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Abstract

We investigate the use of Genetic Programming (GP) as a convolutional predic-
tor for missing pixels in images. The training phase is performed by sweeping a
sliding window over an image, where the pixels on the border represent the inputs
of a GP tree. The output of the tree is taken as the predicted value for the central
pixel. We consider two topologies for the sliding window, namely the Moore and
the Von Neumann neighborhood. The best GP tree scoring the lowest prediction
error over the training set is then used to predict the pixels in the test set. We
experimentally assess our approach through two experiments. In the first one, we
train a GP tree over a subset of 1000 complete images from the MNIST dataset.
The results show that GP can learn the distribution of the pixels with respect to a
simple baseline predictor, with no significant differences observed between the two
neighborhoods. In the second experiment, we train a GP convolutional predictor
on two degraded images, removing around 20% of their pixels. In this case, we
observe that the Moore neighborhood works better, although the Von Neumann
neighborhood allows for a larger training set.

Keywords Genetic Programming, Convolution, Supervised learning, Prediction,
Images, Inpainting
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1 Introduction
Nowadays, images represent a common testbed to evaluate the performance of many
algorithms, especially those coming from the deep learning domain [24, 12, 14, 5]. The
usability of images in this context is impaired if they are damaged or incomplete. Indeed,
missing pixels can severely impact the information carried by the images and hinder
the performances of artificial intelligence techniques trained on them. Hence, there is
often the need to resort to image inpainting techniques. Digital inpainting generally
denotes all methods related to the reconstruction of lost or damaged parts of an image by
means of algorithms that replace such parts. We refer the reader to the recent surveys by
Elharrous et al. [9] and Jam et al. [13] for a more complete overview of image inpainting
techniques, while in the following, we recall only the essential approaches investigated
in this research field.

Traditionally, two techniques have been explored for the image inpainting procedure.
Exemplar-based methods fill a missing region by exploiting local information in the
surrounding area. This can be done both at the level of single pixels, as in the pioneering
work by Efros and Leung [8], or patch-wise, by searching for replacement patches in the
parts of the image that are not damaged, as proposed for instance by Criminisi et al. [6].
On the other hand, in diffusion-based techniques inpainting is performed by spreading
the image information from the boundary of a missing region towards its center, an
approach that was initially investigated by Bertalmio et al. [2]. A further research thread
also focused on combining both the exemplar-based and diffusion-based approaches by
defining hybrid methods, as done for instance in [3].

More recently, deep learning methods, and in particular convolutional neural net-
works (CNNs), have shown excellent results on image inpainting tasks due to their
ability to use large training sets [20]. The part where CNNs truly have an advantage over
other inpainting techniques is the fact that they can better capture the global structure of
an image [28]. Finally, researchers also used generative adversarial networks (GANs)
for many image-to-image translation tasks, including image inpainting [12].

When considering evolutionary algorithms, there are not many works examining the
image inpainting task. Li et al. used a combination of a total variation method and a
genetic algorithm for completing an image [18]. Li and Yang proposed a patch-based
method based on evolutionary algorithms that search for the optimal patch in the area
around the damaged region [19]. Interestingly, while convolutional neural networks
represent state-of-the-art in image translation tasks, up to now, there are not many
attempts to employ the convolutional paradigm in other artificial intelligence techniques.
To the best of our knowledge, there is only a single work that considers how to combine
convolutions and genetic programming [23]. There, the authors applied their method to
develop image denoising filters with a multi-layer architecture.

This paper proposes a novel technique for the image inpainting task based on
Genetic Programming (GP) [16] and convolutions. We denote our approach as CoInGP
– Convolutional Inpainting with Genetic Programming. Our technique works locally by
considering the immediate neighbors of a missing pixel, which are used as the input of
a GP tree. The output evaluated at the root of the tree represents the predicted value for
the central missing pixel. The window is then slid over the image, and the prediction
process is repeated for the remaining missing pixels, thus obtaining a reconstructed
image. We tackle the problem of evolving a suitable GP tree as a supervised learning
task over known pixels. In particular, the training set is composed of fitness cases where
the inputs are the values of the neighboring pixels for a specific position of the window,
while the label corresponds to the correct value of the central pixel. The optimization
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objective consists in minimizing the RMSE between the predictions made by the GP
tree and the correct labels over all fitness cases.

