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Abstract. It is known that CA rules which are both leftmost and rightmost per-
mutive (bipermutive rules) are expansively and mixing chaotic. In this paper, we
prove that bipermutive rules also satisfy the condition of 1-resiliency (that is, bal-
ancedness and first order correlation-immunity), which is an important property
used in the design of pseudorandom number generators for cryptographic pur-
poses. We thus derive an enumerative encoding for bipermutive rules based on
a graph representation, and we use it to generate all the 256 bipermutive rules
of radius 2. Among these rules we select the ones which satisfy additional cryp-
tographic properties: high nonlinearity and 2-resiliency. Finally, we assess the
quality of the pseudorandom sequences generated by these remaining rules with
the ENT and NIST statistical test suites, taking the elementary rule 30 as a bench-
mark.
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1 Introduction

Cellular automata (CA) have widely been used in the past to define pseudorandom num-
ber generators (PRNG) for the design of stream ciphers. Starting with Wolfram [13],
particular interest has been devoted to the study of CA rules of radius 1. Wolfram pro-
posed to use a CA equipped with rule 30 and to sample the trace of its central cell as a
pseudorandom sequence. Unfortunately, even if rule 30 is nonlinear and balanced, and
even if it is chaotic with respect to Devaney’s definition of topological chaos [4], it does
not satisfy the property of first order correlation-immunity, introduced by Siegenthaler
in [8]. More generally, Martin has pointed out in [6] that all nonlinear and balanced
rules of radius 1 are not first order correlation-immune. As a consequence, a CA-based
PRNG using these rules may pass classic statistical randomness tests, but it is suscepti-
ble to correlation attacks.

Cattaneo, Finelli and Margara showed in [2] that bipermutive rules (that is, rules
which are both leftmost and rightmost permutive) are expansively chaotic, while in [3]
it has been proved that rules which are either leftmost or rightmost permutive are mixing
chaotic. Thus, bipermutive rules satisfy stronger definitions of topological chaos than
the one given by Devaney.
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The aim of this paper is to study the class of bipermutive rules with respect to
the cryptographic property of resiliency, which includes balancedness and correlation-
immunity. In particular, we prove that bipermutive rules are 1-resilient, and we derive
a graph-based encoding to enumerate all bipermutive rules of a given radius r. We then
apply this encoding to generate all 256 bipermutive rules of radius 2, and compute their
Walsh transforms to select only those which are nonlinear and 2-resilient (which is, by
Tarannikov’s bound [10], the best possible trade-off between these two properties in
the case of boolean functions of 5 variables). We successively filter out the rules which
do not generate sequences of 216 bits that pass the statistical tests from the ENT suite,
using rule 30 as a benchmark. Finally, we apply the more stringent NIST test suite to
longer sequences (106 bits) produced by the remaining rules, observing that three of
them pass all the tests, like rule 30.

The rest of this paper is organized as follows. Section 2 recalls basic definitions
and theoretical results about cellular automata and the properties of nonlinearity and
m-resilience a CA rule should satisfy for cryptographic applications. Section 3, after
a brief introduction to topological chaos in CAs and permutive rules, reports the main
theoretical contribution of the paper, namely the proof that bipermutive rules are also
1-resilient. Section 4 describes an enumerative encoding for bipermutive rules based on
a graph representation and the application of this encoding to the generation of bipermu-
tive rules of radius 2, in order to recover only those which are nonlinear and 2-resilient.
Section 5 reports the results of the statistical tests of the ENT and NIST suites applied
to the pseudorandom sequences generated by the rules found in Section 4. Finally, Sec-
tion 6 sums up the results presented throughout the paper, and points out some possible
future developments and improvements on the subject.

2 Cellular Automata and Cryptographic Properties of Boolean
Functions

2.1 Cellular Automata

Cellular automata are a particular type of discrete dynamical systems, characterised by
a regular lattice of cells. At each discrete time step, all the cells synchronously update
their states by applying a local rule. Formally, we give the following definition of finite
one-dimensional cellular automaton, which is the typical model of CA used in crypto-
graphic applications.

Definition 1. A finite one-dimensional cellular automaton is a 4-tuple 〈n,A,r, f 〉 where
n ∈ N is the number of cells, A is the set of local states, r ∈ N is the radius and
f : A2r+1→ A is the local rule.

