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1 INTRODUCTION

Cellular automata (CA) have widely been used in the past to define pseudo-
random number generators (PRNG) for the design of stream ciphers. Starting
with Wolfram [30], particular interest has been devoted to the study of CA
rules of radius 1. Wolfram proposed to use a CA equipped with rule 30 and to
sample the trace of its central cell as a pseudorandom sequence, to be subse-
quently used as a keystream for a Vernam-like stream cipher. Unfortunately,
even if rule 30 is nonlinear and balanced, and even if it is chaotic with respect
to Devaney’s definition of topological chaos [6], it does not satisfy the prop-
erty of first order correlation immunity, introduced by Siegenthaler in [22].
More generally, Martin has pointed out in [14] that all nonlinear and balanced
rules of radius 1 are not first order correlation immune. As a consequence,
a CA-based PRNG using these rules may pass classic statistical randomness
tests, but it is susceptible to correlation attacks.

Cattaneo, Finelli and Margara showed in [3] that bipermutive rules (that
is, rules which are both leftmost and rightmost permutive) are expansively
chaotic, while in [4] it has been proved that rules which are either leftmost
or rightmost permutive are mixing chaotic. Thus, bipermutive rules satisfy
stronger definitions of topological chaos than the one given by Devaney.

The aim of this paper is to analyse the cryptographic properties of biper-
mutive rules, in order to investigate their possible application to CA-based
PRNG for stream ciphers, such as Wolfram’s generator. More precisely, we
focus our attention on the properties of nonlinearity, resiliency (a combina-
tion of balancedness and correlation immunity) and algebraic degree, which
are related to specific cryptanalytic attacks on the boolean functions involved
in stream ciphers. We also consider two properties usually studied in the
context of block ciphers, namely the strict avalanche criterion (SAC) and the
number of linear structures. As a matter of fact, CA-based block ciphers have
also been proposed in the literature (see for example Gutowitz [8]), thus it
would be useful to find local rules which could be applied to the design of
both stream ciphers and block ciphers based on CA.

We begin our analysis by proving that bipermutive rules are 1-resilient,
and we derive a graph-based encoding to enumerate all bipermutive rules of
a given radius r. We then apply this encoding to generate all 256 bipermutive
rules of radius 2, and compute their Walsh transforms to select only those
which are nonlinear and 2-resilient. We successively filter out the remaining
rules which do not generate sequences of 216 bits (under Wolfram’s genera-
tion method) that pass the statistical tests from the ENT suite [27], using rule
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30 as a benchmark. Next, we apply the more stringent NIST test suite [18] to
longer sequences (106 bits) produced by the remaining rules, observing that
three of them pass all the tests, like rule 30.

Building upon the observations made for the case of radius 2, we gener-
alise our theoretical analysis by showing how the cryptographic properties
besides 1-resiliency of bipermutive rules can be deduced by studying their
generating functions, which are obtained either using the Shannon decom-
position of boolean functions or the graph-based encoding. Specifically, we
show how the algebraic degree, the nonlinearity and the order of resiliency
of a bipermutive rule can be determined using its generating function. We
also prove that bipermutive rules never satisfy the SAC, and we derive a for-
mula to compute the number of linear structures in a bipermutive rule. We
finally perform a combinatorial exploration on the set of bipermutive rules of
radius 3, using the results we proved to characterise three subclasses of rules,
each satisfying a particular combination of cryptographic properties. These
three subclasses are finally subjected to the ENT and NIST suites using the
same procedure adopted for the case of radius 2, and it is found that two of
them contain rules passing all the tests.

The rest of this paper is organised as follows. Section 2 recalls basic defi-
nitions and theoretical results about cellular automata and topological chaos.
Section 3 discusses the cryptographic properties of boolean functions and the
mathematical transforms used to compute them. In Section 4, after a brief
introduction to the basic definitions pertaining to permutive rules and their
chaotic behaviour, it is proved that bipermutive rules are also 1-resilient. Sec-
tion 5 describes an enumerative encoding for bipermutive rules based on a
graph representation, and the application of this encoding to the generation of
bipermutive rules of radius 2, in order to recover only those which are non-
linear and 2-resilient. The results of the statistical tests of the ENT and NIST
suites on the pseudorandom sequences generated by these rules through Wol-
fram’s PRNG are also reported. Section 6 completes the theoretical analysis
started in Section 4 by showing how the considered cryptographic properties
of bipermutive rules are related to those of their generating functions. An
exhaustive exploration on the set of bipermutive rules of radius 3 is also pre-
sented, along with the results of the ENT and NIST suites obtained by the
best rules. Finally, Section 7 sums up the results discussed in the paper, and
describes some possible future lines of research on the subject.

This paper is an extended version of [12].
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2 CELLULAR AUTOMATA

2.1 Finite Cellular Automata
Cellular automata are a particular type of discrete dynamical systems, orig-
inally introduced by Ulam [25] and von Neumann [26] as a mathematical
abstraction for self-reproduction phenomena. A CA is characterised by a reg-
ular lattice of cells. At each discrete time step, all the cells synchronously
update their states by applying a local rule. Formally, we give the following
definition of finite one-dimensional cellular automaton, which is the typical
model of CA used in cryptographic applications.

Definition 2.1. A finite one-dimensional cellular automaton is a 4-tuple

CA = 〈n,A,r, f 〉

where n ∈ N is the number of cells, A is the set of local states, r ∈ N is the
radius and f : A2r+1→ A is the local rule.

Thus, essentially, a finite one-dimensional CA is composed of an array of
n cells. In what follows, we assume A = F2: the CA, in this case, is called
boolean. For all i ∈ {1, ...,n} and t ∈ N, we denote by ct

i the state of the i-th
cell at time t, and the next state is computed as ct+1

i = f (ct
i−r, ...,c

t
i, ...,c

t
i+r).

The configuration of the CA at time t is the binary vector ct = (ct
1, ...,c

t
n). To

update the cells at the boundaries, two approaches are possible: null boundary
conditions, where r cells with constant states are added before the first cell
and after the last one, and periodic boundary conditions, in which the array
can be viewed as a ring, so that the last cell precedes the first one. For all
radii r ∈N, each of the 222r+1

local rules can be indexed by its Wolfram code,
introduced in [29], which is basically the decimal representation of the binary
string that encodes the truth table of the rule.

Wolfram extensively studied the 256 elementary rules (that is, rules of ra-
dius r = 1), and in [30] he proposed to use a CA with rule 30 as a pseudoran-
dom number generator for cryptographic purposes, since it exhibits a chaotic
behaviour when observing the sequence of configurations {ct}t∈N. The CA is
initialised with a random configuration c0 (the seed), and at each time step the
state of the d n

2e-th cell is taken as a new pseudorandom bit. Wolfram analy-
sed this PRNG by applying several statistical tests, which suggested it could
generate good pseudorandom sequences to be used in a Vernam-like stream
cipher. In this case, a short secret key is used as a seed for the PRNG, and the
resulting pseudorandom sequence (called the keystream) is bitwise XORed
with the plaintext to obtain the ciphertext.

4



To a lesser extent, CA have also been used to design block ciphers, where
the plaintext is processed in fixed-length chunks of several bits at once. The
first attempt dates back to Gutowitz [8], who proposed to use CA for the dif-
fusion and substitution phases in a multiple-round block cipher. In particular,
in the diffusion phase he used local rules which give rise to irreversible CA,
where every configuration has several possible preimages, while for the sub-
stitution phase he adopted local rules inducing reversible CA, where every
configuration has a unique predecessor, to implement a substitution box, or
S-box. Gutowitz performed some experiments to assess the security of his
block cipher, which seemed to indicate that it could resist to differential at-
tacks.

2.2 Infinite CA and Topological Chaos
The dynamics of one-dimensional CA is generally studied on the space of bi-
infinite sequences AZ = {c :Z→A}, since every finite CA is trivially periodic
in time. In this case, a configuration c is a function which assigns to each
integer number a symbol from the alphabet A. The set AZ is usually endowed
with the Tychonoff distance, which in the boolean case A = F2 is defined
∀x,y ∈ AZ as

d(x,y) =
+∞

∑
i=−∞

1
2|i|
|x(i)− y(i)| . (1)

Under this distance, AZ is a compact and perfect (i.e., without isolated points)
metric space. Moreover, any global rule F : AZ→ AZ induced by a CA local
rule is a uniformly continuous function with respect to the Tychonoff dis-
tance. Thus a one-dimensional CA, now denoted by a triple 〈A,r, f 〉, can be
considered as a discrete time dynamical system (DTDS) 〈X ,F〉, where the
phase space is X = AZ and the update function is the global rule F : AZ→ AZ

which applies at each time step the local rule f to all the cells i ∈ Z.
The notion of deterministic chaos has been formalised in several rigorous

definitions in the literature of dynamical systems. The most popular among
them is perhaps the definition given by Devaney in [6], which uses a topolog-
ical approach.

Definition 2.2. A DTDS 〈X ,F〉 is Devaney-chaotic (D-chaotic) if it satisfies
the following conditions:

1. Topological transitivity: for all nonempty open subsets U,V ⊂ X , there
exists a t ∈ N such that F t(U)∩V 6= /0.
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2. Topological regularity: The set Per(F) = {x ∈ X : ∃p ∈N : F p(x) = x}
of temporally periodic points is dense in X .

3. Sensitivity to initial conditions: there exists an ε > 0 such that ∀x ∈ X ,

∀δ> 0, ∃y∈X and ∃t ∈N such that d(x,y)< δ and d(F t(x),F t(y))≥ ε.

Other definitions of chaos have been introduced by substituting stronger con-
ditions to the three proposed by Devaney. In particular, the definition of ex-
pansive chaos (E-chaos) in a perfect DTDS 〈X ,F〉 reported in [3] substitutes
sensitivity to initial conditions with positive expansivity: there exists an ε > 0
such that, ∀x,y ∈ X , x 6= y, ∃t ∈ N such that d(F t(x),F t(y)) ≥ ε. In mix-
ing chaos (M-chaos) [4] topological transitivity is replaced by topological
mixing: for all nonempty open subsets U,V ⊂ X , ∃t ∈ N such that ∀s ≥ t,
Fs(U)∩V 6= /0.