As far as we are aware, this is the first paper considering GP for image inpainting.
Hence, more than comparing with state-of-the-art deep learning methods such as CNNs
and GANs (which we leave for future research), the main motivation of our work is to
search for preliminary evidence that convolutional inpainting can also be performed with
Genetic Programming as an underlying learning primitive. Incidentally, we adopted a
similar approach in [21] for the domain of automatic text generation. For these reasons,
we frame the investigation presented in this paper around two general research questions:

1. Can CoInGP learn the distribution of the pixels’ intensities in a dataset of complete
images?

2. Can CoInGP obtain a plausible reconstruction of a single degraded image by
training on the available pixels?

For the first research question, we perform the training on a subset of 1000 images
from the MNIST dataset [7] without missing pixels. The fitness of a GP tree in the
population is evaluated by predicting the value of each pixel in all selected images
(excluding those at borders, which do not have enough neighbors). The best evolved
GP tree is then independently validated on another test set of 1000 complete images
from MNIST. Concerning the second research question, we conduct an experiment on
two different test images, where we remove around 20% of the pixels. In this case, the
training is done on the available pixels, while the testing phase consists in predicting the
actual missing pixels.

Further, we investigate a third research question that is orthogonal to the previous
two: namely, whether the shape of the sliding window plays a role in the performance of
GP when predicting the central pixel. To this end, we consider two different topologies
for the window: Moore neighborhood and Von Neumann neighborhood.

Since this paper is mostly an empirical investigation of our approach’s feasibility, in
all our experiments, we compare the results obtained by CoInGP against those achieved
by a simple baseline method, i.e., the predictor that computes the average value of the
pixels in the neighborhood.

Our findings can be summarized as follows: regarding the first research question,
GP is indeed able to learn the distribution of the pixels in a dataset of complete images
to a certain extent, since for both neighborhood shapes, the evolved trees obtain a
significantly lower RMSE than the respective baseline predictor. Moreover, in this case,
we observe no statistically significant difference between Moore and Von Neumann
neighborhoods. We obtain similar results for the second research question since Co-
InGP reaches a lower RMSE value than the baseline predictor when reconstructing
the missing pixels of the two test images. However, in this case, there is a further
difference between the two topologies considered for the sliding window, with Moore
neighborhood achieving a better performance. This finding is especially interesting
since, for geometrical reasons, Moore neighborhood can exploit a smaller training set
than the Von Neumann neighborhood.

The rest of this paper is organized as follows. Section 2 formalizes the problem
of predicting the central pixel in a sliding window by exploiting the information in
the surrounding ones. Section 3 presents the details of our CoInGP method, showing
how a GP tree can be used to predict an image’s pixels and defining an appropriate
fitness function to evaluate the quality of its predictions. Section 4 describes the
experimental settings adopted in our empirical assessment of CoInGP and summarizes
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the obtained results. Section 5 gives an interpretation of the main experimental findings
that can be drawn from our results and formulates some hypotheses worth exploring to
investigate the observed behavior of CoInGP further. Finally, Section 6 recaps the main
contributions of our paper and suggests future research directions on the subject.

2 Problem Formulation
This section formalizes the problem of predicting pixels in an image, which will be
tackled with genetic programming in the remainder of the paper. In what follows,
we consider an input image as a matrix I of size M×N, where each entry x(i, j) is
the intensity value of the pixel at coordinates (i, j) for i ∈ [M] and j ∈ [N], where
[M] = {1, · · · ,M} and [N] = {1, · · · ,N}. For illustration purposes, we deal only with 8-
bit greyscale images, so that each entry x(i, j) in the matrix is an integer number between
0 and 255; nevertheless, our approach can be generalized to any color depth.

Suppose that the image is damaged, that is, the intensities of a subset of k of its
pixels S = {(i1, j1), · · ·(ik, jk)} ⊆ [M]× [N] are missing. The goal is to recover the
original intensities x(i1, j1), · · ·x(ik, jk) starting from those that are still available, i.e., the
pixels in the complementary set P = [M]× [N]\S. This task is also known as inpainting
in the image processing literature [4, 11]. One of the possible approaches to perform
inpainting stands on the fundamental observation that the intensities of neighboring
pixels are correlated. In a probabilistic framework, this property can also be restated as
the fact that the probability distribution of a pixel’s intensity given the intensities of the
pixels in its neighborhood is independent of the rest of the image [8].

