
The final publication is available at Springer via https://doi.org/10.1007/978-3-030-04070-3_12

The Design of (Almost) Disjunct Matrices by
Evolutionary Algorithms

Karlo Knezevic1, Stjepan Picek2, Luca Mariot3, Domagoj Jakobovic2, and
Alberto Leporati3

1 Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
{karlo.knezevic, domagoj.jakobovic}@fer.hr

2 Cyber Security Research Group, Delft University of Technology, Delft, The
Netherlands

S.Picek@tudelft.nl
3 Department of Informatics, Systems, and Communication, University of

Milano-Bicocca, Milan, Italy
{luca.mariot, alberto.leporati}@unimib.it

Abstract. Disjunct Matrices (DM) are a particular kind of binary matri-
ces which have been especially applied to solve the Non-Adaptive Group
Testing (NAGT) problem, where the task is to detect any configuration
of t defectives out of a population of N items. Traditionally, the methods
used to construct DM leverage on error-correcting codes and other related
algebraic techniques. Here, we investigate the use of Evolutionary Algo-
rithms to design DM and two of their generalizations, namely Resolvable
Matrices (RM) and Almost Disjunct Matrices (ADM). After discussing
the basic encoding used to represent the candidate solutions of our opti-
mization problems, we define three fitness functions, each measuring the
deviation of a generic binary matrix from being respectively a DM, an
RM or an ADM. Next, we employ Estimation of Distribution Algorithms
(EDA), Genetic Algorithms (GA), and Genetic Programming (GP) to
optimize these fitness functions. The results show that GP achieves the
best performances among the three heuristics, converging to an optimal
solution on a wider range of problem instances. Although these results
do not match those obtained by other state-of-the-art methods in the
literature, we argue that our heuristic approach can generate solutions
that are not expressible by currently known algebraic techniques, and
sketch some possible ideas to further improve its performance.

Keywords: Evolutionary Computing, Disjunct Matrices, Resolvable Matrices,
Almost Disjunct Matrices, Group Testing, Estimation of Distribution Algorithms,
Genetic Algorithms, Genetic Programming

1 Introduction

The group testing problem deals with identifying a set of at most t defectives
among a population of N items. More specifically, in non-adaptive group testing

1

https://doi.org/10.1007/978-3-030-04070-3_12

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-04070-3_12

(NAGT) one has a set of M tests which are performed in parallel over subsets
of the population, and each test reports a positive result if at least one of the
elements in its subset is defective. The goal is to detect all possible combinations
of at most t defective items, trying to minimize the number of tests M [7].

From the combinatorial designs perspective, Disjunct Matrices (DM) turn
out to be the combinatorial objects related to NAGT [4]. Practically speaking, a
DM is an M ×N binary matrix, whose rows and columns respectively represent
the tests to perform and the items to be tested. An entry at the position (i, j) is
set to 1 if the i-th test includes the j-th item, and 0 otherwise. A DM is arranged
in such a way that the support (i.e., the set of non-zero entries) of any subset
of t of its columns does not contain the support of any remaining column. This
property guarantees the detection of any configuration of up to t defectives.

In the error correction/detection version of the group testing problem, one
also allows the possibility to detect some false positives, i.e., a test can report
that a subset of items contains a defective even if this is not the case. Of course,
one wishes to keep the proportion of false positives the smallest possible for the
sake of testing efficiency. In this relaxed version of NAGT, the corresponding
combinatorial designs involved are a generalization of DM, namely Resolvable
Matrices (RM) and Almost Disjunct Matrices (ADM). Here, the disjunctness
constraint is loosened by allowing any t-subset of columns to contain the supports
of other columns, up to a specified proportion. Resolvable and Almost Disjunct
Matrices are also useful in several other domains beyond group testing: applica-
tions include key distribution patterns and frameproof codes in cryptography [21],
topology transparent scheduling in shared-channel networks [5], as well as the
design of bloom filters and perfect hash families [6,22], which are in turn used,
for example, in bioinformatics for pattern matching [3].

