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Abstract. We introduce the notion of asynchrony immunity for cellular automata
(CA), which can be considered as a generalization of correlation immunity in the
case of boolean functions. The property could have applications in cryptography,
namely as a countermeasure for side-channel attacks in CA-based cryptographic
primitives. We give some preliminary results about asynchrony immunity, and we
perform an exhaustive search of (3,10)–asynchrony immune CA rules of neigh-
borhood size 3 and 4. We finally observe that all discovered asynchrony-immune
rules are center-permutive, and we conjecture that this holds for any size of the
neighborhood.
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1 Introduction

In the last years, research about cryptographic applications of cellular automata (CA)
focused on the properties of the underlying local rules [8,7,6]. In fact, designing a
CA-based cryptographic primitive using local rules that are not highly nonlinear and
correlation immune could make certain attacks more efficient.

The aim of this short paper is to begin investigating a new property related to asyn-
chronous CA called asynchrony immunity (AI), which could be of interest in the context
of side-channel attacks. This property can be described by a three-move game between
a user and an adversary. Let r,m∈N, n = m+2r and t ≤m. The game works as follows:

1. The user chooses a local rule f : F2r+1
2 → F2 of radius r

2. The adversary chooses j ≤ t cells of the CA in the range {r, · · · ,m+ r}.
3. The user evaluates the output distribution D of the CA F : Fm+2r

2 → Fm
2 and the

distribution D̃ of the asynchronous CA F̃ : Fm+2r
2 → Fm

2 where the t cells selected
by the adversary are not updated

4. Outcome: if both D and D̃ equals the uniform distribution, the user wins. Otherwise,
the adversary wins

A cellular automaton rule f : F2r+1
2 → F2 is called (t,n)–asynchrony immune if, for

all lengths 2r < k ≤ n and for all j ≤ t, both the asynchronous CA F̃ : Fk
2 → Fk−2r

2
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resulting from not updating any subset of j cells and the corresponding synchronous
CA F : Fk

2→ Fk−2r
2 are balanced, that is, the cardinality of the counterimage of each k-

bit configuration equals 22r. Thus, asynchrony immune CA rules represent the winning
strategies of the user in the game described above.

Notice the difference between the asynchrony immunity game and the t–resilient
functions game [5]: in the latter, generic vectorial boolean functions F : Fn

2 → Fm
2 are

considered instead of cellular automata, and the adversary selects both values and posi-
tions of the t input variables.

The side-channel attack model motivating our work is the following. Suppose that
a CA of length n is used as an S-box in a block cipher, and that an attacker is able to
inject clock faults by making t cells not updating. If the CA is not (t,n)–AI, then the
attacker could gain some information on the internal state of the cipher by analyzing
the differences of the output distributions in the original CA and the asynchronous CA.

In the remainder of this paper, we define the considered model of (asynchronous)
CA in Section 2, and we formally introduce the definition of asynchrony immunity in
Section 3, giving some basic theoretical results regarding this property. In particular, we
show that AI is invariant under the operations of reflection and complement. We then
perform in Section 4 an exhaustive search of (3,10)–asynchrony immune cellular au-
tomata up to neighborhood size 4, computing also their nonlinearity values. We finally
observe that all discovered rules are center-permutive, and we conjecture that this is a
necessary condition for asynchrony immunity.

2 Preliminaries

In this work, we consider one-dimensional CA as a particular kind of vectorial boolean
functions, i.e. mappings of the type F : Fn

2 → Fm
2 where F2 = {0,1} denotes the finite

field with two elements. Here we cover only the essential concepts, referring the reader
to [4] for further information on vectorial boolean functions.

A vectorial boolean function F : Fn
2→ Fm

2 (also called an (n,m)–function) is defined
by m coordinate functions fi : Fn

2→ F2, where for all x ∈ Fn
2 and i ∈ {0, · · · ,m−1}, the

value of fi(x) specifies the output of the i− th bit of F .
Let r,m ∈N be positive integers and f : F2r+1

2 → F2 be a boolean function of 2r+1
variables. The cellular automaton of length n = m+ 2r and local rule f of radius r is
the (n,m)–function F : Fn

2→ Fm
2 defined for all x = (x0, · · · ,xn−1) ∈ Fn

2 as:

F(x0, · · · ,xn−1) = ( f (x0, · · · ,x2r), f (x1, · · · ,x2r+1), · · · , f (xm, · · · ,xn−1)) . (1)

Thus, a CA F is defined by the synchronous application of the local rule f to all the
central input variables {xr, · · · ,xm+r}. This means that, for all i ∈ {0, · · · ,m− 1}, the
i− th coordinate function of F is defined as fi(x) = f (xi, · · · ,xi+2r).