This observation suggests that, to recover the intensity of a missing pixel in an
image, one can use just the values of its neighboring pixels as an input for the prediction.
More formally, the two main topologies that can be adopted are the Moore neighborhood
and the Von Neumann neighborhood [25]. Considering only neighborhoods of radius 1
(i.e., only the immediate neighbors of a pixels are taken into account), for the Moore
neighborhood the input to predict a pixel in position (i, j) will be a 3×3 matrix defined
as:

Ni, j =

x(i−1, j−1) x(i−1, j) x(i−1, j+1)
x(i, j−1) x(i, j+1)

x(i+1, j−1) x(i+1, j) x(i+1, j+1)

 , (1)

where the 8 elements on the border represent the intensities of the pixels in the neigh-
borhoods, and the goal is to predict the value of the central pixel. Analogously, for a
Von Neumann neighborhood the input to the prediction will be the following matrix:

Ni, j =

 x(i−1, j)
x(i, j−1) x(i, j+1)

x(i+1, j)

 , (2)

where, in this case, we do not consider the elements in the corners and the input for
predicting the central pixel are only the four elements which are respectively at its top,
bottom, left, and right.

Intuitively, the quality of the prediction will also depend upon the number of avail-
able neighboring pixels: in particular, if also some of the neighboring pixels of Ni, j are
missing in the degraded image, then we will have less information at our disposal to
predict the central pixel x(i, j). In what follows, we adopt the simplifying assumption
that each missing pixel in the degraded image is “sufficiently far” from all other missing
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pixels, or equivalently that each missing pixel has a complete neighborhood. Formally,
in the case of Moore neighborhood this means that the Chebyshev distance d∞ between
any pair of missing pixels (it1 , jt1),(it2 , jt2) ∈ S must be strictly greater than 1:

d∞((it1 , jt1),(it2 , jt2)) = max{|it1 − it2 |, | jt1 − jt2 |}> 1 .

Analogously, for the Von Neumann neighborhood the constraint is that the Manhattan
distance d1 between (it1 , jt1) and (it2 , jt2) has to be greater than 1:

d1((it1 , jt1),(it2 , jt2)) = |it1 − it2 |+ | jt1 − jt2 |> 1 .

The consequence of these constraints is that missing pixels can share the frontier
of the neighborhood under consideration, but a missing pixel cannot be in the frontier
of another one. In particular, the frontier of a neighborhood of radius r is defined as
the set of pixels at a distance r from the central one. Since we are only considering the
case of radius r = 1, the frontier corresponds to the set of all pixels in the neighborhood
except the central one. As an example, Figure 1 shows the densest packing of missing
pixels one can have for the Moore and Von Neumann neighborhood, respectively. The
Von Neumann topology allows for more missing pixels under the same image size
since it includes fewer neighbors than the Moore topology. Also, observe that for
both neighborhoods the missing pixels cannot occur on the border of the image, i.e.,
1 < i < M and 1 < j < N for every missing pixel (i, j) ∈ S.

? ??

? ??

? ??

(a) Moore

? ??
??

? ??

??
? ??

(b) Von Neumann

Figure 1: Densest packings of missing pixels allowed respectively under unitary Moore
and Von Neumann neighborhoods.

Although this separation hypothesis does not always hold in realistic scenarios,
we decided to adopt it to initially validate the suitability of our method, since as we
mentioned before, as far as we are aware, this is the first attempt employing GP to
predict missing pixels in images with a convolutional approach.