Thus, essentially, a finite one-dimensional CA is composed by an array of n cells.
In what follows, we assume A = F2: the CA, in this case, is called boolean. For all
i ∈ {1, ...,n} and t ∈ N, we denote with ct

i the state of the i-th cell at time t, and the
next state is computed as ct+1

i = f (ct
i−r, ...,c

t
i, ...,c

t
i+r). The configuration of the CA at

time t is the binary vector ct = (ct
1, ...,c

t
n). To update the cells at the boundaries, two

approaches are possible: null boundary conditions, where r cells with constant states
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are added before the first cell and after the last one, and periodic boundary conditions,
in which the array can be viewed as a ring, so that the last cell precedes the first one.
For all radii r ∈ N, each of the 222r+1

local rules can be indexed by its Wolfram code,
introduced in [12], which is basically the decimal representation of the binary string
that encodes the truth table of the rule.

Wolfram extensively studied the 256 elementary rules (that is, rules of radius r = 1),
and in [13] he proposed to use a CA with rule 30 as a pseudorandom number generator
for cryptographic purposes, since it exhibits a chaotic behaviour when observing the
sequence of configurations {ct}t∈N. The CA is initialised with a random configuration
c0 (the seed), and at each time step the state of the central cell is taken as a new pseu-
dorandom bit. Wolfram analysed this PRNG by applying several statistical tests, which
suggested it could generate good pseudorandom sequences.

2.2 Cryptographic Boolean Functions

Boolean functions are fundamental in cryptography, in the design of both stream ciphers
and block ciphers. Here we summarise the essential definitions and properties of the
theory of cryptographic boolean functions applied in the rest of the paper to the local
rules of CA. An excellent reference for cryptographic boolean functions is [1].

A boolean function in m variables is a mapping f : Fm
2 → F2, which in the fol-

lowing we will identify by the 2m-bit string representing its truth table. Given ω and
x vectors of Fm

2 , by ω · x we denote the scalar product between ω and x, computed as
ω · x =

⊕m
i=1 ωi · xi. The polar value of f (x) is f̂ (x) = (−1) f (x). The Hamming weight

of a vector x ∈ Fm
2 , denoted by wH(x), is the number of nonzero coordinates in x. A

boolean function f : Fm
2 → F2 is called balanced if | f−1(0)| = | f−1(1)| = 2m−1. Un-

balanced functions are generally not desirable in cryptographic applications, since they
present a statistical bias which can be exploited for linear and differential cryptanalysis.

We now recall the definition of the Walsh Transform, an essential tool used to char-
acterise cryptographic properties of boolean functions.

Definition 2. The Walsh Transform of a boolean function f : Fm
2 → F2 is a function

F̂ : Fm
2 → R defined as follows: ∀ω ∈ Fm

2

F̂(ω) = ∑
x∈Fm

2

f̂ (x) · (−1)ω·x . (1)

The value F̂(ω) is also called the Walsh coefficient of f with respect to the vector ω. A
naive algorithm to compute the Walsh Transform of a boolean function having a truth
table of n = 2m bits requires O(n2) operations. There is, however, a Fast Walsh Trans-
form (FWT) algorithm, described in [1], which requires only O(n log2 n) operations.

We describe some properties of the Walsh Transform which will be used extensively
to prove the theoretical results of this paper:

Property 1. Denoting by 0 the null vector of Fm
2 , it follows that F̂(0) = ∑x∈Fm

2
f̂ (x).

Property 2. From Property 1, it is obvious that a function f is balanced if and only if
F̂(0) = 0.
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Property 3. If wH(ω) = 1, then F̂(ω) = ∑x∈Fm
2

f̂ (x) · (−1)xi , where i is the index of the
nonzero coordinate of ω. Thus in this case the sign of the generic term in (1) is uniquely
determined by the value of xi.

Given a boolean function f , the maximum absolute value of its Walsh coefficients,
Wmax( f ), is called the spectral radius of f . The spectral radius is useful to characterise
the nonlinearity of a boolean function, which is formally defined as the Hamming dis-
tance from the set of affine functions: in [1] it is shown that given a boolean function
f : Fm

2 → F2 its nonlinearity is Nl( f ) = 2−1(2m−Wmax( f )). In the design of stream or
block ciphers, the nonlinearity of the boolean functions selected should be as high as
possible, since it provides better confusion.

A second important property for cryptographic boolean functions is correlation-
immunity, introduced by Siegenthaler in [8]. A boolean function f is said to be k-th
order correlation-immune if the restrictions of f obtained by fixing k input coordinates
of f all have the same Hamming weight. If a function used in a stream cipher does
not satisfy this property, it is possible to apply a divide-and-conquer correlation attack
described in [9] using k Linear Feedback Shift Registers, in order to recover the plain-
text. A function which is both balanced and k-th order correlation-immune is called
k-resilient. Xiao and Massey proved in [14] a necessary and sufficient condition for a
boolean function to be k-th order correlation-immune, using its Walsh Transform.