3 BOOLEAN FUNCTIONS

Boolean functions are fundamental in cryptography, in the design of both
stream ciphers and block ciphers. Here we summarise the essential definitions
and properties of the theory of cryptographic boolean functions applied in the
rest of the paper to the local rules of CA. Where not otherwise specified, the
proofs of all the theorems and propositions reported in this section can be
found in [1] and [13].

3.1 Basic Definitions and Transforms of Boolean Functions
A boolean function in m variables is a mapping from the set Fm

2 of binary
m-tuples to F2. Given f : Fm

2 → F2 and a particular ordering of the input
vectors (x1, · · · ,xm) ∈ Fm

2 , the truth table of f is the 2m-bit string encoding
the output values of f . In what follows, we will assume that the input vectors
are ordered lexicographically, with the least significant bit on the left. We
denote by Fm the set of 22m

boolean functions in m variables.
The algebraic normal form (ANF) represents a boolean function f as a

sum of products over F2. Specifically, given f : Fm
2 → F2, M = {1, · · · ,m}

and P (M) the power set of M, the ANF of f is defined by the following
polynomial:

f (x) =
⊕

I∈P (M)

aI

(
∏
i∈I

xi

)
. (2)

This representation is unique, since the mapping which associates a boolean
function to its algebraic normal form is a bijection from Fm to the quotient
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ring F2[x1, · · · ,xm]/(x2
1⊕x1, · · · ,x2

m⊕xm). The algebraic degree of a boolean
function f is the cardinality of the largest subset I ∈ P (M) in the ANF of f
such that aI 6= 0. Boolean functions having degree d = 1 are called affine or
linear functions.

Given ω and x vectors of Fm
2 , by ω ·x we denote the scalar product between

ω and x, computed as ω ·x =
⊕m

i=1 ωi ·xi. The polar value of f (x) is defined
as f̂ (x) = (−1) f (x). The Hamming weight of a vector x ∈ Fm

2 , denoted
by wH(x), is the number of nonzero coordinates in x. A boolean function
f : Fm

2 → F2 is balanced if | f−1(0)|= | f−1(1)|= 2m−1.
We now recall the definition of the Walsh Transform, an essential tool used

to characterise cryptographic properties of boolean functions.

Definition 3.1. The Walsh Transform of a boolean function f : Fm
2 → F2 is a

function F̂ : Fm
2 → R defined as follows: ∀ω ∈ Fm

2

F̂(ω) = ∑
x∈Fm

2

f̂ (x) · (−1)ω·x . (3)

The value F̂(ω) is also called the Walsh coefficient of f with respect to the
vector ω. Given a boolean function f , the maximum absolute value of its
Walsh coefficients, Wmax( f ), is called the spectral radius of f . A naive algo-
rithm to compute the Walsh Transform of a boolean function having a truth ta-
ble of n = 2m bits requires O(n2) operations. There is, however, a Fast Walsh
Transform (FWT) algorithm, described in [1], which requires only O(n log2 n)
operations.

We describe some properties of the Walsh Transform which will be used
extensively to prove the theoretical results of this paper:

Property 3.2. Denoting by 0 the null vector of Fm
2 , it follows that its Walsh

coefficient is F̂(0) = ∑x∈Fm
2

f̂ (x).

Property 3.3. From Property 3.2, it is obvious that a function f is balanced if
and only if F̂(0) = 0.

Property 3.4. If wH(ω) = 1, then F̂(ω) = ∑x∈Fm
2

f̂ (x) · (−1)xi , where i is the
index of the nonzero coordinate of ω.

Another fundamental property is Parseval’s relation, which says that the sum
of the squared Walsh spectrum is constant for all boolean functions defined
on m variables.

Theorem 3.5 (Parseval’s Relation). Let f : Fm
2 → F2 be a boolean function.

Then,

∑
ω∈Fm

2

F̂2(ω) = 22m . (4)
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A second transform which is broadly used to study the cryptographic prop-
erties of boolean functions is the autocorrelation function, defined as follows.

Definition 3.6. Let f : Fm
2 → F2 be a boolean function. The autocorrelation

function of f is the function r̂ : Fm
2 → R defined as follows:

r̂(s) = ∑
x∈Fm

2

f̂ (x) · f̂ (x⊕ s) . (5)

The following theorem relates the autocorrelation function with the squared
Walsh spectrum of a boolean function.

Theorem 3.7 (Wiener-Khintchine Theorem). Let f : Fm
2 → F2 be a boolean

function. The following equality holds for all ω ∈ Fm
2 :

F̂2(ω) = ∑
s∈Fm

2

r̂(s) · (−1)ω·s . (6)

The practical consequence of the Wiener-Khintchine theorem is that one can
efficiently compute the autocorrelation function by using the FWT algorithm.

3.2 Cryptographic Properties of Boolean Functions
Several properties and criteria have been defined in the cryptographic litera-
ture which the boolean functions used in symmetric ciphers should satisfy in
order to resist to specific attacks (for a detailed survey, see for example [1]). In
particular, some of these properties refer to the cryptanalysis of certain types
of PRNG and stream ciphers, such as the combiner model where the outputs
of m Linear Feedback Shift Registers (LFSR) are combined by an m-variable
boolean function. On the other hand, other properties pertain more to attacks
on the S-Boxes used in block ciphers.

We provide here a brief overview of the most significant properties which
will be applied in the rest of the paper to analyse the local rules of cellular
automata.

Balancedness
Balanced boolean functions have already been defined in section 3.1 as those
functions having the counterimages of 0 and 1 with the same cardinality. This
means that the truth table representation of such functions is a string com-
posed of an equal number of 0 and 1. Balancedness is a fundamental crite-
rion, that every boolean function used for cryptographic applications should
satisfy. In fact, unbalanced functions present a statistical bias which can be
exploited for linear and differential cryptanalysis.
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Algebraic Degree
Stream ciphers and cryptographic PRNG based on the combiner model which
use boolean functions having low algebraic degree can be attacked using the
Berlekamp-Massey algorithm [16]. In [20] it is shown that as the degree
increases, this algorithm becomes computationally infeasible. As a conse-
quence, the algebraic degree of the boolean functions involved the design of
stream ciphers and cryptographic PRNG should be as high as possible.

Nonlinearity
Considering the truth table representation, cryptographic boolean functions
should have a high Hamming distance from all affine functions. Formally,
the nonlinearity of f is defined as follows.

Definition 3.8. Let f : Fm
2 → F2 be a boolean function. Denoting by Wmax

the spectral radius of f , the nonlinearity of f is defined as

Nl( f ) = 2m−1− 1
2

Wmax .

When used in stream ciphers based on the combiner model, boolean func-
tions having low nonlinearity may expose to fast-correlation attacks (for de-
tails, see for example [5]). For this reason, the nonlinearity should be as high
as possible, to provide better confusion.

Correlation Immunity and Resiliency
Another essential cryptographic criterion for boolean functions, introduced
by Siegenthaler in [22], is correlation immunity, defined below.

Definition 3.9. A boolean function f : Fm
2 → F2 is k-th order correlation

immune (with 1≤ k ≤ m) if the restrictions of f obtained by fixing at most k
input coordinates all have the same Hamming weight.

A function which is both balanced and k-th order correlation immune is
also called k-resilient. If a boolean function f is not k-resilient, then there is
a correlation between at most k input coordinates of f and its output, which
can be exploited (if k is sufficiently small) to recover the initialisations of k
LFSR in the combiner model, as shown by Siegenthaler in [23].

A Walsh characterisation of correlation immunity has been proved by Xiao
and Massey in [31].

Theorem 3.10. Let f : Fm
2 → F2 be a boolean function. Then, f is k-th order

correlation immune if and only if F̂(ω) = 0 for all ω ∈ Fm
2 having weight

1≤ wH(ω)≤ k.
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Hence, by Property 3.3 and Theorem 3.10, in order to check whether a given
boolean function is k-resilient it is sufficient to verify that its Walsh transform
vanishes for all vectors ω having Hamming weight at most k.

The three properties of resiliency, algebraic degree and nonlinearity induce
two trade-offs; in particular, Siegenthaler [22] proved that the algebraic de-
gree of a k-resilient boolean function in m variables can be at most m−k−1,
while Tarannikov [24] showed that the maximum nonlinearity obtainable in
k-resilient functions (with k ≤ m−2) is 2m−1−2k+1.

Strict Avalanche Criterion and Propagation Criterion
The Strict Avalanche Criterion (SAC) was defined by Webster and Tavares
in [28] as a more stringent property than the avalanche effect. If a boolean
function f satisfies the SAC, then whenever a single input bit is comple-
mented the probability that the output bit changes is 1/2. A generalisation
of the SAC, described in [19], is the propagation criterion of order l, which
takes into account the complementation of at most l input bits.

Definition 3.11. A boolean function f : Fm
2 → F2 is said to satisfy the propa-

gation criterion of order l (with 1≤ l ≤ m) if, for all nonzero vectors s ∈ Fm
2

having Hamming weight at most l, the function f (x)⊕ f (x⊕ s) is balanced.

Functions satisfying the propagation criterion of order l are also called PC(l)
functions. Similarly to resiliency, in [19] a characterisation of the propagation
criterion based on the zeros of the autocorrelation function was proved.

Theorem 3.12. A boolean function f : Fm
2 → F2 is PC(l) if and only if

r̂(s) = 0 for all s ∈ Fm
2 such that 1≤ wH(s)≤ l.

Boolean functions which satisfy the SAC and propagation criteria PC(l)
for l > 1 allow to reach a better diffusion in symmetric cryptosystems, partic-
ularly in the S-Boxes of block ciphers. From a practical point of view, this
means that starting from slightly different inputs the outputs produced by the
cipher will be completely different.

Nonexistence of Linear Structures
A boolean function f has a linear structure if there exists a nonzero vector
s ∈ Fm

2 such that the function f (x)⊕ f (x⊕ s) is constant. Using boolean
functions having linear structures introduces weaknesses in block ciphers,
as discussed in [7]. Carlet [1] suggests that boolean functions having linear
structures should be avoided in stream ciphers as well, despite the fact that so
far there are no known attacks exploiting them.
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The following proposition allows one to check the presence of a linear
structure in a boolean function by using its autocorrelation function.