3 GP as a Convolutional Predictor
The main idea that we investigate in this paper is to evolve GP trees that act as convo-
lutional operators to predict the values of missing pixels. Similarly to what is done
in Convolutional Neural Networks (CNNs) [10], we assume that the transformation
used to predict the values of the missing pixels is shift-invariant. This means there is
a local function f which is applied over a small sliding window of neighboring pixels
and is shifted one place at a time over the whole image. The output of the function f
corresponds to the predicted intensity of the pixel at the center of the window.
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In our setting, we consider both the case of a square 3×3 sliding window, which
corresponds to the Moore neighborhood of radius 1, and a cross-shaped window of
width 3, which represents the Von Neumann neighborhood of radius 1. In the former
case, the local function has the form f : [0,255]8 → [0,255], while in the latter it is
f : [0,255]4→ [0,255]; either way, the local function is expressed with a GP tree. Thus,
the 8 (respectively, 4) intensities of the pixels on the border of the window are taken
as terminal nodes of the GP tree, and the value generated at the root node will be
the prediction for the central pixel. Figure 2 depicts the idea of using a GP tree as a
convolutional predictor by sliding a window over the image for the case of Moore and
Von Neumann neighborhoods.

Slid
ing

wind
ow

+

x(1,0)×

3x(−1,−1)

(a) Moore convolution

Slid
ing

wind
ow

+

x(1,0)×

3x(0,−1)

(b) Von Neumann convolution

Figure 2: Convolutional prediction based on GP with the Moore and Von Neumann
neighborhood of radius 1. The pixels in the frontier of the neighborhood currently
looked by the sliding window are fed as input variables to the GP tree, and its output is
taken as the predicted value for the central pixel.

To construct such a convolutional predictor, we need to define an appropriate fitness
function that measures how good a particular GP tree is in determining the correct value
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for the central pixel. The idea is to frame the problem in terms of supervised learning,
with the training set including fitness cases where the inputs are the values of the pixels
in the neighborhood, and the labels are the correct values for the corresponding central
pixel. Recall from Section 1 that we are interested in two research questions, which
translates to the following tasks:

1. Given a set of complete images (i.e., without missing pixels) drawn from a
common dataset, learn the distribution of the pixels’ intensities in this set.

2. Given a single degraded image, reconstruct the complete image by predicting the
values of the missing pixels.

For Task (1), let I = {I1, · · · , In} be a set of images, each of size M×N and without
missing pixels. For each image Ik, with k ∈ {1, · · · ,n}, we define the corresponding set
of fitness cases (or training examples) as follows:

Fk = {(Ni, j,x(i, j)) : 1 < i < M, 1 < j < M} , (3)

where Ni, j is the punctured neighborhood matrix defined as in Eqs. (1) and (2), respec-
tively when the Moore and Von Neumann neighborhood is used. In other words, for each
pixel (i, j) in image Ik (except for those on the borders), we construct the corresponding
neighborhood matrix Ni, j (without the value of the pixel in the center) which is used as
an input to a GP tree τ. The actual intensity xi, j of the central pixel (i, j) is retained as
the correct label of the training example. The total number of fitness cases in Fk is thus
(M−2)(N−2). Next, the global training set is defined as the union of the fitness cases
sets of all images in I :

T1 =
n⋃

k=1

Fk . (4)

For Task (2), we consider a single degraded image I of size M×N, where S =
{(i1, j1), · · ·(ik, jk)} is the subset of missing pixels that satisfy respectively the Cheby-
shev distance d∞ > 1 constraint (if the Moore neighborhood is adopted) or the Manhattan
distance d1 > 1 constraint (if the Von Neumann neighborhood is used). Further, let
P = [M]× [N]\S be the complementary subset of available pixels. Then, the training
set is defined as follows:

T2 = {(Ni, j,x(i, j)) : (i, j) ∈ P, 1 < i < M, 1 < j < M} . (5)

Hence, T2 is a particular case of Eq. (3), where the training examples are constrained
only to the available pixels of the image having a complete neighborhood.

Given the output x̂(i, j) = τ(N(i, j)), we can compute the error that the GP tree τ made
in predicting the correct pixel intensity x(i, j). Generalizing to all available training
examples, we define the fitness function for the GP tree τ as the root mean square error
(RMSE) over the training set:

fit(τ) =

√
∑(Ni, j ,x(i, j))∈T (τ(Ni, j)− x(i, j))2

|T |
. (6)

Hence, the optimization objective is to minimize fit, since having a GP tree that achieves
a small RMSE means that its predictions are close to the actual pixel values. Observe
that it is not necessary to specify the precise form of the training set in Eq. (6) depending
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on Task (1) or (2), since T1 simply concatenates the training examples of all images in
the dataset I .