Theorem 1. A boolean function f : Fm
2 → F2 is k-th order correlation-immune if and

only if, ∀ω ∈ Fm
2 such that 1≤ wH(ω)≤ k, F̂(ω) = 0.

Hence, in order to verify whether a given boolean function is k-resilient, by Prop-
erty 2 and Theorem 1 it is sufficient to check that its Walsh Transform vanishes for all
input vectors having Hamming weight less than or equal to k, including the null vector.

The three properties of balancedness, nonlinearity and k-th order correlation-immu-
nity induce a trade-off; in particular, Tarannikov [10] showed an upper bound on the
maximum nonlinearity obtainable in k-resilient functions (with k ≤ m− 2), which is
2m−1−2k+1.

2.3 Correlation-Immunity of Elementary CA Rules

The local rule of a CA can be viewed as a boolean function (with an odd number of
variables, since it is always defined on 2r + 1 cells, where r is the radius), so it is
possible to verify if it is suitable to design a CA-based PRNG by checking its balanced-
ness, nonlinearity and correlation-immunity. Returning to Wolfram’s PRNG, it turns out
that rule 30 is both balanced and nonlinear (with Nl( f30) = 2), but it is not first order
correlation-immune. More generally, Martin has shown in [6] by an exhaustive search
that, among the 256 elementary rules, only 8 linear rules are 1-resilient. This fact can
also be interpreted as a corollary of Tarannikov’s bound: if r = 1 then the local rule is
defined over m = 3 variables, and the maximum nonlinearity for 1-resilient functions
is 23−1− 21+1 = 0. The consequence is that elementary CA rules are not adequate for
building a cryptographic PRNG or a stream cipher, so it is necessary to explore the
spaces of rules having higher radii.
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3 Bipermutive CA Rules

3.1 Symbolic Dynamics and Topological Chaos in Cellular Automata

The dynamics of one-dimensional CAs is generally studied on the space of bi-infinite
sequences AZ = {c : Z→ A}, since every finite CA is trivially periodic. In this case, a
configuration c is a function which assigns to each integer number a symbol from the
alphabet A. The set AZ is usually endowed with the Tychonoff distance, which in the
boolean case A = F2 is defined ∀x,y ∈ AZ as

d(x,y) =
+∞

∑
i=−∞

1
2|i|
|x(i)− y(i)| . (2)

Under this distance, AZ is a compact and perfect (i.e., without isolated points) metric
space. Moreover, any global rule F : AZ→ AZ induced by a CA local rule is a uniformly
continuous function with respect to the Tychonoff distance. Thus a one-dimensional
CA, now denoted by a triple 〈A,r, f 〉, can be considered as a discrete time dynamical
system (DTDS) 〈X ,F〉, where the phase space is X = AZ and the update function is the
global rule F : AZ→ AZ which applies at each time step the local rule f to all the cells
i ∈ Z.

The notion of deterministic chaos has been formalized in several rigorous defini-
tions in the literature of dynamical systems. The most popular among them is perhaps
the definition given by Devaney in [4], which uses a topological approach.

Definition 3. A DTDS 〈X ,F〉 is Devaney-chaotic (D-chaotic) if it satisfies the following
conditions:

1. Topological transitivity: for all nonempty open subsets U,V ⊂ X, ∃t ∈ N such that
F t(U)∩V 6= /0.

2. Topological regularity: The set Per(F)= {x∈X : ∃p∈N : F p(x)= x} of temporally
periodic points is dense in X.

3. Sensitivity to initial conditions: there exists an ε > 0 such that ∀x ∈ X , ∀δ > 0,
∃y ∈ X with d(x,y)< δ and ∃t ∈ N such that d(F t(x),F t(y))≥ ε.

Other definitions of chaos have been introduced by substituting stronger conditions to
the three proposed by Devaney. In particular, the definition of expansive chaos (E-chaos)
in a perfect DTDS 〈X ,F〉 reported in [2] substitutes sensitivity to initial conditions by
positive expansivity: there exists an ε > 0 such that, ∀x,y ∈ X , x 6= y, ∃t ∈ N such that
d(F t(x),F t(y)) ≥ ε. In mixing chaos (M-chaos) [3] topological transitivity is replaced
by topological mixing: for all nonempty open subsets U,V ⊂ X , ∃t ∈N such that ∀s≥ t,
Fs(U)∩V 6= /0.