Proposition 3.13. Let f : Fm
2 → F2 be a boolean function and s ∈ Fm

2 a
nonzero input vector. Then, s is a linear structure of f if and only if |r̂(s)| = 2m.

3.3 Correlation Immunity of Elementary CA Rules

The local rule of a CA can be viewed as a boolean function with an odd
number of variables since it is always defined on 2r+ 1 cells, where r is the
radius. Thus, it possible to verify whether a CA-based PRNG is vulnerable
to particular attacks by checking the cryptographic properties of the adopted
local rules.

Returning to Wolfram’s PRNG, it turns out that rule 30 is both balanced
and nonlinear (with Nl( f30) = 2), but it is not first order correlation immune.
More generally, Martin has shown in [14] by an exhaustive search that, among
the 256 elementary rules, only 8 linear rules are 1-resilient. This fact can also
be interpreted as a corollary of Tarannikov’s bound: if r = 1 then the local
rule is defined over m = 3 variables, and the maximum value of nonlinearity
for 1-resilient functions is 23−1−21+1 = 0.

As Martin points out, the fact that rule 30 is not 1-resilient is one of the
reasons why the attack discovered by Meier and Staffelbach [15], which ex-
ploits the quasi-linearity of rule 30, is so efficient on Wolfram’s PRNG. In a
CA with n cells, an attacker which knows at least n/2 consecutive bits of the
central trace has only to guess the n/2 right bits of the initial configuration,
since the left ones can be recovered by a backwards completion procedure if
the local rule is quasi-linear. Thus, the actual keyspace in Wolfram’s PRNG
is bounded above by 2n/2. However, since rule 30 is not first order correlation
immune, an attacker can take advantage of the existing correlations between
the input variables and the output to further reduce the keyspace. As a matter
of fact, Meier and Staffelbach estimated that, in the case of a CA equipped
with rule 30 and having n = 300 cells, this correlation attack has a complexity
of just 18.1 bits, with a success probability δ = 0.5.

This attack shows that even if local rules are employed differently in cellu-
lar automata than boolean functions in classic PRNG/stream ciphers models,
it is still useful to study their cryptographic properties, such as resiliency.
Since there are no elementary rules which are both 1-resilient and nonlinear,
the consequence is that it is necessary to explore the spaces of rules having
higher radii.
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4 BIPERMUTIVE RULES

4.1 Permutive Rules
We now turn to the permutivity property of a boolean function, successively
applying it to CA local rules. Given f : Fm

2 → F2, x = (x1, ...,xm−1) ∈ Fm−1
2

and x̃ ∈ F2, let us denote by (x, x̃{i}), with i ∈ {1, ...,m}, the vector

(x, x̃{i}) = (x1, ...,xi−1, x̃,xi, ...,xm−1) ∈ Fm
2 .

In other words, (x, x̃{i}) is the vector of Fm
2 created by inserting at position i

in x the value x̃, and shifting to the right by one place all the components x j

with j ≥ i.

Definition 4.1. A boolean function f : Fm
2 → F2 is called i-permutive (or

permutive in the i-th variable) if, ∀x = (x1, ...,xm−1) ∈ Fm−1
2 , it holds that

f (x,0{i}) 6= f (x,1{i}) . (7)

A function f which is 1-permutive is also called leftmost permutive (or L-per-
mutive), while a function which is m-permutive is called rightmost permutive
(or R-permutive). We call bipermutive a function which is both L-permutive
and R-permutive.

In [3] and [4] two important relationships between permutive rules and chaotic
CA have been proved, which can be summarised as follows:

Theorem 4.2. The following sufficient conditions hold:

1. A CA based on a local rule f which is bipermutive is E-chaotic.

2. A CA based on a local rule f which is either L-permutive or R-permutive
is M-chaotic.

Thus, bipermutive rules induce CA which are strongly chaotic, since they
satisfy both the definitions of M-chaos and E-chaos. In the case of elementary
CA, rule 30 is R-permutive (and so M-chaotic), while the bipermutive rules
are 90, 105, 150 and 165, which are all linear.

4.2 Basic Cryptographic Properties of Bipermutive Rules
We can now prove the following property: bipermutive rules, besides the
chaotic behaviour they induce in CA, are also 1-resilient. We begin by show-
ing that if a boolean function is permutive in one of its variables, then it is
balanced.
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Lemma 4.3. If f : Fm
2 → F2 is i-permutive, then it is balanced.

Proof. Considering Property 3.2, we rewrite the Walsh Transform of the null
vector as follows:

F̂(0) = ∑
{x∈Fm

2 : xi=0}
f̂ (x) + ∑

{x∈Fm
2 : xi=1}

f̂ (x) . (8)

The function f is i-permutive, so ∀x ∈ Fm−1
2 , f̂ (x,1{i}) = − f̂ (x,0{i}). The

second sum in (8) is exactly the opposite of the first sum, hence F̂(0) = 0. By
Property 3.3, this means that f is balanced.

Now we show that bipermutive rules are first order correlation immune.

Lemma 4.4. Let f :Fm
2 →F2 be bipermutive. Then f is first order correlation

immune.

Proof. Using the characterisation of correlation immunity given in Theo-
rem 3.10, it is sufficient to show that F̂(ω) = 0 for all ω ∈ Fm

2 such that
wH(ω) = 1. Let ω be a generic vector having Hamming weight 1. By Prop-
erty 3.4, the Walsh Transform of ω can be computed as

F̂(ω) = ∑
x∈Fm

2

f̂ (x) · (−1)xi , (9)

where i is the index of the nonzero coordinate in ω. We distinguish two cases:

1. ω has the nonzero coordinate in the first m− 1 positions (there are
m− 1 vectors of such kind, from (1,0, ...,0,0) to (0,0, ...,1,0)). We
rewrite (9) as follows:

F̂(ω) = ∑
x∈Fm−1

2

f̂ (x,0{m}) · (−1)xi + ∑
x∈Fm−1

2

f̂ (x,1{m}) · (−1)xi , (10)

with i∈{1, ...,m−1}. Since f is R-permutive, f̂ (x,1{m})=− f̂ (x,0{m}).
Moreover, since in (10) x varies in Fm−1

2 , the terms (−1)xi are the same
in both sums. Thus, it follows that

F̂(ω) = ∑
x∈Fm−1

2

f̂ (x,0{m}) · (−1)xi − ∑
x∈Fm−1

2

f̂ (x,0{m}) · (−1)xi = 0 .

13



2. ω has the nonzero coordinate in the last position, that is, ω=(0,0, ...,1).
The Walsh Transform of ω is thus given by

F̂(ω) = ∑
x∈Fm

2

f̂ (x) · (−1)xm . (11)

We observe that the substitution f̂ (x,1{m}) = − f̂ (x,0{m}) used in the
previous case does not work here, since the second sum in (10) would
gather all the vectors with value 1 in the last coordinate, and the signs
would all be changed ((−1)xm =−1, ∀x ∈ Fm−1

2 ). We thus rewrite (11)
as follows:

F̂(ω) = ∑
x∈Fm−1

2

f̂ (x,0{1}) · (−1)xm + ∑
x∈Fm−1

2

f̂ (x,1{1}) · (−1)xm . (12)

Now, f is also L-permutive, so f̂ (x,1{1}) = − f̂ (x,0{1}). By using an
argument analogous to the one used in case 1, it follows that

F̂(ω) = ∑
x∈Fm−1

2

f̂ (x,0{1}) · (−1)xm − ∑
x∈Fm−1

2

f̂ (x,0{1}) · (−1)xm = 0 .

In conclusion, the Walsh Transform vanishes for all vectors having Hamming
weight 1, thus the function f is first order correlation immune.

By combining Lemmas 4.3 and 4.4, we finally get the following

Theorem 4.5. Let f : Fm
2 → F2 be a bipermutive boolean function. Then, f

is 1-resilient.

5 GENERATING BIPERMUTIVE RULES OF A GIVEN RADIUS

5.1 An Enumerative Encoding for Bipermutive Functions
Theorem 4.5 motivates the search for bipermutive boolean functions to be
used in CA-based PRNG, since they are both strongly chaotic and of crypto-
graphic interest. The idea is to span the space of bipermutive functions of a
given odd number of variables (or, equivalently, of a given radius) in order to
check additional cryptographic properties. We propose a simple enumerative
encoding which allows us to represent bipermutive functions f : Fm

2 → F2 as
strings of 2m−2 bits.

Let us denote by Fm = { f : Fm
2 → F2} the space of boolean functions in

m ≥ 2 variables, and let G = (V,E) be a graph where V = Fm
2 is the set of

14



vertices. The set of edges E ⊆V ×V is defined by the following relation: for
all x = (x1, · · · , xm) and y = (y1, · · · , ym) ∈ V , the edge {x,y} is in E if
and only if

(x1 = ȳ1 ∧ (∀i ∈ML xi = yi))
∨

(xm = ȳm ∧ (∀i ∈MR xi = yi)) ,

where ML = {2, · · · , m}, MR = {1, · · · , m−1} and ȳ j is the complement of
bit y j. In other words, the edges in E connect those inputs in Fm

2 which must
have different output values in order to satisfy either L-permutivity or R-per-
mutivity in a boolean function. The relation which defines E is symmetric, so
the graph G is undirected. We now show some simple properties of G.

Property 5.1. The degree of each node x∈V is 2. In fact, for all x∈ Fm
2 , there

exists a unique x′ ∈ Fm
2 such that x1 = x̄′1 and xi = x′i for all i ∈ML. Similarly,

there exists a unique x′′ ∈ Fm
2 such that x′′ 6= x′ and xm = x̄′′m and xi = x′′i for

all i ∈MR.