In general, constructions for DM, RM, and ADM focus on algebraic methods,
usually employing error-correcting codes techniques. Kautz and Singleton [9]
pioneered this approach by proposing a construction of DM based on Reed-
Solomon Codes. Porat and Rothschild [19] provided another construction based
on the same approach laid out in [9], but leveraging on a different breed of
error-correcting codes reaching the Gilbert-Varshamov bound. More recently,
Mazumdar [14] and Barg and Mazumdar [2] extended this investigation to ADM,
respectively exploiting the average distance analysis and the dual distance of
constant-weight codes.

The goal of this paper is to tackle the construction of DM, RM, and ADM
through evolutionary algorithms (EAs), namely Estimation of Distribution Al-
gorithms (EDA), Genetic Algorithms (GA), and Genetic Programming (GP).
In particular, instead of considering the construction of disjunct matrices from
previously known combinatorial objects with specified parameters (such as the
aforementioned error-correcting codes), we formulate a combinatorial optimization
problem over the set of binary matrices, where the optimal solutions correspond
either to DM, RM or ADM.

The main reasons motivating this research can be summarized as follows:

2

https://doi.org/10.1007/978-3-030-04070-3_12

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-04070-3_12

1. EA can represent an interesting alternative for the design of DM without any
assumption on their underlying structure. In fact, even if algebraic techniques
are already able to provide a wide range of disjunct matrices of various sizes,
they always rely on additional hypotheses, beside the bare definition and
properties of DM. As such, algebraic constructions only yield a subset among
all possible disjunct matrices. On the contrary, since EAs can explore the
whole set of binary matrices, they can in principle discover DM which are
beyond the reach of currently known algebraic constructions.

2. Symmetrically, due to the close connection between DM and codes, any
disjunct matrix found by EA which cannot be expressed by one of the current
algebraic constructions could give hints on new classes of error-correcting
codes, and maybe suggest how to construct them.

3. Finally, the construction of combinatorial designs is a research line that has
received relatively little attention in the EA literature, and disjunct matrices
play no exception: as far as we know, our paper is the first addressing the
design of DM through EAs. As a consequence, we deem this problem also
interesting from the benchmarking point of view, to assess how difficult it is
for an evolutionary-based optimization heuristic to construct a DM. In this
respect, this paper follows the same line of our previous works, where we
investigated the construction of other kinds of combinatorial designs via EAs,
namely Orthogonal Latin Squares [12] and Binary Orthogonal Arrays [13].

After formally introducing the three combinatorial optimization problems
of our interest, we describe the encoding for the candidate solutions, which is
based on a multiploid genome where each bitstring represents a column of a
binary matrix. Subsequently, we describe three fitness functions, one for each
optimization task. The general idea underlying each fitness function is to count
the number of columns whose support is contained in the union of the supports
of a subset of t columns, and then use this quantity to measure the deviation of
a binary matrix from being respectively a DM, an RM or an ADM. Next, we
apply EDA, GA, and GP to minimize these three fitness functions.

The rest of this paper is organized as follows. Section 2 gathers all necessary
background and basic notions about disjunct matrices, resolvable matrices, and
almost disjunct matrices. Section 3 formally states the combinatorial optimization
problems addressed in this paper, describes the encoding adopted for the candidate
solutions, and defines the three fitness functions to optimize. Section 4 outlines
the experimental settings and parameters which we adopted for EDA, GA,
and GP, and discusses the obtained results. Finally, Section 5 recaps the main
contributions of the paper, and sketches several avenues for further research.

2 Disjunct Matrices

Before formally defining disjunct matrices and their generalizations, let us in-
troduce notation which we will use in the rest of the paper. Given n ∈ N, let
[n] = {1, 2, · · · , n}. Moreover, given a binary vector x ∈ {0, 1}n, the support of x

3

https://doi.org/10.1007/978-3-030-04070-3_12

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-04070-3_12

is the set of non-zero coordinates of x, that is, supp(x) = {i ∈ [n] : xi 6= 0}. For
any vector x ∈ {0, 1}n, x> denotes the transpose of x as a column vector. We rep-
resent an M ×N binary matrix A as A = (x>1 , x

>
2 , · · · , x>N), where xi ∈ {0, 1}M

for all i ∈ [N]. We now give the formal definition of a t-disjunct matrix:

Definition 1. Let A = (x>1 , x
>
2 , · · · , x>N) be an M ×N binary matrix. Then, A

is called t-disjunct if, for all subsets of t columns S = {xi1 , · · · , xit}, and for all
remaining columns xj /∈ S, it holds that

supp(xj) 6⊆
t⋃

k=1

supp(xik) . (1)

In other words, a matrix A is t-disjunct if for every subset S of t columns the
support of any other column is not contained in the union of the supports of the
columns in S.