3.2 Permutive Rules

We now turn to the permutivity property of a boolean function, successively applying
it to CA local rules. Given f : Fm

2 → F2, x = (x1, ...,xm−1) ∈ Fm−1
2 and x̃ ∈ F2, let us

denote by (x, x̃{i}), with i ∈ {1, ...,m}, the vector

(x, x̃{i}) = (x1, ...,xi−1, x̃,xi, ...,xm−1) ∈ Fm
2 .
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In other words, (x, x̃{i}) is the vector of Fm
2 created by inserting at position i in x the

value x̃, and shifting to the right by one place all the components x j with j ≥ i.

Definition 4. A boolean function f : Fm
2 → F2 is called i-permutive (or permutive in

the i-th variable) if, ∀x = (x1, ...,xm−1) ∈ Fm−1
2 , it results that

f (x,0{i}) 6= f (x,1{i}) . (3)

A function f which is 1-permutive is also called leftmost permutive (or L-permutive),
while a function which is m-permutive is called rightmost permutive (or R-permutive).
We call bipermutive a function which is both L-permutive and R-permutive.

In [2] and [3] two important relationships between permutive rules and chaotic CAs
have been proved, which can be summarised as follows:

Theorem 2. The following sufficient conditions hold:

1. A CA based on a local rule f which is bipermutive is E-chaotic.
2. A CA based on a local rule f which is either L-permutive or R-permutive is M-chaotic.

Thus, bipermutive rules induce CAs which are strongly chaotic, since they satisfy both
the definitions of M-chaos and E-chaos. In the case of elementary CAs, rule 30 is R-per-
mutive (and so M-chaotic), while the bipermutive rules are 90, 105, 150 and 165, which
are all linear.

3.3 Resiliency of Bipermutive Rules

We can now prove the following property: bipermutive rules, besides the chaotic be-
haviour they induce in CAs, are also 1-resilient. We begin by showing that if a boolean
function is permutive in one of its variables, then it is balanced.

Lemma 1. If f : Fm
2 → F2 is i-permutive, then f is balanced.

Proof. Considering Property 1, we rewrite the Walsh Transform of the null vector as
follows:

F̂(0) = ∑
{x∈Fm

2 : xi=0}
f̂ (x) + ∑

{x∈Fm
2 : xi=1}

f̂ (x) . (4)

The function f is i-permutive, so ∀x ∈ Fm−1
2 , f̂ (x,1{i}) = − f̂ (x,0{i}). The second sum

in (4) is exactly the opposite of the first sum, and F̂(0) = 0. By Property 2, this means
that f is balanced.

ut

Now we show that bipermutive rules are first order correlation-immune.

Lemma 2. Let f : Fm
2 → F2 be bipermutive. Then f is first order correlation-immune.
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Proof. Using the characterization of correlation-immunity given in Theorem 1, it is
sufficient to show that ∀ω ∈ Fm

2 such that wH(ω) = 1, F̂(ω) = 0. Let ω be a generic
vector having Hamming weight 1. By Property 3, the Walsh Transform of ω can be
computed as

F̂(ω) = ∑
x∈Fm

2

f̂ (x) · (−1)xi . (5)

We distinguish two cases:

1. ω has the nonzero coordinate in the first m−1 positions (there are m−1 vectors of
such kind, from (1,0, ...,0,0) to (0,0, ...,1,0)). We rewrite (5) as follows:

F̂(ω) = ∑
x∈Fm−1

2

f̂ (x,0{m}) · (−1)xi + ∑
x∈Fm−1

2

f̂ (x,1{m}) · (−1)xi (6)

where i ∈ {1, ...,m− 1}. Since f is R-permutive, f̂ (x,1{m}) = − f̂ (x,0{m}). More-
over, since in (6) x varies in Fm−1

2 , the terms (−1)xi are the same in both sums.
Thus, it follows that

F̂(ω) = ∑
x∈Fm−1

2

f̂ (x,0{m}) · (−1)xi − ∑
x∈Fm−1

2

f̂ (x,0{m}) · (−1)xi = 0 .

2. ω has the nonzero coordinate in the last position, that is ω = (0,0, ...,1). The Walsh
Transform of ω is given by

F̂(ω) = ∑
x∈Fm

2

f̂ (x) · (−1)xm . (7)

We observe that the substitution f̂ (x,1{m}) =− f̂ (x,0{m}) used in the previous case
does not work here, since the second sum in (6) would gather all the vectors with
value 1 in the last coordinate, and the signs would all be changed ((−1)xm = −1,
∀x ∈ Fm−1

2 ). We thus rewrite (7) in the following way:

F̂(ω) = ∑
x∈Fm−1

2

f̂ (x,0{1}) · (−1)xm + ∑
x∈Fm−1

2

f̂ (x,1{1}) · (−1)xm . (8)

Now, f is also L-permutive, so f̂ (x,1{1}) = − f̂ (x,0{1}). By using an argument
analogous to the one used in case 1, it follows that

F̂(ω) = ∑
x∈Fm−1

2

f̂ (x,0{1}) · (−1)xm − ∑
x∈Fm−1

2

f̂ (x,0{1}) · (−1)xm = 0 .