Property 5.2. Let x,y be vectors of Fm
2 such that x1 = ȳ1, xm = ȳm and xi = yi

for all i ∈ML∩MR = {2, · · · , m−1}. Then, the two adjacent nodes of x are
the same as the adjacent nodes of y. In fact, let us suppose that x′,x′′ ∈ Fm

2 are
the two adjacent nodes of x, in particular that x1 = x̄′1, xi = x′i for all i∈ML and
xm = x̄′′m, xi = x′′i for all i ∈MR. Then, x′1 = y1 and x′i = yi for all i ∈ML∩MR.
Since xm = x′m, it follows that ym = x̄′m, so {y,x′} ∈ E. A similar argument
shows that {y,x′′} ∈ E, so x′,x′′ are also the adjacent nodes of y.

Property 5.3. Since the relation which defines E is symmetric, from Prop-
erty 5.2 we can deduce that the adjacent nodes of x′ and x′′ are exactly x and
y, hence {x, x′, x′′, y} is a connected component of G. There are 2m−2 pairs
{x,y} of vectors which differ in the leftmost and rightmost coordinates and
coincide in the m− 2 central ones. Thus G is composed of 2m−2 disjoint
connected components of this kind.

A boolean function f ∈ Fm is essentially a label function f : V → F2 on
the vertices of G. If f is bipermutive then the label of each node x is different
from the labels of its two adjacent nodes, while the labels of the nodes which
are connected via a path of length 2 are the same. Considering Property 5.3,
this means that the label of a single node uniquely determines the labels of
the remaining nodes in the connected component where x resides. So, in the
case of a bipermutive function, we can define the configuration of a generic
connected component in G as the value of the label of one of its nodes x, called
the representative of the connected component. The most natural choice is to
select in each connected component the node x whose binary vector encodes
the smallest integer number as representative, which is the one having value
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Figure 1
Representation of the bipermutive function 01011010 (rule 90) on the corresponding
graph G. The representatives are shaded in gray, so this function corresponds to the
string c = 00.

zero in the leftmost and rightmost coordinates. From a 2m−2-bit string c we
can thus recover the truth table of the corresponding bipermutive function as
follows: for all j ∈ {0, · · · , 2m−2− 1}, we label the representative r j of the
j-th connected component with the value c j. The adjacent nodes of r j are then
labelled with c̄ j, and the last node in the connected component (the one having
nonzero value in the leftmost and rightmost coordinates) is labelled with c j.
Figure 1 reports an example of bipermutive rule represented on the graph G in
the case of m = 3 variables. Given m∈N, there are exactly 22m−2

bipermutive
functions of m variables; moreover, by using this choice of representatives in
G the truth tables of the functions can be enumerated in lexicographic order.

5.2 Application to the case r = 2
It has already been observed in Section 4.1 that in the set of elementary CA
(r = 1) there are only four affine bipermutive rules. We have thus used the
enumerative encoding described in Section 5.1 to explore the set of 223

= 256
bipermutive rules of radius r = 2. The algorithm used to generate these func-
tions is straightforward, since it simply loops on the set {0, · · · , 255}, con-
verts each integer i to the corresponding binary expansion ci and instantiates
the labels on the vertices of G according to the configurations of the connected
components encoded by the value of ci.

By applying Tarannikov’s bound to the case of boolean functions of 5 vari-
ables (which is exactly the set of CA rules of radius 2) we see that, with
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Res (NL, AD, LS)
(0, 1, 31) (4, 3, 7) (8, 2, 3)

1-Res 2 128 56
2-Res 14 0 56

Table 1
Distribution of bipermutive rules of radius 2 with respect to resiliency (1-Res, 2-Res),
and the three observed combinations of nonlinearity (NL), algebraic degree (AD) and
number of linear structures (LS).

respect to the property of nonlinearity, there can be 1-resilient rules with
Nl = 12 and 2-resilient rules with Nl = 8. For higher orders of resiliency,
there are only linear (affine) functions. For each bipermutive rule generated
by our algorithm, we checked its cryptographic properties by computing its
Walsh Transform, autocorrelation function and ANF.

We now describe the observed results. The maximum value achieved for
nonlinearity was Nl = 8 also in the rules which satisfied only 1-resiliency,
whereas the other two values for nonlinearity were Nl = 4 and Nl = 0. On
the other hand, the set of 2-resilient rules was composed only of linear rules
or rules having Nl = 8. Concerning the other cryptographic properties, all
the 256 bipermutive rules did not satisfy the Strict Avalanche Criterion (that
is, PC(1)) and featured linear structures, ranging from the extreme case of 31
structures for linear functions to a minimum of 3. Regarding the algebraic
degree, the 2-resilient nonlinear rules had value d = 2, thus they reached
also Siegenthaler’s bound. Among the rules which were only 1-resilient, the
nonlinear ones had algebraic degree d = 2 and d = 3 (reaching in the latter
case Siegenthaler’s bound). Table 1 recaps the cardinalities of subsets of
bipermutive rules with respect to resiliency, nonlinearity, algebraic degree
and number of linear structures.

We thus selected the set of nonlinear and 2-resilient rules, considering
that they achieve both Tarannikov’s and Siegenthaler’s bounds. Consulting
Table 1, this left us in total with 56 rules.

We successively subjected these resulting 2-resilient nonlinear bipermu-
tive rules to a series of statistical tests, in order to find which of them gener-
ate pseudorandom sequences which are at least as good as the ones produced
by rule 30. We structured our analysis in two phases. First, we removed the
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rules which generated small pseudorandom sequences (216 bits) that did not
pass the tests of the ENT suite [27], using rule 30 as a benchmark. Then,
we applied the NIST test suite [18] to longer sequences (106 bits) generated
by the remaining rules. In both phases, we used Wolfram’s method for pseu-
dorandom generation. In particular, we employed a finite CA with periodic
boundary conditions composed of n = 64 cells (since 64 bits is a common
value for the length of the seed in many standard PRNG, like ANSI X9.17)
and we sampled the trace of the 32nd cell to generate the pseudorandom se-
quences.

The ENT Test Suite, assembled by Walker and described in [27], is a bat-
tery of 5 statistical tests (Entropy, Chi-Square, Arithmetic Mean, Monte Carlo
Value for π and Serial Correlation Coefficient) which can be used to check the
quality of pseudorandom sequences. For each bipermutive 2-resilient nonlin-
ear rule of radius 2 we generated a single sequence of length l = 216 = 65536
bits, using as initial seed the configuration containing only a 1 in the 32nd
cell. This method is similar to the one adopted by Koza in [10], where he
evolved a CA-based PRNG by a genetic programming algorithm (even if, in
that case, the fitness function was only the entropy of the generated sequence).
Interestingly, the best rule found by Koza with his approach was rule 30.

As a first selection step, we discarded the rules which did not generate se-
quences that passed the Chi-Square test, since this is the most sensitive test
in detecting deviations from randomness. As suggested in [27], a sequence
passes the Chi-Square test if the corresponding p-value is included in the
interval [0.1,0.9]. After this selection, only 42 rules remained, and we subse-
quently compared their results with those obtained by rule 30, selecting only
the ones with an error errπ < 1% in the approximation of π. The resulting 28
rules were similar or even better than rule 30 with respect to the other tests
(entropy, arithmetic mean and serial correlation coefficient), so no further se-
lection was performed.

We observed that 24 rules presented the same ENT results in pairs. This
fact was expected, since in each pair the rules are related by the reflexive
transformation, mentioned in [14]. Given a vector x = (x1, · · · , xm)∈ Fm

2 , the
mirror image of x is defined as xM = (xm, · · · , x1). The reflex of a boolean
function f : Fm

2 → F2 is the function fR defined as fR(x) = f (xM), ∀x ∈ Fm
2 .

The remaining non-coupled four rules are self-reflexive, that is, fR(x) = f (x).
The reflection preserves all the cryptographic properties of a function. In

fact, given a balanced boolean function f the resulting reflected function fR is
also balanced, since using another ordering of the input variables does not in-
fluence the output distribution of f . Further, the algebraic normal form of fR
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may be determined by simply substituting each term xi in the polynomial rep-
resenting the ANF of f by its mirrored version xMi , thus the algebraic degree
of fR equals the degree of f . Moreover, the Hamming weight of an input vec-
tor x ∈ Fm

2 is clearly preserved under the mirroring operation. Consequently,
the Walsh and autocorrelation spectra of fR are permutations of the corre-
sponding spectra of f . In particular, the spectral radius remains unaltered,
thus Nl( fR) = Nl( f ). Additionally, if the Walsh Transform of f vanishes for
all vectors having a fixed Hamming weight, then the same stands for the cor-
responding vectors of fR. Hence, f is k-th order correlation immune if and
only if also fR satisfies this property. By an analogous argument on the auto-
correlation functions, it is easily seen that f satisfies the propagation criterion
PC(l) if and only if fR satisfies it. Finally, if f has a linear structure a ∈ Fm

2 ,
a 6= 0, then the vector aM is a linear structure for fR.

Considering our method of pseudorandom generation described earlier,
it follows that two rules equivalent by reflexive transformation produce two
sequences of configurations which are symmetric, thus the trace of the 32nd
cell is the same.

Table 2 shows the ENT results of the 28 final rules, grouped by reflection
pairs. In each pair the rule having the suffix “a” is the one with the highest
Wolfram code? , while self-reflexive rules are identified by the label “(sr)”.
The results of the elementary rule 30 are also reported for comparison.

To further investigate the randomness quality of the rules selected with
the ENT suite, we applied the more stringent statistical tests devised by the
NIST in [18] to longer generated sequences. For each pair of rules equivalent
by reflexive transformation, we chose to test only the rule with the smallest
Wolfram code (since the other is expected to show a similar pseudorandom
behaviour), so in total we tested 12 rules plus the 4 self-reflexive ones.

