the degree of the
polynomials, which there is denoted by b with b = d−1. For the sake of consistency, in this paper,
we used the letter d directly for the degree since it coincides with the LRS order. Hence the d in this
paragraph should be interpreted as a d−1 in [12].
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The characterization through kernels of LRS is clearly a much more compact
way to describe our construction than the CA approach, and it is also more general.
Indeed, in this paper, we focused on the assumption that the feedback polynomials
of the LRS have a nonzero constant term to leverage on the counting results proved
in [12] for CA-based MOLS. However, Lemma 1 does not need this hypothesis to
characterize LRS kernels with a trivial intersection, which is what matters in the
end to construct a partial spread. In particular, one can use any family of pairwise
coprime polynomials with degree d, regardless of their constant term. This is
enough to guarantee that the associated Sylvester matrix is invertible. We implicitly
dropped this assumption by augmenting our families with the polynomials Xd and
1 since they are easily seen to be coprime with all other polynomials. However,
besides those analyzed here, several other families of coprime polynomials can be
considered. We plan to investigate this issue in future research, as we suspect that
this would simplify the counting results reported in Section 4 by using the q-to-1
relationship between non-coprime and coprime pairs of polynomials over Fq proved
in [1].
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