It is easy to see that a t-disjunct matrix is equivalent to a NAGT which is able
to detect all possible combination of t defective out of N objects: in particular,
the M rows represent the test, and an entry (i, j) set to 1 indicates that the i-th
test probes the j-th item.

We will be also interested in the relaxed versions of disjunct matrices, namely
resolvable matrices and almost disjunct matrices, which are related to the error
correction/detection variant of NAGT with false positives. We formally define
them below.

Definition 2. An M ×N binary matrix A = (x>1 , x
>
2 , · · · , x>N) is called (t, f)-

resolvable if, for all subsets of t columns S = {xi1 , · · · , xit}, the set D defined
as:

D = {xj /∈ S : supp(xj) ⊆
t⋃

k=1

supp(xik)}

has cardinality at most f .

Definition 3. An M ×N binary matrix A = (x>1 , x
>
2 , · · · , x>N) is called (t, ε)-

disjunct if, for all subsets of t columns S = {xi1 , · · · , xit}, the probability that
the support of a random column xj /∈ S is contained in S is at most ε.

Stated otherwise, for (t, f)-resolvable matrix we allow for each possible subset
S of t columns to have at most f remaining columns whose support is contained
in the union of the supports of the vector of S. On the other hand, with (t, ε)-
disjunct matrices, we require that the support of a random column sampled
among the remaining N − t ones is contained in the union of the supports of S
with probability at most ε. In what follows, we will also refer to (t, f)-resolvable
matrices and (t, ε)-disjunct matrices respectively as Resolvable Matrices (RM)
and Almost Disjunct Matrices (ADM).

Remark 4. The following relations are straightforward:

– A t-disjunct matrix is also a (t, f)-resolvable matrix, with f = 0.

4

https://doi.org/10.1007/978-3-030-04070-3_12

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-04070-3_12

– A (t, f)-resolvable matrix is also a (t, ε)-disjunct matrix with ε = f
N−t .

Notice however that the converse is not true: in a (t, ε)-disjunct matrix, the
frequency of columns whose support is contained in the union is averaged
over all possible subsets of t columns.

To conclude this section, we now formally define the combinatorial optimiza-
tion problem which we will address in the remainder of this paper:

Problem 5. Let M,N ∈ N. Then:

– Given t < N , find a t-disjunct M ×N matrix.
– Given t, f < N , find a (t, f)-resolvable M ×N matrix.
– Given t < N and ε ∈ [0, 1], find a (t, ε)-disjunct matrix.

3 Optimization Problem Structure

3.1 Solutions encoding

Since we are interested in using evolutionary algorithms (EAs) to solve Problem 5,
we must first define a suitable encoding for the feasible solutions of the problem.

Given the underlying matrix structure of the objects we want to optimize,
and since the disjunctness properties are checked on the columns of such matrix,
the most natural way to encode the genotype of a candidate solution is by means
of a multiploid genome, i.e., a set of N binary string, each of length M , that when
put one next to the other form the columns of a binary M ×N matrix. More
formally, the genotype of an individual will be a sequence G = (x1, x2, · · ·xN)
such that xi ∈ {0, 1}M for all i ∈ [N]. The phenotype, on the other hand, will
simply correspond to the same sequence by transposing the strings as column
vectors, i.e., P = (x>1 , · · · , x>N).

Using Genetic Algorithms (GA) or Estimation of Distribution Algorithms
(EDA) does not put any constraint on the length M of the chromosomes. On
the other hand, since Genetic Programming (GP) evolves Boolean trees which
are then mapped to n-variable Boolean functions, one has either to restrain the
length of the chromosome to be equal to the size of their truth table, i.e., M = 2n,
or else to truncate them at a certain length. In our experiments, we adopted the
latter approach.