The NIST suite includes 15 tests, some of which are repeated several times
with different parameters and patterns: the total number of tests run on each
sample of pseudorandom sequences is thus 187. The technical details of the
tests can be found in [18]. For the sake of our discussion, it is sufficient to
know that each test in the suite produces a p-value for each sequence in the
sample, and that the sequence passes the test if its corresponding p-value is
included in the confidence interval [α,1−α], where α is the significance level.
Then, the results of a test over the entire sample of sequences generated by
a rule are interpreted using two approaches. First, the proportion of passing

? The Wolfram codes of the local rules of radius 2 and 3 referenced in this paper can be found
at http://openit.disco.unimib.it/~mariot/wolfram_codes.html.
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Rule - Reflex E8 χ2 µdev errπ scc

R01 - R01a 7.979592 0.83 0.004848 0.37% -0.002338
R02 - R02a 7.977838 0.56 0.008593 0.66% 0.002280
R03 - R03a 7.979487 0.85 0.000567 0.37% -0.003930
R04 - R04a 7.978750 0.69 0.004215 0.75% 0.003161
R05 - R05a 7.976643 0.30 0.003097 0.01% -0.012526

R06 (sr) 7.977783 0.57 0.003332 0.10% 0.003791
R07 - R07a 7.976146 0.32 0.001983 0.01% 0.015071

R08 (sr) 7.979135 0.82 0.006708 0.09% 0.001310
R09 - R09a 7.976625 0.34 0.008589 0.18% 0.017063

R10 (sr) 7.976147 0.27 0.004326 0.38% 0.002607
R11 - R11a 7.977823 0.52 0.005322 0.38% -0.013957
R12 - R12a 7.976643 0.30 0.005385 0.55% -0.025343
R13 - R13a 7.978825 0.73 0.000548 0.10% -0.005077
R14 - R14a 7.978674 0.76 0.008456 0.57% 0.013556

R15 (sr) 7.979135 0.82 0.000952 0.75% -0.010592
R16 - R16a 7.978866 0.83 0.007370 0.66% 0.011000

rule 30 7.979031 0.80 0.004169 0.66% -0.013926

Table 2
ENT tests results on the pseudorandom sequences generated by the 28 rules after the
selection process. E8 stands for the entropy computed on an 8-bit schema, χ2 is the
p-value of the Chi-Square test, µdev is the normalised deviation from the mean value
µ = 127.5, errπ is the error in the approximation of π and scc is the Serial Correlation
Coefficient.
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sequences is computed, and this proportion is considered acceptable if it lies
above the minimum pass rate

mpr = p̂−3

√
p̂(1− p̂)

N
,

where p̂ = 1− α and N is the sample size. Second, a Chi-Square test is
performed to verify whether the p-values are well distributed, by dividing
[0,1] in 10 subintervals.

To set up the parameters of the tests, we followed the recommendations
suggested in [18]. In particular, for each rule we generated a sample of
N = 1000 pseudorandom sequences of length l = 106 bits. The 64-bit
seeds for the CA have been created with the HotBits service (available at
http://www.fourmilab.ch/hotbits/), which is a true random number
generator (TRNG) based on the radioactive decays of a Caesium-137 source.
The significance level adopted was α = 0.001.

Table 3 reports the results of the 16 rules tested (along with rule 30, always
used as a benchmark). For each rule, the value in the column “Approach 1”
refers to the number of tests passed with respect to the proportions of passing
sequences, while the value in “Approach 2” represents the number of tests
passed with respect to the distribution of p-values. We can observe that, ex-
cept for rule R05, the worst results are obtained by the self-reflexive rules,
with very low pass rates concerning Approach 1. The reason could lie in
the intrinsic symmetries of the space-time diagrams produced by this kind of
rules, which are evident by using our pseudorandom generation method (with
the initial configuration having only a 1 in the central cell).

The remaining rules all have pass rates close to the maximum, and three of
them (R01, R07 and R15) pass all the tests with respect to both approaches,
like rule 30.

6 FURTHER CRYPTOGRAPHIC PROPERTIES OF BIPERMUTIVE
RULES

6.1 Shannon Decomposition and Generating Functions
The exhaustive exploration carried out for the case of radius r = 2 gave us
some hints about the cryptographic properties of bipermutive rules, apart from
1-resiliency. For instance, we noticed that the values of nonlinearity are all
multiples of 4. Moreover, if we add the 14 affine 2-resilient bipermutive func-
tions to the 56 nonlinear ones we get a total of 70 rules, which is exactly the
number of balanced 3-variable boolean functions (in fact,

(8
4

)
= 70). As a
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Rule Approach 1 Approach 2

R01 187/187 187/187
R02 186/187 186/187
R03 187/187 186/187
R04 186/187 184/187
R05 187/187 37/187

R06 (sr) 184/187 94/187
R07 187/187 187/187

R08 (sr) 186/187 25/187
R09 187/187 185/187

R10 (sr) 187/187 24/187
R11 187/187 186/187
R12 186/187 129/187
R13 186/187 187/187
R14 186/187 186/187

R15 (sr) 185/187 25/187
R16 187/187 187/187

rule 30 187/187 187/187

Table 3
NIST tests results on the pseudorandom sequences generated by the 16 final rules of
radius 2 and the elementary rule 30, used as a benchmark.
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matter of fact, the set of all boolean functions defined over 3 variables coin-
cides with the space of binary configurations which encode bipermutive rules
of radius 2.

These empirical observations made us conjecture that the cryptographic
properties of bipermutive rules are related to those of their graph configura-
tions, the latter considered as boolean functions themselves. From this section
on we pursue this idea, proving several other results about the cryptographic
characterisation of bipermutive rules.

We start our investigation by studying the ANF of bipermutive rules using
the Shannon decomposition formula [21]. In particular, let f : Fm

2 → F2 be a
boolean function and i ∈ {1, · · · ,m}. Then, for all x ∈ Fm−1

2 and y ∈ F2 the
following identity holds:

f (x,y{i}) = y · f (x,1{i})⊕ ȳ · f (x,0{i}) . (13)

In what follows, given a vector x ∈ Fm−2
2 and x1,xm ∈ F2, by (x1,x,xm) we

denote the vector of Fm
2 obtained by juxtaposing x1, x and xm.

Let us suppose that f : Fm
2 → F2 is a bipermutive function. We begin by

decomposing f with respect to x1.

f (x1,x,xm) = x1 · f (1,x,xm)⊕ x̄1 · f (0,x,xm) . (14)

We now apply the same decomposition to f (1,x,xm) and f (0,x,xm) with re-
spect to xm:

f (1,x,xm) = xm · f (1,x,1)⊕ x̄m · f (1,x,0) , (15)

f (0,x,xm) = xm · f (0,x,1)⊕ x̄m · f (0,x,0) . (16)

By substituting (15) and (16) in equation (14) we get:

f (x1,x,xm) = x1 · [xm · f (1,x,1)⊕ x̄m · f (1,x,0)] ⊕
⊕ x̄1 · [xm · f (0,x,1)⊕ x̄m · f (0,x,0)] .

(17)

Thus, we have rewritten f by using four functions in m−2 variables: f (1,x,1),
f (0,x,1), f (1,x,0) and f (0,x,0). Since f is also bipermutive, for all x ∈ Fm−2

2
the following relations hold:

f (1,x,1) = f (0,x,0) ;

f (1,x,0) = f (0,x,1) = f (0,x,0) .
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We now reformulate equation (17) in terms of f (0,x,0). Since f (0,x,0) de-
pends only on the m−2 central variables, we relabel it by g(x).

f (x1,x,xm) = x1 · [xm ·g(x)⊕ x̄m ·g(x)] ⊕ x̄1 · [xm ·g(x)⊕ x̄m ·g(x))] . (18)

In order to simplify equation (18), we multiply the terms in parentheses by x1

and xm, and regroup them with respect to g(x) and g(x), obtaining:

f (x1,x,xm) = x1 · [xm ·g(x)⊕ x̄m ·g(x)] ⊕ x̄1 · [xm ·g(x)⊕ x̄m ·g(x))] =

= g(x) · (x1⊕ xm)⊕g(x) · (x1⊕ xm) =

= g(x) · [1⊕ (x1⊕ xm)]⊕ [1⊕g(x)] · (x1⊕ xm) =

= g(x)⊕(((((((
[g(x) · (x1⊕ xm)]⊕ (x1⊕ xm)⊕(((((((

[g(x) · (x1⊕ xm)] =

= g(x)⊕ x1⊕ xm .

(19)

Hence, we can evaluate a bipermutive boolean function f : Fm
2 → F2 on

a particular input vector (x1,x,xm) ∈ Fm
2 by simply computing the restriction

g(x) = f (0,x,0) on the central m−2 variables and by summing to it modulo 2
the values of the leftmost and rightmost variables. It is easy to see that the
truth table of g corresponds to the graph encoding of f discussed in Section
5.1. For this reason, we call g the generating function of f .

The following result on the algebraic degree of a bipermutive function is
now immediate:

Theorem 6.1. Let f : Fm
2 → F2 be a bipermutive function with generating

function g : Fm−2
2 → F2 having algebraic degree deg(g)≥ 1. Then, the alge-

braic degree of f equals deg(g).

Proof. Simply observe that the algebraic normal form of f , as shown in equa-
tion (19), is obtained by adding two terms of degree 1 to the ANF of g.

6.2 Walsh Spectrum and Nonlinearity
We now show how the Walsh spectrum of a bipermutive function f can be
efficiently computed by using the spectrum of its generating function g.

Lemma 6.2. Let f :Fm
2 →F2 be a bipermutive function with generating func-

tion g : Fm−2
2 → F2. Then, for all ω ∈ Fm−2

2 ,

F̂(1,ω,1) = 4 · Ĝ(ω) . (20)
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Proof. Let us first rewrite the Walsh transform of the vector (1,ω,1) by
grouping the terms in the sum with respect to the values of x1 and xm:

F̂(1,ω,1) = ∑
x∈Fm−2

2

f̂ (0,x,0) · (−1)(1,ω,1)·(0,x,0)+

+ ∑
x∈Fm−2

2

f̂ (1,x,1) · (−1)(1,ω,1)·(1,x,1)+

+ ∑
x∈Fm−2

2

f̂ (0,x,1) · (−1)(1,ω,1)·(0,x,1)+

+ ∑
x∈Fm−2

2

f̂ (1,x,0) · (−1)(1,ω,1)·(1,x,0) .