Let I = {i1, · · · , it}⊆ [m] = {0, · · · ,m−1} be a subset of indices. The t–asynchronous
CA (t–ACA) F̃I induced by I on a CA F : Fm+2r

2 → Fm
2 is obtained by preventing the in-

put variables xi1+r, · · · ,xit+r to update. In particular, for all indices ik ∈ I the coordinate
function fik equals the identity, while for the remaining indices j ∈ J = [m]\ I function
f j still corresponds to the local rule f applied to the neighborhood { j, · · · , j+2r}.
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3 Basic Definition and Properties of Asynchrony Immunity

A CA F : Fm+2r
2 → Fm

2 is balanced if for all y ∈ Fm
2 it holds that |F−1(y)| = 22r. We

formally define asynchrony immunity in CA as follows:

Definition 1. Let m,n,r, t ∈ N be positive integers with n = m+ 2r and t ≤ m, and let
f : F2r+1

2 → F2 be a local rule of radius r. Rule f is called (t,n)–asynchrony immune
((t,n)–AI) if, for all 0 < k ≤ m and for all sets I ⊆ [k] with |I| ≤min{k, t}, both the CA
F :Fk+2r

2 →Fk
2 and the t–ACA F̃I :Fk+2r

2 →Fm
2 are balanced, i.e. |F−1(y)|= |F̃−1

I (y)|=
22r holds for all y ∈ Fm

2 .

Remark 1. The definition of (t,n)–asynchrony immunity implies in particular that the
local rule f is itself balanced, i.e. | f−1(0)|= | f−1(1)|= 22r.

Among all possible 222r+1
rules of radius r, we are interested in finding asynchrony

immune rules that satisfy additional useful cryptographic properties, such as high non-
linearity. As a consequence, proving necessary conditions for a rule being (t,n)–AI
helps one to prune the search space for possible candidates.

We begin by showing that asynchrony immunity is invariant under reflection and
complement. To this end, recall that the reverse of a vector x = (x0, · · · ,xn−1) is the
same vector in reverse order, i.e. xR = (xn−1, · · · ,x0), while the complement of x is the
vector xC = (1⊕x0, · · · ,1⊕xn). Given f : F2r+1

2 → F2, the reflected and complemented
rules f R and f C are respectively defined as f R(x) = f (xR) and f C(x) = 1⊕ f (x), for
all x ∈ F2r+1

2 . For all m ∈N, the reflected and complemented CA FR : Fm+2r
2 → Fm

2 and
FC : Fm+2r

2 → Fm
2 are defined for all x ∈ Fn

2 as follows:

FR(x) = F(xR)R = ( f (x2r, · · · ,x0), · · · , f (xn−1, · · · ,xm)) , (2)

FC(x) = 1⊕F(x) = (1⊕ f (x0, · · · ,x2r), · · · ,1⊕ f (xm, · · · ,xn−1)) . (3)

The following result shows that asynchrony immunity is preserved under reflection and
complement.

Lemma 1. Let f : F2r+1
2 → F2 be a (t,n)–AI local rule, with n = m+ 2r and t ≤ m.

Then, the reflected and complemented rules f R and f C are (t,n)–AI as well.

Proof. Let 0 < k ≤ m and I = {i1, · · · , il} ⊆ [k], with l ≤min{k, t}.
For the reflected rule f R, we know by Equation (2) that FR(x) = F(xR)R. It follows

that the reflection of the l-ACA F̃I is defined as:

F̃R
I (x) = F̃J(xR)R = ( f (x2r, · · · ,x0), · · · ,x j1 , · · · ,x jl , · · · , f (xk+2r−1, · · · ,xk)) , (4)

where J = { j1, · · · , jl} and js = k− is for all 1 ≤ s ≤ l. Rule f is (t,n)–AI and J
is still a set of l ≤ t indices, thus |F−1(y)| = |F̃−1

J (y)| = 22r for all y ∈ Fm
2 . Since

the reverse operator is a bijection over both Fk+2r
2 and Fk

2, by Equation (4) it results
that |(FR)−1(y)|= |F−1(y)| and |(F̃R

I )−1(y)|= |F̃−1
J (y)|. Thus, the reflected rule f R is

(t,n)–AI as well.
Analogously, for the complemented rule f C the l-ACA F̃I is defined as:

F̃C
I (x) = (1⊕ f (x0, · · · ,x2r), · · · ,xi1 , · · · ,xil , · · · ,1⊕ f (xk, · · · ,xk+2r−1)) . (5)

3

https://doi.org/10.1007/978-3-319-44365-2_17


The final publication is available at Springer via https://doi.org/10.1007/978-3-319-44365-2_17

Hence we can compute F̃C
I by XORing F̃I with a bitmask composed of all 1s excepts in

the positions i1, · · · , il . Since this operation is again a bijection over Fk
2 and rule f is

(t,n)–AI, it means that |(FC)−1(y)|= |F−1(y)|= 22r and |(F̃C
I )−1(y)|= |F̃−1

I (y)|= 22r

for all y ∈ Fm
2 . Thus, f C is also (t,n)–AI. ut

4 Search of AI Rules up to 4 Variables

In order to search for asynchrony immune rules having additional cryptographic prop-
erties, by Remark 1 and Lemma 1 we only need to explore balanced rules under the
equivalence classes induced by reflection and complement. We performed an exhaus-
tive search among all elementary CA rules of radius r = 1 in order to find those satisfy-
ing (t,n)–asynchrony immunity with t = 3 and n = 10. The reason why we limited our
analysis to these particular values is twofold. First, checking for asynchrony immunity
is a computationally cumbersome task, since it requires to determine the output distri-
bution of the t-ACA for all possible choices of at most t blocked cells. Second, the sizes
of vectorial boolean functions employed as nonlinear components in several real-world
cryptographic primitives, such as KECCAK [2], is not large.