3.2 Fitness Functions

We now define a fitness function for each of the three optimization problems
set forth in Problem 5. In what follows, given an M × N binary matrix A =
(x>1 , · · · , x>N), we denote by X = {x1, · · ·xN} its support set containing the
column vectors. Additionally, we define St = {S ⊆ X : |S| = t} as the family of
all subsets of t columns of A. Then, for all S ∈ S, let us define the deviation δ(S)
as follows:

5

https://doi.org/10.1007/978-3-030-04070-3_12

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-04070-3_12

δ(S) = |{xj ∈ X \ S : supp(xj) ⊆
⋃

xi∈S
supp(xi)}| , (2)

that is, δ(S) is the number of columns in A that does not belong to S and such
that their support is included in the union of supports in S.

Since for the first optimization problem we are interested in obtaining matrices
such that δ(S) = 0 for every subset of t columns, we define the corresponding
fitness function simply as the sum of the deviations of all subsets S ∈ St. In
particular, given an M ×N binary matrix A, its fitness function is defined as:

fit1(A) =
∑
S∈St

δ(S) . (3)

Clearly, the optimization objective is to minimize fit1, and an optimal solution
corresponds to a binary matrix A such that fit1(A) = 0, i.e., a t-disjunct matrix.

For the second optimization problem concerning (t, f)-resolvable matrices, we
have to take into account that the union of the supports of any t columns in A
can include up to f supports of the remaining columns. Hence, the idea here is to
minimize the number of t-subsets of columns that do not satisfy this requirement.
In particular, given a matrix A, the second fitness function is defined as:

fit2(A) = |{S ∈ St : δ(S) > f}| , (4)

where the objective is to minimize fit2, with fit2(A) = 0 representing the optimal
value.

Finally, in the third optimization problem we consider the most relaxed
definition of disjunctness, since the event that the support of a column is contained
in the union of supports of a random t-subset of other columns must be less
than or equal to ε. To address this case, we considered a third fitness function
where the sum of the deviations of all subsets of t columns (i.e., fit1) is averaged
over all possible choices with which one can select one of these subsets and all
remaining columns. In particular, given an M × N matrix A, the number of
subsets of t columns is

(
N
t

)
, while the number of remaining columns is N − t.

Thus, the third fitness function of A is defined as:

fit3(A) =
fit1(A)(

N
t

)
· (N − t)

=

∑
S∈St δ(S)(

N
t

)
· (N − t)

. (5)

As in the previous two cases, the optimization goal is to minimize fit3. In
particular, remark that the range of fit3 is the interval [0, 1], and effectively
represents the probability that the support of a random column is contained
in the union of supports of a random subset of t distinct columns. Hence, an
optimal solution for the third optimization problem is an M ×N matrix A such
that fit3(A) ≤ ε.

6

https://doi.org/10.1007/978-3-030-04070-3_12

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-04070-3_12

Algorithm 1 Estimation of distribution algorithm

Set t⇐ 0. Generate N solutions randomly;
repeat

Evaluate the solutions using the fitness function;
Select a population DS

t of K ≤ N solutions according to a selection method;
Calculate a probabilistic model of DS

t ;
Generate N new solutions sampling from the distribution represented in the model;

t⇐ t + 1;
until Termination criteria are met

4 Experimental Setting and Results

In this section, we introduce the algorithms we use, common parameters, and the
obtained results. Note that the parameters used in our experiments are selected
after a tuning phase.

4.1 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) work by extracting patterns shared
by the best solutions and representing these patterns using a probabilistic graph-
ical model (PGM) [17] in order to generate new solutions from this model [15,10].
Differing from GAs, EDAs apply learning and sampling of distributions instead of
classical crossover and mutation operators. Modeling the dependencies between
the variables of the problem serves to efficiently orient the search to more promis-
ing areas of the search space by explicitly capturing and exploiting potential
relationships between the problem variables. We give a pseudocode of an EDA in
Algorithm 1.

In our experiments, we use the Univariate Marginal Distribution Algorithm
(UMDA) [16]. UMDA is a type of EDA that uses operator α to estimate the
marginal distributions from a selected population S(D). By assuming that selected
population contains λ elements, α produces probabilities:

pt+1(Xi) =
1

λ

∑
x∈S(D)

xi,∀i ∈ 1, 2, . . . , N. (6)

4.2 Genetic Algorithm

The GA represents the individuals of an optimization problem as strings of bits.
We use a 3-tournament selection, where the worst from the 3 randomly selected
individuals is eliminated [8]. A new individual is created by applying crossover
to the remaining two and then a mutation with given probability (Algorithm 2).