Once the GP evolution process has terminated, the best individual undergoes a
testing phase. In Task (1), the best GP tree is used to predict the value of each pixel in
all images of a test set T different from I , although always drawn at random from the
same dataset. Conversely, for Task (2), the best tree is used to predict the values of the
pixels in the missing set S of the target image I. In both cases, the performance of the
best tree is evaluated again with the RMSE measure. Clearly, in Task (2), this approach
assumes that the missing set S can be artificially created to retain the original values of
the pixels in it for computing the RMSE.

4 Experimental Phase
This section describes the experimental evaluation that we conducted to investigate the
two research questions outlined in Section 1 through our CoInGP method. In what
follows, we first discuss the common experimental settings and parameters adopted in
our study. Then, we describe the setup and the results obtained for our two experiments,
namely, learning the distribution of the pixels’ intensities for a set of complete images
from the MNIST dataset and predicting the missing pixels in two degraded test images1.

4.1 Common Parameters
To experimentally assess our method, we loosely followed the GP parameter settings
that we adopted in [21] for another supervised learning task, namely next word predic-
tion, and checked with preliminary experiments that they were suitable for the image
inpainting task as well. In particular, in each GP run, we evolved a population of 500
individuals for 500 generations, which amounts to 250 000 evaluations. The selection
phase was performed using tournament selection with a tournament size of 3, where
the worst individual is replaced by the offspring generated by applying crossover on
the best two individuals. For the crossover, we adopted simple subtree, uniform, size
fair, one-point, and context preserving crossover, randomly selected at each crossover
operation. The newly generated individual undergoes a mutation subject to individual
mutation probability of 0.3; we used a simple subtree mutation [22]. To avoid bloat, we
set the maximum tree depth to 8, which corresponds to the number of input variables
available in the Moore neighborhood. The terminal symbols for the GP trees included
random constant values in the range [−1,1] and either the 8 (for Moore neighborhood)
or 4 (for Von Neumann neighborhood) input variables corresponding to the intensities
of the available pixels in the respective neighborhood. The functional symbols for the
internal nodes are taken from the following set: sin, cos, +, −, / (protected), ∗, min,
max, avg,

√
· and pos. The square root operator returns zero if the argument is negative,

while the unary operator pos is defined as pos(x) = x if x≥ 0 and 0 otherwise.
Since we require the predicted pixel intensity to be an integer number between 0 and

255, we constrained the output of a GP tree by first clipping it in the interval [0,255]
(i.e., if |τ(Ni, j)| > 255 we set |τ(Ni, j)| = 255), and then by applying a linear scaling
operator to obtain the closest integer value, using the method proposed by Keijzer [15].
An alternative solution would be to directly use byte-oriented operators in the functional
set, such as bitwise logical operations, modular additions, and rotations. However, we

1The source code of our implementation of CoInGP is publicly available at https://github.com/
rymoah/CoInGP
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deemed that this approach would have constrained too much the search space explored
by GP, hindering its ability to generate good tree predictors with low RMSE fitness
values.

4.2 Experiments on the MNIST Dataset
For the first research question, we considered the well-known MNIST dataset [7], which
contains images of handwritten digits. In particular, each image has a fixed size of
28× 28 pixels, with the digit placed at the center. For each experimental run, we
randomly sampled from this dataset 1000 images for the training set, with the same
number of images for each digit, and we constructed the corresponding training set
T1 according to Eq. (4), and minimized the RMSE as defined in Eq. (6). In total, we
performed 30 independent runs. At the end of each run, we validated the best GP tree
with another random sample of 1000 images. The test set is still constructed using
Eq. (4) and the performance criterion is the minimization of the fitness function. Thus,
the idea is to verify whether the GP tree resulting from the training phase can score a
small RMSE on a set of unseen images.