(21)

We now have to evaluate all scalar products in (21). For all x ∈ Fm−2
2 , the

following relations hold:

(1,ω,1) · (0,x,0) = 1 ·0⊕ω · x⊕1 ·0 = ω · x ;

(1,ω,1) · (1,x,1) = 1 ·1⊕ω · x⊕1 ·1 = ω · x ;

(1,ω,1) · (0,x,1) = 1 ·0⊕ω · x⊕1 ·1 = ω · x⊕1 ;

(1,ω,1) · (1,x,0) = 1 ·1⊕ω · x⊕1 ·0 = ω · x⊕1 .

Moreover, since f is bipermutive, it follows that f̂ (0,x,0) = f̂ (1,x,1) and
f̂ (0,x,1) = f̂ (1,x,0) for all x ∈ Fm−2

2 . By substituting (21), we can simplify
the expression obtaining

F̂(1,ω,1) = 2 ·

 ∑
x∈Fm−2

2

f̂ (1,x,1) · (−1)ω·x + ∑
x∈Fm−2

2

f̂ (1,x,0) · (−1)ω·x⊕1

 .

(22)
Since (−1)ω·x⊕1 = (−1) · (−1)ω·x, the second sum in (22) changes sign while
the scalar product becomes the same as that in the first sum:

F̂(1,ω,1) = 2 ·

 ∑
x∈Fm−2

2

f̂ (1,x,1) · (−1)ω·x− ∑
x∈Fm−2

2

f̂ (1,x,0) · (−1)ω·x

 .

(23)
The function f is R-permutive, so f̂ (1,x,1) = − f̂ (1,x,0) for all x ∈ Fm−2

2 .
Then, Equation (23) can be rewritten as:
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F̂(1,ω,1) = 2 ·

 ∑
x∈Fm−2

2

f̂ (1,x,1) · (−1)ω·x + ∑
x∈Fm−2

2

f̂ (1,x,1) · (−1)ω·x

=

= 4 ·

 ∑
x∈Fm−2

2

f̂ (1,x,1) · (−1)ω·x

 .

(24)

Finally, we know that f̂ (1,x,1) = f̂ (0,x,0) = ĝ(x). Since the last sum in (24)
varies on Fm−2

2 , it is exactly the Walsh transform of g on ω:

F̂(1,ω,1) = 4 ·

 ∑
x∈Fm−2

2

ĝ(x) · (−1)ω·x

= 4 · Ĝ(ω) . (25)

Lemma 6.3. Let f : Fm
2 → F2 be a bipermutive function and g : Fm−2

2 → F2

its generating function. Then, F̂(ω) = 0 for all ω ∈ Fm
2 such that ω1 = 0 or

ωm = 0.

Proof. By Lemma 6.2 we know that F̂(1,ω,1) = 4 · Ĝ(ω) for all ω ∈ Fm−2
2 .

Then, the sum of these squared Walsh coefficients is

∑
ω̃∈Fm−2

2

F̂2(1, ω̃,1) = ∑
ω̃∈Fm−2

2

16 · Ĝ2(ω̃) = 24 · ∑
ω̃∈Fm−2

2

Ĝ2(ω̃) . (26)

If we apply Parseval’s relation to the generating function g, it follows that

∑
ω̃∈Fm−2

2

Ĝ2(ω̃) = 22(m−2) . (27)

By substituting the result of (27) in equation (26) we get

24 · ∑
ω̃∈Fm−2

2

Ĝ2(ω̃) = 24 ·22(m−2) = 24+2m−4 = 22m . (28)

We have thus concluded that, in a bipermutive rule, the sum of the squared
Walsh coefficients F̂2(1, ω̃,1) equals 22m. Parseval’s relation also tells us that
22m is the sum of all squared Walsh coefficients of f . This means that for
all ω̃ ∈ Fm−2

2 the remaining coefficients F̂(0, ω̃,0), F̂(0, ω̃,1) and F̂(1, ω̃,0)
must necessarily be null, hence the thesis.
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We can now give another proof of the fact that bipermutive functions are
1-resilient.

Theorem 6.4. Let f : Fm
2 → F2 be a bipermutive function. Then f is 1-re-

silient.

Proof. Lemma 6.3 states that the Walsh transform of f vanishes for all vec-
tors ω belonging to the set S = {ω ∈ Fm

2 : ω1 = 0∨ωm = 0}. Clearly, S
includes all the vectors having Hamming weight at most 1, hence f is 1-re-
silient.

The next theorem shows how the nonlinearity of a bipermutive function is
related to the nonlinearity of its generating function.

Theorem 6.5. Given a bipermutive function f : Fm
2 → F2 and its generating

function g : Fm−2
2 → F2, the nonlinearity of f is equal to

Nl( f ) = 4 ·Nl(g) . (29)

Proof. In order to determine the nonlinearity of f we have to compute its
spectral radius Wmax( f ). Using Lemma 6.2, it is easy to see that Wmax( f ) =
4 ·Wmax(g). Thus, the nonlinearity of f is

Nl( f )= 2m−1−Wmax( f )
2

= 2m−1− 4 ·Wmax(g)
2

= 2m−1−2 ·Wmax(g) . (30)

Furthermore, we can express Wmax(g) in terms of Nl(g) as follows:

Nl(g) = 2m−3−Wmax(g)
2

. (31)

Hence,
Wmax(g) = 2 · (2m−3−Nl(g)) . (32)

By substituting (31) in equation (30) we finally get

Nl( f ) = 2m−1−22 · (2m−3−Nl(g)) = 2m−1−2m−1 +22 ·Nl(g) = 4 ·Nl(g) .

(33)

Consequently, Theorem 6.5 explains why in our exhaustive exploration of
bipermutive rules of radius 2 we only found functions having nonlinearity
values which were multiples of 4.
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6.3 k-Resiliency
The next theorem generalises Theorems 4.5 and 6.4 to k-resilient bipermutive
functions.

Theorem 6.6. Let f : Fm
2 → F2 be a bipermutive function having generating

function g : Fm−2
2 → F2. Then, f is k-resilient if and only if g is (k− 2)-re-

silient.

Proof. Let us suppose that f is k-resilient. We have to verify that Ĝ(ω) = 0
for all ω ∈ Fm−2

2 such that wH(ω)≤ k−2. Since f is also bipermutive, using
Lemma 6.2 we can compute the Walsh transform of g as follows:

Ĝ(ω) =
F̂(1,ω,1)

4
. (34)

It is clear that if wH(1,ω,1)≤ k then wH(ω)≤ k−2. Since F̂(1,ω,1) = 0 for
all ω∈ Fm−2

2 having Hamming weight at most k−2 (because f is k-resilient),
by equation (34) it also follows that Ĝ(ω) = 0 for such ω. Thus, we deduced
that g is (k−2)-resilient.

Next, let us suppose that g is (k−2)-resilient. By Lemma 6.3 we already
know that the Walsh transform of f vanishes for all vectors ω ∈ Fm

2 whose
leftmost or rightmost component is zero, thus we have to check the condi-
tion of k-resiliency only for the remaining vectors of the kind (1,ω,1) having
Hamming weight at most k. Since g is (k−2)-resilient and considering equa-
tion (34), for all ω ∈ Fm−2

2 with wH(ω)≤ k−2 the following equalities hold:

Ĝ(ω) = 0 = F̂(1,ω,1) . (35)

Finally, if ω has Hamming weight at most k−2, then the weight of the vector
(1,ω,1) is at most k, hence f is k-resilient.

We can now understand why the number of 2-resilient bipermutive func-
tions of radius 2 coincides with the cardinality of balanced boolean func-
tions in 3 variables. In fact, balanced functions can be considered as being
0-resilient, thus by Theorem 6.6 the order of resiliency of bipermutive rules
generated from balanced generating functions is k = 0+2 = 2.

6.4 Autocorrelation Spectrum, SAC and Linear Structures
The remaining cryptographic properties to be investigated are those related to
the autocorrelation function, namely the propagation criterion PC(l) and the
presence of linear structures. In what follows, we denote by 0 the null vector
of Fm−2

2 .
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Lemma 6.7. Given i∈{1, · · · ,m}, let f :Fm
2 →F2 be an i-permutive function,

and let r̂ : Fm
2 → R be the autocorrelation function. Then, r̂(0,1{i}) = −2m.

Moreover, if f is bipermutive, then r̂(1,0,1) = 2m.

Proof. We begin by assuming that f is i-permutive. Since (0,1{i}) is the
vector composed of zeros except in the i-th component, for all x ∈ Fm−1

2 it
follows that

((x,0{i})⊕ (0,1{i})) = (x,1{i})

((x,1{i})⊕ (0,1{i})) = (x,0{i})

As a consequence, we can rewrite the autocorrelation function r̂(0,1{i}) as
follows:

r̂(0,1{i}) = ∑
x∈Fm−1

2

f̂ (x,0{i}) · f̂ (x,1{i})+ ∑
x∈Fm−1

2

f̂ (x,1{i}) · f̂ (x,0{i}) . (36)

Since f is i-permutive, all the products f̂ (x,0{i}) · f̂ (x,1{i}) and f̂ (x,1{i}) ·
f̂ (x,0{i}) give−1 as a result, thus each of the two sums in (36) equals−2m−1:

r̂(0,1{i}) =−2m−1−2m−1 =−2m . (37)

Next, let us suppose that f is bipermutive. For all x ∈ Fm−2
2 the following

identities hold:

(0,x,0)⊕ (1,0,1) = (1,x,1)

(1,x,0)⊕ (1,0,1) = (0,x,1)

(0,x,1)⊕ (1,0,1) = (1,x,0)

(1,x,1)⊕ (1,0,1) = (0,x,0)

Hence, r̂(1,0,1) can be expressed as

r̂(1,0,1) = ∑
x∈Fm−2

2

f̂ (0,x,0) · f̂ (1,x,1)+ ∑
x∈Fm−2

2

f̂ (1,x,0) · f̂ (0,x,1) +

+ ∑
x∈Fm−2

2

f̂ (0,x,1) · f̂ (1,x,0)+ ∑
x∈Fm−2

2

f̂ (1,x,1) · f̂ (0,x,0) =

= 2 ·

 ∑
x∈Fm−2

2

f̂ (0,x,0) · f̂ (1,x,1)+ ∑
x∈Fm−2

2

f̂ (1,x,0) · f̂ (0,x,1)

 .