Mutation is selected uniformly at random between a simple mutation, where
a single bit is inverted, and a mixed mutation, which randomly shuffles the
bits in a randomly selected subset. The crossover operators are one-point and

7

https://doi.org/10.1007/978-3-030-04070-3_12

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-04070-3_12

Algorithm 2 Steady-state tournament selection

randomly select k individuals;
remove the worst of k individuals;
child = crossover (best two of the tournament);
perform mutation on child, with given individual mutation probability;
insert child into population;

uniform crossover, performed uniformly at random for each new offspring. We use
population size of 100 and individual mutation probability of 0.3. The mutation
probability is used to select whether an individual would be mutated or not, and
the mutation operator is executed only once on a given individual.

4.3 Genetic Programming

Genetic Programming (GP) uses a representation where individuals are trees of
Boolean primitives which are then evaluated according to the truth table they
produce. The function set for GP in all experiments is OR, XOR, AND, XNOR,
and AND with one input inverted. Terminals correspond to n Boolean variables.
GP uses the same selection as presented in Algorithm 2 with a tournament size
3. The crossover is performed with five different tree-based crossover operators
selected at random: a simple tree crossover with 90% bias for functional nodes,
uniform crossover, size fair, one-point, and context preserving crossover [18]. We
use the subtree mutation applied with 30% probability and the maximum tree
depth size of 6. The population size equals 100.

4.4 Common Parameters

In all the experiments the number of independent trials for each configuration
is 30 and the stopping criterion for all algorithms equals 500 000 evaluations or
achieving the optimum value for the corresponding fitness function.

Regarding the matrices parameters, we decided to experiment with t = 2 and
t = 3 for disjunct matrices, in order to have a baseline of comparison with the
results of [1], which reports the best known examples obtained through algebraic
techniques. For resolvable matrices, we set f equal to the 30% of the N − t
remaining columns of a matrix, while for almost disjunct we set ε = 10−4 after a
preliminary phase of parameter tuning.

4.5 Results

In Table 1, we give results for all optimization techniques and dimensions we
considered. We experimented with various matrix sizes according to the number
of rows and columns. The first column shows the number of rows and maximum
number of columns per row of the matrices considered. Then, each entry indicates
the maximum number of columns of the best solution found by the associated

8

https://doi.org/10.1007/978-3-030-04070-3_12

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-04070-3_12

heuristic under the corresponding fitness function. Values in bold are the optimal
ones, i.e., the maximum number of columns of the best known examples produced
by algebraic techniques, as reported in [1].

For fit1 GP achieves the best results when compared to other algorithms. In
fact, GP found the maximum number disjunct matrices for smaller dimensions
when t = 2 and t = 3. As the relaxation of the fit1, GP achieves the best results
for fit2. For higher dimensions, all three algorithms find more disjunct matrices
but not the maximum. Finally, for the third fitness, GP again achieves the best
results. Note that here, we reach optimal values for more dimensions since fit3
is a relaxed version of fit2. According to the given values, we can conclude that
GP obtained the best results, followed by EDA and finally by GA.

Table 1: Best solutions found by GP, GA, and EDA for each fitness
(M/max. N) GP GA EDA GP GA EDA GP GA EDA

t = 2 fitness 1 fitness 2 fitness 3

8/8 8 5 7 8 5 8 8 6 7
9/12 12 10 12 12 11 12 12 11 12
10/13 12 10 11 12 11 11 13 11 13
11/18 17 15 16 17 16 17 17 16 17
12/20 16 13 13 17 13 14 18 13 14
13/26 20 17 18 20 18 19 21 19 21
14/28 21 19 20 22 21 22 22 21 22
15/35 24 20 22 25 24 24 25 24 24

t = 3 fitness 1 fitness 2 fitness 3

13/13 13 11 11 13 13 13 13 13 13
14/14 14 12 12 14 14 14 14 14 14
15/15 15 14 13 15 14 15 15 15 15
16/20 17 14 14 19 17 18 20 18 18
17/21 18 15 16 20 16 16 20 16 17
18/22 19 16 18 21 17 19 21 17 19
19/28 19 16 17 23 17 18 23 17 18
20/30 22 19 21 24 19 22 25 20 22
21/31 23 20 21 26 22 23 26 24 24

In Figures 1a and 1b, we present results for t = 2 and dimension 9/12 and for
t = 3 and dimension 15/15, respectively. Note that the values given are average
values over all experimental runs. We can see that in the first case, GP and EDA
behave similarly while GA exhibits much worse performance. For the second case,
GP outperforms by far both EDA and GA. These results are in accordance with
other scenarios where at least one algorithm reached optimal result.