In conclusion, the Walsh Transform vanishes for all vectors of Hamming weight 1, thus
the function f is first order correlation-immune.

ut

By combining Lemmas 1 and 2, we finally get the following

Theorem 3. Let f : Fm
2 → F2 be a bipermutive boolean function. Then, f is 1-resilient.
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4 Generating Bipermutive Rules of a Given Radius

Theorem 3 motivates the search for bipermutive boolean functions to be used in CA-
based PRNGs, since they are both strongly chaotic and of cryptographic interest. The
idea is to span the space of bipermutive functions of a given odd number of variables (or,
equivalently, of a given radius) in order to check additional cryptographic properties, in
particular, high nonlinearity and higher order of resiliency. We propose a simple enu-
merative encoding which allows us to represent a bipermutive function f : Fm

2 → F2 as
a string of 2m−2 bits, and then we apply it to exhaustively explore the set of bipermutive
boolean functions defined on 5 variables.

4.1 An Enumerative Encoding for Bipermutive Functions

Let us denote by Fm = { f : Fm
2 → F2} the space of boolean functions in m ≥ 2 vari-

ables, and let G = (V,E) be a graph where V = Fm
2 is the set of vertices, and E ⊆V ×V

is the set of edges defined by the following relation: for all x = (x1, · · · , xm) and
y = (y1, · · · , ym) ∈ V , the edge (x,y) is in E if and only if

(x1 = ȳ1 ∧ (∀i ∈ {2, · · · , m} xi = yi))
∨

(xm = ȳm ∧ (∀i ∈ {1, · · · , m−1} xi = yi)) ,

where ȳ j is the complement of bit y j. In other words, the edges in E connect those inputs
in Fm

2 which must have different output values in order to satisfy either L-permutivity
or R-permutivity in a boolean function. The relation which defines E is symmetric, so
the graph G is undirected. We now show some simple properties of G.

Property 4. The degree of each node x ∈ V is 2. In fact, for all x ∈ Fm
2 , there exists a

unique x′ ∈Fm
2 such that x1 = x̄′1 and xi = x′i for all i∈{2, · · · , m}. Similarly, there exists

a unique x′′ ∈ Fm
2 such that x′′ 6= x′ and xm = x̄′′m and xi = x′′i for all i ∈ {1, · · · , m−1}.

Property 5. Let x,y be vectors of Fm
2 such that x1 = ȳ1, xm = ȳm and xi = yi for all

i ∈ {2, · · · , m− 1}. Then, the two adjacent nodes of x are the same as the adjacent
nodes of y. In fact, let us suppose that x′,x′′ ∈ Fm

2 are the two adjacent nodes of x,
in particular that x1 = x̄′1, xi = x′i for all i ∈ {2, · · · , m} and xm = x̄′′m, xi = x′′i for all
i∈ {1, · · · , m−1}. Then, x′1 = y1 and x′i = yi for all i∈ {2, · · · , m−1}. Since xm = x′m,
it follows that ym = x̄′m, so (y,x′) ∈ E. A similar argument shows that (y,x′′) ∈ E, so
x′,x′′ are also the adjacent nodes of y.

Property 6. Since the relation which defines E is symmetric, from Property 5 we can
deduce that the adjacent nodes of x′ and x′′ are exactly x and y, hence {x, x′, x′′, y} is a
connected component of G. There are 2m−2 pairs (x,y) ∈ Fm

2 of vectors which differ in
the leftmost and rightmost coordinates and are equal in the m−2 central ones. Thus G
is composed by 2m−2 disjoint connected components of this kind.

A boolean function f ∈ Fm can be represented as a label function f : V → F2 on
the vertices of G. If f is bipermutive then the label of each node x is different from the
labels of its two adjacent nodes, while the labels of the nodes which are connected via
a path of length 2 are the same. Considering Property 6, this means that the label of
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a single node uniquely determines the labels of the remaining nodes in the connected
component where x resides. So, in the case of a bipermutive function, we can define the
configuration of a generic connected component in G as the value of the label of one
of its nodes x, called the representative of the connected component. The most natural
choice is to select in each connected component the node x whose binary vector en-
codes the smallest integer number as representative, which is the one having value zero
in the leftmost and rightmost coordinates. From a 2m−2-bit string c we can thus recover
the truth table of the corresponding bipermutive function f : Fm

2 → F2 as follows: for
all j ∈ {0, · · · , 2m−2−1}, we label the representative r j of the j-th connected compo-
nent with the value c j. The adjacent nodes of r j are then labelled with c̄ j, and the last
node in the connected component (the one having nonzero value in the leftmost and
rightmost coordinates) is labelled with c j. Figure 1 reports an example of bipermutive
rule represented on the graph G in the case of m = 3 variables. Given m ∈ N, there are
exactly 22m−2

bipermutive functions of m variables; moreover, by using this choice of
representatives in G the truth tables of the functions can be enumerated in lexicographic
order.