The obtained results suggest that GP is indeed learning the distribution of the pixels
in the training set. Indeed, the convergence of the best fitness during the training phase
for the Moore and the Von Neumann neighborhoods showed that the RMSE decreased
over all 30 experimental runs, thus indicating that the predicted pixels are closer and
closer to their target values. The plot in Figure 3 shows the distribution of the fitness
values, on the test set, for both Moore and Von Neumann neighborhood, over the 30
independent runs. To compare the results obtained on the test phase, we also computed
the RMSE for the baseline predictors that replace the central pixel with the average
value of the neighboring ones for the images. This resulted in an RMSE of 33.488
and 27.191 for the baseline predictors based on the Moore and the Von Neumann
neighborhoods, respectively. Based on these results, one can observe that CoInGP is
obtaining significantly better results than the baseline method in predicting the pixels
over the test set since the RMSE values of the former are in the range 17.25− 19.5
for both neighborhoods. Moreover, the overlapping of the two distributions indicates
that the performance of CoInGP is not dependent on the neighborhood’s choice. We
further validated this qualitative observation through a statistical test. In particular, the
Mann-Whitney test was executed (with a significance level of α = 0.05) under the null
hypothesis that the median fitness of the two series of data (i.e., the one using Moore
neighborhood and the one using Von Neumann neighborhood) were equal. The obtained
p-value (0.6228) led us to not reject the null hypothesis, thus confirming that there is no
difference between the two neighborhoods used by CoInGP.

The obtained results suggest the suitability of the proposed approach for the re-
construction of the damaged pixels of an image. The same results do not highlight a
difference between the two neighborhood structures.

4.3 Experiments on Single Images
To validate the previous findings in a more realistic scenario, the second part of the
experimental phase applies the proposed approach to images that present a more complex
pattern than the MNIST images. We employ two 256×256 grayscale images on which
approximately 20% of the pixels were removed. The two images (with the removed
pixels) are presented in Figure 4.
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Figure 3: Histograms representing the distribution of the fitness values for the best
individuals achieved in the same 30 independent runs, for both neighborhoods.

We adopted the following procedure to generate the damaged images: every two
columns of the image, the first one was kept unchanged while 100 non-adjacent pixels
were randomly removed from the second. Overall, this procedure resulted in removing
12700 pixels out of 65536, corresponding to a percentage of removed pixels equal
to 19.38% for each image. As detailed in Section 3, the training set T2 used in this
learning task is composed of all remaining pixels in the degraded image, along with
their complete neighborhoods. Due to the different neighborhood shapes considered,
the number of fitness cases for the Moore neighborhood was 4,950, and for the Von
Neumann neighborhood was 21,036. That is, since the Von Neumann neighborhood
contains fewer pixels, it also allows to employ a larger number of fitness cases. In this
case, the training phase was performed for 100 independent runs. The testing is then
performed by predicting the values of the removed pixels with the best GP individual at
the end of each run, i.e., the one achieving the smaller RMSE over the training set.

The results of the reconstruction process are presented in Figure 5 for the Moore
neighborhood, and in Figure 6 for the Von Neumann neighborhood. A closeup is
presented in Figure 7.

The reconstructed images are both taken from a random GP run. For each image,
we also present the pixel-by-pixel difference between the reconstructed image and the
original one, where each difference is increased ten times to make it visible. As it is
possible to observe, the errors in both cases are limited (i.e., there are no extremely
different pixels) and distributed mainly across the edges of the objects in the image.
This is particularly visible in the Boat image, where the distribution of the error mostly
follows the profiles of the hull and the masts.

Besides qualitative considerations on the reconstructed images, we also assessed
whether CoInGP could predict missing pixels in these images from a quantitative point
of view, performing again a comparison with the baseline predictors that compute
the average intensities of the neighboring pixels. Figure 8 depicts the plots of the
distributions of the best fitness over 100 experimental runs achieved by GP over each
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Figure 4: The damaged test images: Boat and Goldhill.

test image.
As a general remark, in most cases, all fitness values obtained are below both

baselines, independently of the underlying neighborhood. The only exceptions which
occur, however, are limited to a few outliers. In particular, some runs in the distribution
of the Moore neighborhood scored an RMSE value between the two baselines, while a
small part of the right tail of the Von Neumann distribution overlaps the corresponding
baseline in the Goldhill image. In any case, we noticed that the peaks of all GP
distributions are significantly distant from the respective baseline fitness values. Further,
in all the test images, the use of the Moore neighborhood produces lower fitness values
than the Von Neumann neighborhood, even if it allows fewer training samples to be
generated.