(38)
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Since f is bipermutive, f̂ (0,x,0) = f̂ (1,x,1) and f̂ (1,x,0) = f̂ (0,x,1). As
a consequence, all the products in equation (38) give 1 as a result, thus each
sum equals 2m−2:

r̂(1,0,1) = 2 · (2m−2 +2m−2) = 2m . (39)

We can use Lemma 6.7 to make the following conclusion about the prop-
agation criterion and the linear structures of a bipermutive function.

Theorem 6.8. Let f : Fm
2 → F2 be a bipermutive function. Then, f does not

satisfy PC(1) (i.e., the Strict Avalanche Criterion) and furthermore f has at
least three nonzero linear structures.

Proof. A boolean function satisfies PC(1) if and only if the autocorrelation
function is null for all vectors having Hamming weight 1. Since f is biper-
mutive, by Lemma 6.7 we know that the autocorrelation function of the two
vectors (0,1{1}) and (0,1{m}) equals −2m 6= 0. Additionally, a boolean func-
tion has a nonzero linear structure if and only if |r̂(s)| = 2m for a certain
vector s. Hence, f has at least three linear structures, corresponding to the
vectors (0,1{1}), (0,1{m}) and (1,0,1).

We now refine the previous results by relating the linear structures of a
generating function to those of the corresponding bipermutive rule.

Lemma 6.9. Let f :Fm
2 →F2 be a bipermutive function with generating func-

tion g : Fm−2
2 → F2. If a ∈ Fm−2

2 is a linear structure for g, then (0,a,0),
(1,a,0), (0,a,1) and (1,a,1) are linear structures for f .

Proof. We prove only the case (0,a,0): since f is bipermutive, it follows
that f̂ (0,a,0) = f̂ (1,a,1) and f̂ (1,a,0) = f̂ (0,a,1) = − f̂ (0,a,0), thus the
remaining three cases can be proved in a similar way.

Let us assume that a ∈ Fm−2
2 is a linear structure for g. We write the

autocorrelation function of f with respect to vector (0,a,0), as follows:

r̂(0,a,0) = ∑
x∈Fm−2

2

f̂ (0,x,0) · f̂ (0,x⊕a,0)+ ∑
x∈Fm−2

2

f̂ (1,x,0) · f̂ (1,x⊕a,0)+

+ ∑
x∈Fm−2

2

f̂ (0,x,1) · f̂ (0,x⊕a,1)+ ∑
x∈Fm−2

2

f̂ (1,x,1) · f̂ (1,x⊕a,1) .

(40)
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Since f is bipermutive, we have the following identities:

f̂ (0,x,0) = f̂ (1,x,1) = ĝ(x) ; f̂ (0,x⊕a,0) = f̂ (1,x⊕a,1) = ĝ(x⊕a) ;

f̂ (1,x,0) = f̂ (0,x,1) =−ĝ(x) ; f̂ (1,x⊕a,0) = f̂ (0,x⊕a,1) =−ĝ(x⊕a) .

Thus, equation (40) becomes

r̂(0,a,0) = ∑
x∈Fm−2

2

ĝ(x) · ĝ(x⊕a)+ ∑
x∈Fm−2

2

(−ĝ(x)) · (−ĝ(x⊕a))+

+ ∑
x∈Fm−2

2

(−ĝ(x)) · (−ĝ(x⊕a))+ ∑
x∈Fm−2

2

ĝ(x) · ĝ(x⊕a) =

= 4 ·

 ∑
x∈Fm−2

2

ĝ(x) · ĝ(x⊕a)

 .

(41)

Since vector a∈Fm−2
2 is a linear structure for g, by Proposition 3.13 it follows

that ∣∣∣∣∣∣ ∑
x∈Fm−2

2

ĝ(x) · ĝ(x⊕a)

∣∣∣∣∣∣= 2m−2 . (42)

By substituting (42) in (41) we obtain |r̂(0,a,0)| = 2m, hence (0,a,0) is a
linear structure for f .

Using Lemma 6.9, we can finally derive the following

Theorem 6.10. Let f : Fm
2 → F2 be a bipermutive function with generating

function g : Fm−2
2 → F2. If g has k linear structures, then f has 3+4k linear

structures.

Proof. By Theorem 6.8 we know that all bipermutive functions always have
at least three linear structures. Moreover, by Lemma 6.9 if a ∈ Fm−2

2 is a
linear structure for g, then the four vectors obtained by surrounding a with the
possible combinations of values 0 and 1 are linear structures for f . Globally,
these facts mean that if g has k linear structures, then f has at least 3+ 4k
linear structures.

However, the argument used in the proof of Lemma 6.9 can be easily
adapted to prove also that if s ∈ Fm−2

2 is not a linear structure for g and s
is not null, then the four vectors (0,s,0), (1,s,0), (0,s,1) and (1,s,1) are not
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linear structures for f as well. In fact, in Lemma 6.9 we proved that for all
s1,sm ∈ F2 the absolute value of the autocorrelation function of (s1,s,sm) is 4
times the autocorrelation function of g computed on s. Since |r̂g(s)| 6= 2m−2,
it also follows that |r̂ f (s1,s,sm)| 6= 2m, thus (s1,s,sm) cannot be a linear struc-
ture for f . The consequence is that the linear structures of f are exactly the
three corresponding to the vectors (0,1{1}), (0,1{m}) and (1,0,1) plus the
4k which can be obtained by juxtaposing the k linear structures of g with
the four possible pairings of values s1,sm ∈ F2 in the leftmost and rightmost
coordinates.

6.5 Application to the Case r = 3
We now summarise the various theoretical results about bipermutive rules that
we proved in the previous sections. Given a bipermutive rule f : Fm

2 → F2 and
its generating function g : Fm−2

2 → F2, we have the following facts:

• The algebraic degree of f equals the degree of g, except when g is
the constant function 0. In this case, the algebraic degree of f is 1
(Theorem 6.1).

• The nonlinearity of f is 4 times the nonlinearity of g (Theorem 6.5) .

• Rule f is k-resilient if and only if g is (k−2)-resilient (Theorem 6.6).
In particular, every bipermutive rule generated by a balanced boolean
function is 2-resilient, and every bipermutive rule is 1-resilient (Theo-
rems 4.5 and 6.4).

• If g has k linear structures, then f always has 3+ 4k linear structures
(Theorem 6.10). Moreover, f never satisfies the SAC (Theorem 6.8).

Hence, the problem of finding bipermutive rules potentially useful for the de-
sign of CA-based cryptographic PRNG can be reduced to the search of good
generating functions. Since all bipermutive functions do not satisfy the SAC
and always have at least three linear structures, their usefulness for CA-based
block ciphers is limited. However, statistical evidence suggests that these
two criteria should be taken into account also in the generating functions of
bipermutive rules used for pseudorandom generation. In fact, looking back to
the exhaustive search performed in the case of radius r = 2, it turns out that
the three rules R01, R07 and R16 passing all the NIST tests are defined by
generating functions which are PC(1) and have no linear structures. Thus, a
possible strategy is to search for generating functions which satisfy the SAC
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and minimise the number of linear structures. The resulting bipermutive func-
tions will have the minimum number of linear structures and will satisfy the
Restricted SAC (or RSAC), that is, the Strict Avalanche Criterion computed
only on the input vectors (0,x,0), for all x ∈ Fm−2

2 .
There is a total of 227−2

= 4294967296 bipermutive rules of radius r = 3, a
number sufficiently limited to allow an exhaustive search in a reasonable time.
We can additionally reduce the search space to the set of

(32
16

)
= 601080390

balanced boolean functions in 5 variables, since in this way we can generate
only bipermutive rules which are at least 2-resilient.

To completely span this space of functions we used a basic combinato-
rial algorithm described by Knuth in [9]. The algorithm simply generates all
the 32-bit balanced strings (which represent the truth tables of the functions)
by starting from the string having all the 1s in the least significant positions,
and gradually modifying it by shifting the most significant 1s to the right.
The strings are generated in lexicographic order, so the corresponding dec-
imal representations of the functions are listed in their natural order. This
algorithm is more efficient in the situations where, considering the binomial
coefficient

(n
k

)
, k ≤ n/2, which is exactly our case. For each 32-bit string f

generated, we computed its cryptographic properties by using the mathemati-
cal transforms mentioned in Section 3.1. Considering Tarannikov’s bound, in
the case of radius r = 3 the maximum order of resiliency for nonlinear func-
tions is 4, thus we kept only those generating functions which were at least
1-resilient.

We remark the fact that there are more sophisticated and efficient tech-
niques to enumerate all the resilient boolean functions of a certain number of
variables, like the one described in [2]. However, the implementation in Java
of our combined algorithm (lexicographic generation of balanced strings and
computation of their cryptographic properties) took only one hour to explore
the entire set of 5-variable balanced boolean functions, using a single core
machine with a 1.6 GHz processor. The algorithm returned in total 807980
1-resilient functions in 5 variables. This quantity is coherent with the results
reported in [11], where the number of 1-resilient boolean functions is derived
by an algebraic method.

Among the resulting functions, we isolated three subsets which satisfied
the best available trade-offs among the cryptographic properties considered.
In particular, we used the concept of deviation from PC(l), originally intro-
duced in [17], to find the functions which featured a minimal deviation from
the SAC.
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Definition 6.11. Let f :Fm
2 →F2 be a boolean function. For all l ∈{1, · · · ,m}

the deviation from the propagation criterion PC(l) of f is defined as

pcdev f (l) = max{|r̂(s)| : 1≤ wH(s)≤ l} .

Clearly, a function f satisfies PC(l) if and only if pcdev f (l) = 0, and
pcdev f (1) is the deviation from the SAC. The details of the selected subsets
are reported in Table 4.

Set ID RES PC1 NL AD LS #CARD

SET 1G 1 8 12 3 0 96768
SET 2G 1 0 8 3 0 3840
SET 3G 2 32 8 2 3 520

Table 4
Cryptographic properties of the selected classes of generating functions in 5 variables.
RES stands for resiliency order, PC1 is the deviation from the SAC, NL is the non-
linearity, AD the algebraic degree, LS the number of linear structures and #CARD the
cardinality of the class.