000

0

100

1

101

0

001

1

110

1

111

0

011

1

010

0

Fig. 1. Representation of the function 01011010 (rule 90) on the graph G. The representatives are
shaded in gray, so this function corresponds to the string c = 00.

4.2 Application to the case r = 2

It has already been observed that in the case of elementary CAs (r = 1) there are only
four bipermutive rules which are all linear. We have thus used the enumerative encoding
described in Section 4.1 to explore the set of 223

= 256 bipermutive rules of radius r = 2.
The algorithm used to generate these functions is straightforward, since it simply loops
on the set {0, · · · , 255}, converts each integer i in the corresponding binary expansion
ci and instantiates the labels on the vertices of G according to the configurations of the
connected components encoded by ci.

By applying Tarannikov’s bound to the case of boolean functions of 5 variables
(which is exactly the set of CA rules of radius 2) we see that, with respect to the prop-
erty of nonlinearity, there can be 1-resilient rules with Nl = 12 and 2-resilient rules with
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Nl = 8. For higher orders of resiliency, there are only linear functions. For each biper-
mutive rule generated by our algorithm, we computed its nonlinearity and checked if it
was 2-resilient by using the Fast Walsh Transform. It turned out that all the rules were
either nonlinear with Nl = 8 or linear. We thus selected the rules which were nonlinear
and 2-resilient, since they can resist to second order correlation attacks. This left us, in
total, with 56 rules.

5 Statistical Randomness Tests

Nonlinearity, resiliency and bipermutivity are not sufficient conditions to make a CA
rule suitable for the design of a cryptographic PRNG: for this reason, we subjected
the 56 2-resilient nonlinear bipermutive rules discovered by the method discussed in
Section 4 to a series of statistical tests, in order to find which of them generate pseudo-
random sequences at least as good as the ones produced by rule 30. We structured our
analysis in two phases. First, we removed the rules which generated small pseudoran-
dom sequences (216 bits) that did not pass the tests of the ENT suite [11], using rule 30
as a benchmark. Then, we applied the NIST test suite [7] to longer sequences (106 bits)
generated by the remaining rules. In both phases, we used Wolfram’s method for pseu-
dorandom generation. In particular, we employed a finite CA with periodic boundary
conditions composed by n = 64 cells (since 64 bits is a common value for the length of
the seed in many standard PRNGs, like ANSI X9.17) and we sampled the trace of the
32nd cell to generate the pseudorandom sequences.

5.1 ENT Tests Results

The ENT Test Suite, assembled by Walker and described in [11], is a battery of 5 statis-
tical tests (Entropy, Chi-Square, Arithmetic Mean, Monte Carlo Value for π and Serial
Correlation Coefficient) which can be used to check the quality of pseudorandom se-
quences. For each bipermutive 2-resilient nonlinear rule of radius 2 we generated a
single sequence of length l = 216 = 65536 bits, using as initial seed the configuration
containing only a 1 in the 32nd cell. This method is similar to the one adopted by Koza
in [5], where he evolved a CA-based PRNG by a genetic programming algorithm (even
if, in that case, the fitness function was only the entropy of the generated sequence).
Interestingly, the best rule found by Koza with his approach was rule 30.

As a first selection step, we discarded the rules which did not generate sequences
that passed the Chi-Square test, since this is the most sensitive test in detecting devia-
tions from randomness. As suggested in [11], a sequence passes the Chi-Square test if
the corresponding p-value is included in the interval [0.1,0.9]. After this selection, only
42 rules remained, and we subsequently compared their results with those obtained by
rule 30, selecting only the ones with an error errπ < 1% in the approximation of π. The
resulting 28 rules were similar or even better than rule 30 with respect to the other tests
(entropy, arithmetic mean and serial correlation coefficient), so no further selection was
performed.