5 Discussion
We now interpret the experimental results reported in the previous section in the light
of the two research questions stated in Section 1. Regarding the first question, we can
empirically conclude that our CoInGP method can successfully learn the distribution
of the pixels’ intensities in a dataset of complete images, i.e., without missing pixels.
Indeed, the convergence plots for the best fitness during the training phase on the
MNIST dataset show that the evolutionary process implemented by GP is learning how
to minimize the error between the correct label for the central pixel in the window and
the predicted one. The distributions of the best fitness on the test set confirm that GP
can generalize to unseen images to a certain extent, and a comparison with the baseline
predictors shows that it achieves a significantly lower RMSE.

Concerning the second research question, in our experimental setting, the missing
pixels accounted for roughly 20% of the pixels of each test image. Our approach’s main
limitation is that the training process requires a complete neighborhood, i.e., no missing
pixels must occur in the frontier of the central pixel whose value has to be predicted.
This limits both the number of missing pixels that one can have in the degraded image
and their relative positions. However, the preliminary results that we obtained on the
test images are promising enough to encourage further improvements in this direction
by extending our method to consider the case of adjacent missing pixels in the degraded
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Figure 5: At the top, the images corrected using the Moore neighborhood. At the bottom,
the difference, increased ten times, between the reconstructed and the original image.

image. An interesting idea to accomplish this task could be to employ a diffusion-based
inpainting approach [17]. In this case, the GP predictor would be first convolved on the
border of a missing region and then gradually shifted towards its interior.

An interesting difference that can be remarked between the two experiments regards
the influence of the sliding window’s topology on the performance of CoInGP. In fact,
for the MNIST experiment, we detected no significant difference between the Moore
and Von Neumann neighborhoods, suggesting that this parameter is not a key factor
when learning the distribution of pixels of complete images. Conversely, when going
into the details of the second experiment with a single test image, the GP predictors
based on the Moore neighborhood achieved a better performance (i.e., a lower RMSE
value) than those using the Von Neumann neighborhood. This happens even though the
Von Neumann neighborhood requires fewer input variables to compute the predicted
missing pixel and can be optimized on a larger training set. Consequently, this result
indicates that GP can learn more efficiently by using a larger number of input variables
and a smaller training set. It would be interesting to investigate if this difference in
terms of performance also holds for larger neighborhoods. Still, for radius 2, this would
already yield GP trees with 24 and 12 input variables, respectively, for the Moore and
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Figure 6: At the top, the images corrected using the Von Neumann neighborhood. At the
bottom, the difference, increased ten times, between the reconstructed and the original
image.

Von Neumann neighborhood, thereby increasing both the training time and the GP
predictors size.

Recall that the baseline predictors simply computed the average of the pixels in the
neighborhood to predict the value of the central one. An interesting fact that can be
observed from our experiments is that the RMSE achieved by the Von Neumann baseline
predictor is lower than that scored by the Moore baseline, both in the MNIST dataset
and the single test images. Hence, this suggests that the information for predicting
the central pixel is not uniformly distributed across the neighboring ones: it seems
that the 4 “diagonal” pixels in the Moore neighborhood contain less information to
predict the central one. Nonetheless, this observation is in stark contrast with the fact
that GP scored a lower RMSE value with the Moore neighborhood than with the Von
Neumann neighborhood. This indicates that CoInGP can learn how to correctly "weigh"
the value of the pixels depending on their position. It would be interesting to further
investigate this issue by analyzing the structure of the trees evolved by GP with the
Moore neighborhood.