From SET 1G, SET 2G and SET 3G we built the corresponding classes of biper-
mutive rules of radius 3, respectively named SET 1B, SET 2B and SET 3B. Ta-
ble 5 shows the cryptographic properties of these three classes.

Set ID RES NL AD LS

SET 1B 3 48 3 3
SET 2B 3 32 3 3
SET 3B 4 32 2 7

Table 5
Cryptographic properties of the generated bipermutive rules of radius 3.

We successively scrutinised the rules of SET 1B, SET 2B and SET 3B by means
of the ENT and NIST suites, using the same methodology described in Sec-
tion 5.2. Dealing in this case with thousands of rules, we adopted stricter
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Set ID errπ |scc| µdev #CARD

SET 1B < 0.1% < 0.001 < 0.001 40
SET 2B < 1% < 0.001 < 0.001 10
SET 3B < 1% < 0.01 < 0.001 14

Table 6
Thresholds adopted for the selection of the rules to be subsequently investigated by
means of the NIST tests.

criteria than the ones employed for the case of radius r = 2 to select the final
rules to be tested with the NIST battery. In particular, after having removed
from all the sets the rules which failed the Chi-Square test, we opted for the
thresholds reported in Table 6. Tables 7, 8 and 9 report the ENT results of the
selected bipermutive rules.

We finally subjected the remaining rules in the three sets to the NIST suite.
Table 10 reports the results of the tests.

In the group of rules selected from SET 1B, four rules passed all the NIST
tests (R17, R20, R28, and R30), while among the rules filtered from SET 2B

only one passed all of them (rule R40). Class SET 3B is the one which scored
the worst results, with rules R45 and R47 having very low pass rates with
respect to the proportion of passing sequences (respectively, 26 and 147 out
of 187) and no rules which passed all the tests, though the remaining ones all
have pass rates close to the maximum.

7 CONCLUSIONS

In this paper we showed that bipermutive rules, besides generating CA which
are expansive and mixing chaotic, are also potentially useful for the design
of strong cryptographic PRNG. In particular, we proved that all bipermutive
rules are also 1-resilient, and we derived an enumerative encoding for biper-
mutive rules based on a graph representation which groups the 2m inputs of
a boolean function f : Fm

2 → F2 in 2m−2 connected components. Since by
Tarannikov’s bound there are no nonlinear and resilient elementary CA rules,
we applied this encoding to generate the 256 bipermutive rules of radius 2,
and used the mathematical transform discussed in Section 3.1 to check their
cryptographic properties, in particular 2-resiliency and high nonlinearity.
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Rule - Reflection E8 χ2 µdev errπ scc

R17 - R17a 7.976113 0.23 0.000223 0.09% -0.000582
R18 - R18a 7.975715 0.24 0.000160 0.01% 0.000432
R19 - R19a 7.976280 0.28 0.000589 0.09% 0.000970
R20 - R20a 7.977819 0.54 0.000431 0.09% 0.000485
R21 - R21a 7.975340 0.13 0.000506 0.01% 0.000594
R22 - R22a 7.976285 0.24 0.000274 0.01% 0.000312
R23 - R23a 7.979331 0.82 0.000457 0.01% 0.000488
R24 - R24a 7.977144 0.39 0.000434 0.09% 0.000162
R25 - R25a 7.975499 0.23 0.000472 0.01% -0.000494
R26 - R26a 7.978890 0.72 0.000241 0.01% -0.000078
R27 - R27a 7.977617 0.50 0.000831 0.09% 0.000166
R28 - R28a 7.976794 0.37 0.000749 0.09% -0.000579
R29 - R29a 7.976941 0.34 0.000096 0.09% 0.000419
R30 - R30a 7.978999 0.76 0.000707 0.01% 0.000741
R31 - R31a 7.979656 0.88 0.000336 0.09% 0.000038
R32 - R32a 7.979713 0.88 0.000385 0.01% 0.000423
R33 - R33a 7.976338 0.31 0.000183 0.09% 0.000279
R34 - R34a 7.975078 0.13 0.000138 0.01% 0.000483
R35 - R35a 7.979510 0.85 0.000424 0.01% 0.000776
R36 - R36a 7.975770 0.22 0.000030 0.09% 0.000042

Table 7
ENT tests results on the pseudorandom sequences generated by the final 40 rules of
radius 3 selected from SET 1B.
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Rule - Reflection E8 χ2 µdev errπ scc

R37 - R37a 7.975941 0.19 0.000720 0.57% 0.000781
R38 - R38a 7.976647 0.31 0.000930 0.46% 0.000075
R39 - R39a 7.976391 0.31 0.000397 0.10% 0.000887
R40 - R40a 7.978808 0.73 0.000918 0.94% 0.000012
R41 - R41a 7.978865 0.30 0.000364 0.29% -0.000043

Table 8
ENT tests results on the pseudorandom sequences generated by the final 10 rules of
radius 3 selected from SET 2B.

Rule - Reflection E8 χ2 µdev errπ scc

R42 - R42a 7.976535 0.33 0.000434 0.46% 0.004211
R43 - R43a 7.978922 0.72 0.000542 0.83% 0.005450
R44 - R44a 7.979220 0.80 0.000677 0.29% 0.001004
R45 - R45a 7.976311 0.27 0.000107 0.74% -0.002056
R46 - R46a 7.977311 0.43 0.000344 0.65% -0.005901
R47 - R47a 7.978972 0.78 0.000543 0.65% -0.002483
R48 - R48a 7.979771 0.89 0.000711 0.09% -0.006638

Table 9
ENT tests results on the pseudorandom sequences generated by the final 14 rules of
radius 3 selected from SET 3B.
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Rule P-value Proportion

R17 187/187 187/187
R18 186/187 185/187
R19 187/187 186/187
R20 187/187 187/187
R21 186/187 186/187
R22 186/187 186/187
R23 186/187 186/187
R24 186/187 186/187
R25 187/187 186/187
R26 187/187 186/187
R27 186/187 187/187
R28 187/187 187/187
R29 187/187 186/187
R30 187/187 187/187
R31 187/187 186/187
R32 187/187 186/187
R33 186/187 186/187
R34 187/187 186/187
R35 186/187 186/187
R36 186/187 187/187
R37 187/187 186/187
R38 186/187 185/187
R39 187/187 186/187
R40 187/187 187/187
R41 187/187 185/187
R42 187/187 186/187
R43 187/187 185/187
R44 186/187 187/187
R45 187/187 26/187
R46 187/187 186/187
R47 187/187 147/187
R48 186/187 184/187

Table 10
NIST tests results on the pseudorandom sequences generated by the 32 final bipermu-
tive rules of radius 3 selected from SET 1B, SET 2B and SET 3B.
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We successively tested the resulting 56 nonlinear and 2-resilient rules with
two batteries of statistical randomness tests, the ENT suite and the NIST suite.
We used the former to discard the rules which did not generate good pseudo-
random sequences of 216 bits, and the latter to investigate more thoroughly
the remaining 16 rules by sequences of 106 bits, taking in both phases the re-
sults obtained by rule 30 as a benchmark. The final results showed that rules
R01, R07 and R16 passed all the 187 NIST tests.

We continued our theoretical investigation on bipermutive rules by show-
ing how their algebraic degree, nonlinearity and order of resiliency can be
determined by using the corresponding generating functions, which are de-
rived by applying the Shannon decomposition on the leftmost and rightmost
variables. Moreover, we observed that the truth tables of the generating func-
tions can be easily characterised by the labelling of the graph-based encoding
mentioned above.

We successively used these theoretical results to reduce the problem of
finding good bipermutive rules for cryptographic CA-based PRNG to the
search of their generating functions, and in particular to the optimisation of
their cryptographic properties. Even if bipermutive rules never satisfy the
SAC and always have at least three linear structures (and thus they are not
good candidates for a CA-based block cipher), these two properties should
be considered also in the context of pseudorandom generation, since the best
rules of radius r = 2 which passed the NIST tests had generating functions
which satisfied the SAC and had no linear structures.

In the case of bipermutive rules of radius r = 3, the associated set of gen-
erating functions is sufficiently limited to allow an exhaustive search, which
we performed by running a combinatorial algorithm devised by Knuth [9] on
the space of balanced boolean functions in 5 variables. We then selected three
subsets of generating functions satisfying the best trade-offs among the con-
sidered cryptographic properties, and we investigated them by means of the
ENT and NIST tests as well. We found that five rules (R17, R20, R28, R30
and R40) passed all the tests.

Considering that the elementary rule 30 passed all the NIST tests as well,
we can thus reasonably conclude that these eight rules of radius 2 and 3 are at
least as good as rule 30 for pseudorandom number generation, and moreover
they satisfy an additional stronger definition of chaos (E-chaos and M-chaos)
and good trade-offs among the cryptographic properties we considered in this
paper. In particular, all these rules are at least 2-resilient, and they reach both
Siegenthaler’s and Tarannikov’s bounds, with the exception of rule R40.

In any case, it is important to remark that the cryptographic properties
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considered in this paper are not sufficient to verify the robustness of a CA-
based PRNG using local rules satisfying them. As a matter of fact, there are
other properties of cryptographic boolean functions which we did not analyse
in this paper, such as algebraic immunity, described in [1]. Further research is
also needed to assess whether the fact that bipermutive rules are not good with
respect to the autocorrelation-related properties (i.e. the propagation criterion
and the number of linear structures) can be used to attack a CA-based PRNG.

The enumerative encoding described in Section 4.1 gives an effective mean
to explore the spaces of rules having higher radii. The interest in doing such
kind of search is twofold. The first motivation is practical: it is intuitive
to think that, as the radius of the rules increases, the diffusion of a CA-based
PRNG gets better. The second reason which motivates the exploration of rules
with higher radii is to test conjectures about the aforementioned cryptographic
properties, by finding counterexamples.

For all radii r ≥ 4, however, the set of possible bipermutive rules is so
large that heuristic methods would be necessary to efficiently visit the search
space. For example, we observe that it would be straightforward to apply
our enumerative encoding to evolve bipermutive rules by means of genetic
algorithms, such as the one described by Millan, Clark and Dawson in [17].
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