We observed that 24 rules presented the same ENT results in couples. This fact
was expected, since in each couple the rules are related by the reflexive transformation,
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mentioned in [6]. Given a binary vector x ∈ Fm
2 , with x = (x1, · · · , xm), the mirror

image of x is defined as the vector xM = (xm, · · · , x1). The reflex of a boolean function
f : Fm

2 → F2 is the function fR defined as fR(x) = f (xM), ∀x ∈ Fm
2 . This transformation

preserves the nonlinearity and resiliency of a function, since the spectral radius remains
unaltered, and the Hamming weight of an input vector is the same as that of its mirror
image. The remaining four rules not coupled are self-reflexive, that is fR(x) = f (x).

Considering our method of pseudorandom generation described earlier, two rules
equivalent by reflexive transformation produce two sequences of configurations which
are symmetric, thus the trace of the 32nd cell is the same. Table 1 shows the ENT
results of the 28 final rules, grouped by reflection couples. The results of rule 30 are
also reported for comparison.

Table 1. ENT tests results on the pseudorandom sequences generated by the 28 rules after the
selection process. E8 stands for the entropy computed on an 8-bit schema, χ2 is the p-value of
the Chi-Square test, µdev is the normalized deviation from the mean value µ = 127.5, errπ is the
error in the approximation of π and scc is the Serial Correlation Coefficient.

Rule - Reflected rule E8 χ2 µdev errπ scc

1452976485 - 1717213605 7.979592 0.83 0.004848 0.37% -0.002338
1453762905 - 1701485205 7.977838 0.56 0.008593 0.66% 0.002280
1453959510 - 1718196630 7.979487 0.85 0.000567 0.37% -0.003930
1500161685 - 1516676505 7.978750 0.69 0.004215 0.75% 0.003161
1503307365 - 1784059305 7.976643 0.30 0.003097 0.01% -0.012526
1516873110 (self-reflexive) 7.977783 0.57 0.003332 0.10% 0.003791
1520018790 - 1784255910 7.976146 0.32 0.001983 0.01% 0.015071
1705417305 (self-reflexive) 7.979135 0.82 0.006708 0.09% 0.001310
1705613910 - 1722128730 7.976625 0.34 0.008589 0.18% 0.017063
1772459610 (self-reflexive) 7.976147 0.27 0.004326 0.38% 0.002607
2509924965 - 2790676905 7.977823 0.52 0.005322 0.38% -0.013957
2510907990 - 2791659930 7.976643 0.30 0.005385 0.55% -0.025343
2526636390 - 2790873510 7.978825 0.73 0.000548 0.10% -0.005077
2573821590 - 2590336410 7.978674 0.76 0.008456 0.57% 0.013556
2589549990 (self-reflexive) 7.979135 0.82 0.000952 0.75% -0.010592
2778290790 - 2794805610 7.978866 0.83 0.007370 0.66% 0.011000

30 (benchmark) 7.979031 0.80 0.004169 0.66% -0.013926

5.2 NIST Tests Results

To further investigate the randomness quality of the rules selected with the ENT suite,
we applied the more stringent statistical tests devised by the NIST in [7] to longer gen-
erated sequences. For each couple of rules equivalent by reflexive transformation, we
chose to test only the rule with the smallest Wolfram code (since the other is expected
to show a similar pseudorandom behaviour), so in total we tested 12 rules plus the 4
self-reflexive ones.
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The NIST suite includes 15 tests, some of which are repeated several times with
different parameters and patterns: the total number of tests run on each sample of pseu-
dorandom sequences is thus 187. The technical details of the tests can be found in [7].
For the sake of our discussion, it is sufficient to know that each test in the suite produces
a p-value for each sequence in the sample, and that the sequence passes the test if its
corresponding p-value is included in the confidence interval [α,1−α], where α is the
significance level. Then, the results of a test over the entire sample of sequences gen-
erated by a rule are interpreted using two approaches. First, the proportion of passing
sequences is computed, and this proportion is considered acceptable if it lies above the
minimum pass rate

mpr = p̂−3

√
p̂(1− p̂)

N
, (9)

where p̂ = 1−α and N is the sample size. Second, a Chi-Square test is performed to
verify whether the p-values are well distributed, by dividing [0,1] in 10 subintervals.

To set up the parameters of the tests, we followed the recommendations suggested
in [7]. In particular, for each rule we generated a sample of N = 1000 pseudorandom
sequences of length l = 106 bits. The 1000 64-bit seeds for the CA have been created
with the HotBits service (available at http://www.fourmilab.ch/hotbits/), which
is a true random number generator (TRNG) based on the radioactive decays of a Cae-
sium-137 source. The significance level adopted was α = 0.001.