In our quest for AI rules we also took into account the nonlinearity property, which
is crucial in the design of several cryptographic primitives. Formally, a boolean function
is linear if it is a linear combination of the input variables. The nonlinearity of a boolean
function f : Fn

2→ F2 is the minimum Hamming distance of f from all linear functions,
and it equals Nl( f ) = 2−1(2n −Wmax( f )), where Wmax( f ) is the maximum absolute
value of the Walsh transform of f [3].

Up to reflection and complement, and neglecting the identity rule that is trivially
AI for every length n and order t, we found that only rule 60 is (3,10)–asynchrony
immune. However, since rule 60 is linear it is not interesting from the cryptographic
standpoint. We thus extended the search by considering all local rules of 4 variables
defined on an asymmetric neighborhood. The corresponding CA F is defined as:

F(x0, · · · ,xn−1) = ( f (x0,x1,x2,x3), · · · , f (xm,xm+1,xm+2,xm+3)) . (6)

The search returned a total of 18 rules satisfying (3,10)–asynchrony immunity, among
which several of them were nonlinear. Table 1 reports the Wolfram codes of the dis-
covered rules, along with their nonlinearity values and algebraic normal form (ANF).
One can notice from the ANF column in Table 1 that all discovered rules depend on
the input variable x1 in a linear way. This means that each rule can be written as
f (x0,x1,x2,x3) = x1 ⊕ g(x0,x2,x3), where g : F3

2 → F2. This means that the discov-
ered rules are all center-permutive, i.e. by fixing the values of all variables except x1
the resulting restrictions of the functions are permutations over F2. Remark that the el-
ementary rule 60 is center permutive as well, being defined as f (x0,x1,x2) = x1⊕ x2.
This seems to suggest that center-permutivity is a necessary condition for asynchrony
immunity, a property that would greatly reduce the search space for possible AI can-
didates with interesting cryptographic properties. For future research, we thus plan to
investigate the following conjecture:

Conjecture 1. Let f :Fd
2→F2 be a (t,n)–asynchrony immune rule of d variables. Then,

rule f is center-permutive.
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Rule Nl( f ) f (x0,x1,x2,x3) Rule Nl( f ) f (x0,x1,x2,x3)

13107 0 1⊕ x1 14028 2 x1⊕ x0x3⊕ x2x3⊕ x0x2x3
13116 4 x1⊕ x2⊕ x3⊕ x2x3 14643 2 1⊕ x1⊕ x0x3⊕ x0x2x3
13155 2 1⊕ x1⊕ x2⊕ x0x2⊕ x2x3⊕ x0x2x3 14796 2 x1⊕ x3⊕ x0x3⊕ x0x2x3
13164 2 x1⊕ x0x2⊕ x3⊕ x0x2x3 15411 4 1⊕ x1⊕ x3⊕ x2x3
13203 2 1⊕ x1⊕ x0x2⊕ x0x2x3 15420 0 x1⊕ x2
13212 2 x1⊕ x2⊕ x0x2⊕ x3⊕ x2x3⊕ x0x2x3 15555 0 1⊕ x1⊕ x2⊕ x3
13251 4 1⊕ x1⊕ x2⊕ x2x3 15564 4 x1⊕ x2x3
13260 0 x1⊕ x3 26214 0 x0⊕ x1
13875 2 1⊕ x1⊕ x3⊕ x0x3⊕ x2x3⊕ x0x2x3 26265 0 1⊕ x0⊕ x1⊕ x3

Table 1. List of (3,10)–asynchrony immune CA rules of neighborhood size 4.

Another possible direction to explore is related to the maximum nonlinearity achiev-
able by AI CA rules. For all even d ∈ N, bent boolean functions f : Fd

2 → F2 are those
reaching the highest possible nonlinearity, which is Nl( f ) = 2d/2−1. Hence, an interest-
ing question would be if it is possible to design an infinite family of bent AI CA.

A fact which could be useful for computer search of AI rules is that an infinite CA
is surjective if and only if its finite counterpart is balanced for all lengths n ∈ N, where
balancedness corresponds to 0–AI. Thus, it would make sense to limit the search only
to surjective CA, by adapting for instance Amoroso and Patt’s algorithm [1].

Acknowledgements. The author wishes to thank the anonymous referees for their sug-
gestions on how to improve the paper and extend the results for future research.
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