Finally, from the qualitative point of view, we observed that the prediction errors
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Figure 7: A closeup of the correction performed by GP on one of the images. Clockwise
from the top left: original image, damaged image, corrected images with the Von
Neumann and Moore neighbourhoods, respectively.

made by GP individuals mostly focused around the edges in the test images. This is an
expected side effect: if one considers images as two-dimensional spatial signals, edges
correspond to high-frequency regions, where abrupt changes of the intensity value occur
among neighboring pixels. Consequently, the pixels’ intensities in a neighborhood where
an edge occurs have a lower correlation. Additionally, the independence hypothesis
that the probability distribution of a pixel given the surrounding ones is independent of
the rest of the image does not hold. This explains why our GP convolutional predictor
obtains a higher error on edges’ proximity, but it is not necessarily a negative effect:
one could use CoInGP to perform edge detection as a by-product. Furthermore, an
interesting idea to decrease the prediction error on the edges would be to develop a
2-layer architecture: the first layer would be used to detect the edges, while the second
one would perform the inpainting task by discriminating between pixels’ types. For
the latter case, one could evolve GP trees over a larger neighborhood so that more
information can be used to predict the central pixel.
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Figure 8: Distribution of best fitness over 100 runs with both Moore and Von Neumann
neighborhoods for the Boat image (top plot) and the Goldhill image (bottom plot).

6 Conclusions and Future Work
In this paper, we proposed a method for performing convolutional inpainting with GP
– CoInGP. The main idea is to sweep a small sliding window over a degraded image
with missing pixels, where the neighborhood pixels captured by the window are fed as
input to a GP tree. The GP’s output is then taken as the predicted value for the central
pixel. The RMSE between the original pixel intensities and those predicted by the GP
tree is used to define a fitness function, which has to be minimized. We investigated this
approach through two research questions, namely whether GP can learn the distribution
of the pixels’ intensities from a dataset of complete images and whether GP can restore
a plausible reconstructed version of a single degraded image with missing pixels. To
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this end, we carried out two supervised learning experiments.
In the first experiment, the training set is composed of a random sample of 1000

images from the MNIST dataset, with the objective of minimizing the RMSE over all
pixels of each image. The best GP tree evolved during this phase is then validated by
applying it over a distinct test set. The results showed that our CoInGP method was
able to generalize to a certain extent on unseen images since it performed better than the
respective baseline predictors. Moreover, no difference was observed between using a
sliding window with the Moore neighborhood and the Von Neumann neighborhood.

In the second experiment, given a degraded image with missing pixels, an optimal
GP tree predictor is evolved by using all available pixels as a training set. For each
position of the sliding window, the central pixel is removed and replaced with the value
predicted by a GP tree. The test phase consists in applying the best tree evolved by
GP on the actual missing pixels. We experimented with two test images. The results
showed that GP could evolve trees with better prediction accuracy than the respective
baseline predictor. Furthermore, in this case, we observed a clear difference in terms of
performance between the Moore and the Von Neumann neighborhood, with the former
achieving lower RMSE scores than the latter on the test sets. Considering that the
Von Neumann baseline predictor has a lower RMSE than the Moore one, this seems to
suggest that GP can learn how to appropriately assess the information contained in the
pixels at the corners of the Moore neighborhood.

We conclude by pointing out directions for future research besides those already
discussed in the previous section. The experiments presented in this paper suggest
that using GP as a convolutional predictor represents an interesting building block to
be plugged in more complex architectures for supervised learning tasks in the image
domain. We sketched the first idea of this approach in Section 5, where we proposed
to use a first GP convolutional layer for detecting the edges in an image and then use
the second layer to perform inpainting. Thus, it would be interesting to generalize this
concept to multiple GP-based convolutional layers and see how the performance of the
overall system compares to other analogous and more established methods (i.e., like
CNNs). Besides the inpainting technique, one could also consider the application of GP
to other image processing tasks that can be formulated as supervised learning problems.
This includes not only tasks where the training has to be performed on a single target
image, as in the inpainting case, but also on multiple images, such as image classification.
In particular, this would likely benefit from the use of a multi-layered architecture where
each GP-based convolutional layer would be used to extract a particular feature of an
image.

Finally, the convolution strategy is general enough to be applied to any kind of
learning task in the signal processing domain. In this paper, we addressed the use case
of images, which can be considered as two-dimensional spatial signals, but it could be
interesting to explore how convolutional GP behaves on one-dimensional signals such as
time series. In particular, the problem of predicting missing data in general signals is also
known as imputation, which is useful for symbolic regression over incomplete datasets.
As far as we know, there are a few works in the literature addressing the imputation
problem using GP [26, 27, 1], but none of them uses a convolutional approach like the
one proposed in this paper.
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