9

https://doi.org/10.1007/978-3-030-04070-3_12

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-04070-3_12

GP

GA

EDA

9.0 9.5 10.0 10.5 11.0 11.5 12.0

A
lg

o
ri

th
m

(a) t = 2, scenario 9/12
c‘

GP

GA

EDA

12.0 12.5 13.0 13.5 14.0 14.5 15.0

A
lg

o
ri

th
m

(b) t = 3, scenario 15/15

Fig. 1: Boxplot results for 2 test scenarios

5 Conclusions

In this paper, we addressed the construction of disjunct matrices, resolvable
matrices, and almost disjunct matrices through evolutionary algorithms. To the
best of our knowledge, our work is the first attempt at solving this combinatorial
design problem using an evolutionary optimization approach, since all methods
described in the existing literature are based on coding-theoretic and algebraic
techniques. We encoded the genotype of a candidate solution as a multiploid
genome, where each chromosome is a binary string representing a column of
a binary matrix. We then defined three fitness functions, one for each kind of
matrix we were interested in; the idea underlying all fitness functions was to
count the number of columns whose support is contained in the union of the
supports of other t-subsets of columns. Next, we applied EDA, GA, and GP
to minimize these three fitness functions. The results showed that GP is the
best heuristic among the three considered, since it managed to converge to an
optimal solution on the widest range of problem instances we considered. This
finding corroborates the hypothesis that GP is in general a better heuristic for
constructing combinatorial designs, as we found similar results also in the case of
orthogonal Latin squares [12].

Still, GP results are not as good as those achieved by algebraic methods,
which are able to construct larger DM. However, our heuristic approach do not
require any assumption beyond the bare definitions of DM, RM or ADM set forth
in Section 2, as opposed to algebraic techniques, which usually puts additional
constraints on the structure of the optimal solutions. An example is given by the
Kautz-Singleton construction [9], which relies on the adoption of constant-weight
codes. This means that the columns of the matrices all have the same Hamming
weight, i.e., the same number of ones. Thus, the solutions produced by algebraic
methods are actually a subset of the space of all DM. This observation leads

10

https://doi.org/10.1007/978-3-030-04070-3_12

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-04070-3_12

us to the following ideas for further improving our heuristic approach in future
research:

– Investigate whether the solutions produced by GP (as well as by EDA and
GA) can be generated by algebraic techniques. Due to the connection between
disjunct matrices and codes, even finding a single DM produced by one of our
heuristics which cannot be expressed through any known algebraic method
could shed light on new classes of error-correcting codes.

– Restrict the search space explored by EDA, GA, and GP by putting additional
constraints on the encoding of the candidate solutions. Taking inspiration
from the Kautz-Singleton construction, a possibility could be to enforce a
constant number of ones on the columns of the matrices, either at the fitness
function level (i.e., as an additional property to optimize) or by using heuristic
specifically designed for evolving balanced Boolean functions, such as the
discrete Particle Swarm Optimizer described in [11].

Among other possible avenues for further research, we expect that experimenting
with other variants of EDA such as 1-order Markov and tree models could yield
better performances on this problem. Finally, the note that the optimization
approach laid out in this paper tries to construct DM, RM or ADM starting
from matrices with the same number of columns as those of the desired optimal
solutions. An alternative method worth exploring is to use an incremental ap-
proach similar to the one proposed in [20], where the authors constructed new
orthogonal arrays from old ones by incrementally adding columns.

Acknowledgments

Parts of our work have been inspired by COST Action CA15140 supported by
COST (European Cooperation in Science and Technology).