Table 2 reports the results of the 16 rules tested (along with rule 30, always used as a
benchmark). For each rule, the value in the column “Approach 1” refers to the number
of tests passed with respect to the proportions of passing sequences, while the value
in “Approach 2” represents the number of tests passed with respect to the distribution
of p-values. We can observe that, except for rule 1503307365, the worst results are
obtained by the self-reflexive rules, with very low pass rates concerning Approach 1.
The reason could lie in the intrinsic symmetries of the space-time diagrams produced
by this kind of rules, which are evident by using the pseudorandom generation method
of Section 5.1 (initial configuration having only a 1 in the central cell).

The remaining rules all have pass rates close to the maximum, and three of them
(1452976485, 1520018790 and 2778290790) pass all the tests with respect to both ap-
proaches, like rule 30. One could thus reasonably conclude that these three rules are
at least as good as rule 30 for pseudorandom number generation, and moreover they
satisfy an additional stronger definition of chaos (E-chaos) and 2-resiliency.

6 Conclusions

In this paper we showed that bipermutive rules, besides generating CAs which are ex-
pansive and mixing chaotic, are also 1-resilient, and thus potentially useful for the de-
sign of strong cryptographic PRNGs. We also derived an enumerative encoding for
bipermutive rules based on a graph representation which groups the 2m inputs of a
boolean function f : Fm

2 → F2 in 2m−2 disjoint connected components. Since it is al-
ready known by Tarannikov’s bound that among the elementary CA rules there are no
nonlinear resilient rules, we applied this encoding to generate the 256 bipermutive rules
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Table 2. NIST tests results on the pseudorandom sequences generated by the 16 final rules of
radius 2 and the elementary rule 30, used as a benchmark.

Rule Approach 1 Approach 2

1452976485 187/187 187/187
1453762905 186/187 186/187
1453959510 186/187 187/187
1500161685 184/187 186/187
1503307365 37/187 187/187

1516873110 (self-reflexive) 94/187 184/187
1520018790 187/187 187/187

1705417305 (self-reflexive) 25/187 186/187
1705613910 185/187 187/187

1772459610 (self-reflexive) 24/187 187/187
2509924965 186/187 187/187
2510907990 129/187 186/187
2526636390 187/187 186/187
2573821590 186/187 186/187

2589549990 (self-reflexive) 25/187 185/187
2778290790 187/187 187/187

30 (benchmark) 187/187 187/187

of radius 2, and used the Fast Walsh Transform to compute their nonlinearities and
check whether they were 2-resilient.

We successively tested the resulting 56 nonlinear and 2-resilient rules with two
batteries of statistical randomness tests, the ENT suite and the NIST suite. We used the
former to discard the rules which did not generate good pseudorandom sequences of 216

bits, and the latter to investigate more thoroughly the remaining 16 rules by sequences
of 106 bits, taking in both phases the results obtained by rule 30 as a benchmark. The
final results showed that rules 1452976485, 1520018790 and 2778290790 passed all
the 187 NIST tests, like rule 30.

It is important to remark, however, that although these three rules are chaotic, 2-re-
silient, nonlinear, and generate good pseudorandom sequences, they cannot be used
alone in the design of either a cryptographic PRNG or a stream cipher. In fact, there
are many other properties of cryptographic boolean functions, described in [1], which
we did not consider in this paper: propagation criterion, algebraic degree and algebraic
immunity are some of the most important ones. An interesting direction for future re-
search is thus to study the class of bipermutive rules with respect to these additional
properties. We also saw that there are no bipermutive rules of radius 2 reaching the
maximum nonlinearity allowed by Tarannikov’s bound, even if they are not 2-resilient.
Further investigation is needed to verify whether bipermutivity induces a stricter bound
on the nonlinearity achievable by a boolean function.

The enumerative encoding described in Section 4.1 gives an effective mean to ex-
plore the spaces of rules having higher radii. The interest in doing such kind of search
is twofold. The first motivation is practical: it is intuitive to think that, as the radius of
the rules increases, the diffusion of a CA-based PRNG gets better. The second reason
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which motivates the exploration of rules with higher radii is to test conjectures about
the aforementioned cryptographic properties, by finding counterexamples.

In the case of r = 3 and r = 4 there are 225
= 4294967296 and 2128 ≈ 3.4 · 1038

bipermutive rules, respectively; an exhaustive exploration as we did for r = 2 is thus
infeasible. However these search spaces could be reduced by improving our encoding
in order to enumerate only those rules which are 2-resilient and highly nonlinear, using
the Shannon decomposition. This approach will be pursued in future research. For all
radii r > 4, instead, the set of possible rules is so large that heuristic methods would
be necessary to efficiently visit the search space, even under the new encoding. For
example, we observe that it would be straightforward to apply our enumerative encoding
to evolve bipermutive rules by means of genetic algorithms.
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