References

1. Balint, G., Bloch, M., Ellis, R., Monson, G., Schulte, A., Schultz, A.,
Soule, M., Vaden, D.: An investigation of d-separable, d̄-separable, and d-
disjunct binary matrices. Tech. rep., San Diego State University (2013),
http://www.sci.sdsu.edu/math-reu/2013-2.pdf

2. Barg, A., Mazumdar, A.: Group testing schemes from codes and designs. IEEE
Trans. Information Theory 63(11), 7131–7141 (2017)

3. Belazzougui, D., Gagie, T., Mäkinen, V., Previtali, M.: Fully dynamic de bruijn
graphs. In: String Processing and Information Retrieval - 23rd International Sym-
posium, SPIRE 2016, Beppu, Japan, 2016, Proceedings. pp. 145–152 (2016)

4. Colbourn, C.J., Dinitz, J.H.: Combinatorial designs. In: Handbook of Discrete and
Combinatorial Mathematics. CRC Press (1999)

5. Colbourn, C.J., Ling, A.C.H., Syrotiuk, V.R.: Cover-free families and topology-
transparent scheduling for manets. Des. Codes Cryptography 32(1-3), 65–95 (2004)

11

https://doi.org/10.1007/978-3-030-04070-3_12

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-04070-3_12

6. Damaschke, P., Schliep, A.: An optimization problem related to bloom filters with
bit patterns. In: SOFSEM 2018: Theory and Practice of Computer Science - 44th
International Conference on Current Trends in Theory and Practice of Computer
Science, Krems, Austria, 2018, Proceedings. pp. 525–538 (2018)

7. Du, D., Hwang, F.K., Hwang, F.: Combinatorial group testing and its applications,
vol. 12. World Scientific (2000)

8. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Com-
puting Series, Springer (2015)

9. Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE Trans.
Information Theory 10(4), 363–377 (1964)

10. Larrañaga, P., Karshenas, H., Bielza, C., Santana, R.: A review on probabilistic
graphical models in evolutionary computation. Journal of Heuristics 18(5), 795–819
(2012)

11. Mariot, L., Leporati, A.: Heuristic search by particle swarm optimization of boolean
functions for cryptographic applications. In: Genetic and Evolutionary Computation
Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material
Proceedings. pp. 1425–1426 (2015)

12. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary algorithms for the
design of orthogonal latin squares based on cellular automata. In: Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin,
Germany, July 15-19, 2017. pp. 306–313 (2017)

13. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary search of binary
orthogonal arrays. In: Parallel Problem Solving from Nature - PPSN XV - 15th
International Conference, Coimbra, Portugal, September 8-12, 2018, Proceedings,
Part I. pp. 121–133 (2018)

14. Mazumdar, A.: On almost disjunct matrices for group testing. In: Algorithms
and Computation - 23rd International Symposium, ISAAC 2012, Taipei, Taiwan,
December 19-21, 2012. Proceedings. pp. 649–658 (2012)

15. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of
distributions I. Binary parameters. In: Parallel Problem Solving from Nature -
PPSN IV. Lectures Notes in Computer Science, vol. 1141, pp. 178–187. Springer,
Berlin (1996)

16. Mhlenbein, H.: The equation for response to selection and its
use for prediction. Evolutionary Computation 5(3), 303–346 (1997).
https://doi.org/10.1162/evco.1997.5.3.303

17. Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press
(2000)

18. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (2008), (With contributions by J. R. Koza)

19. Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing schemes.
IEEE Trans. Information Theory 57(12), 7982–7989 (2011)

20. Safadi, R., Wang, R.: The use of genetic algorithms in the construction of mixed
multilevel orthogonal arrays. Tech. rep., OLIN CORP CHESHIRE CT OLIN
RESEARCH CENTER (1992)

21. Stinson, D.R., Van Trung, T., Wei, R.: Secure frameproof codes, key distribution
patterns, group testing algorithms and related structures. Journal of Statistical
Planning and Inference 86(2), 595–617 (2000)

22. Stinson, D.R., Wei, R.: Generalized cover-free families. Discrete Mathematics 279(1-
3), 463–477 (2004)

12

https://doi.org/10.1007/978-3-030-04070-3_12

	The Design of (Almost) Disjunct Matrices by Evolutionary Algorithms
	Introduction
	Disjunct Matrices
	Optimization Problem Structure
	Solutions encoding
	Fitness Functions

	Experimental Setting and Results
	Estimation of Distribution Algorithms
	Genetic Algorithm
	Genetic Programming
	Common Parameters
	Results

	Conclusions

