
This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

Artificial Intelligence for the Design of
Symmetric Cryptographic Primitives

Luca Mariot1, Domagoj Jakobovic2, Thomas Bäck3, and Julio
Hernandez-Castro4

1Cyber Security Research Group, Delft University of Technology, Mekelweg 2, Delft,
The Netherlands ,

l.mariot@tudelft.nl
2Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3,

Zagreb, Croatia ,
domagoj.jakobovic@fer.hr

3Leiden Institute of Advanced Computer Science, Niels Bohrweg 1, Leiden, The
Netherlands ,

t.h.w.baeck@liacs.leidenuniv.nl
4School of Computing, University of Kent, Canterbury CT2 7NF, UK ,

j.c.hernandez-castro@kent.ac.uk

May 7, 2022

Abstract

This chapter provides a general overview of AI methods used to support the
design of cryptographic primitives and protocols. After giving a brief introduction
to the basic concepts underlying the field of cryptography, we review the most
researched use cases concerning the use of AI techniques and models to design
cryptographic primitives, focusing mainly on Boolean functions, S-boxes and
pseudorandom number generators. We then point out two interesting directions for
further research on the design of cryptographic primitives where AI methods could
be applied in the future.

1 Introduction
Cryptography can be broadly defined as a discipline that studies how to enable secure
communication between two or more parties in the presence of adversaries. Histori-
cally, cryptography has been associated with encryption, which aims at protecting the
confidentiality of messages transmitted over an insecure channel. On the opposite side,
the goal of cryptanalysis is to analyze a particular encryption scheme to search for
eventual vulnerabilities that can be exploited to attack the scheme and violate message
confidentiality. Collectively, cryptology encompasses both the fields of cryptography
and cryptanalysis.

1

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

Modern cryptography stands on the use of precise mathematical definitions and
rigorous proofs to guarantee a certain security level under a particular model of the
adversary’s strategy. As such, designing a sound cryptographic primitive or protocol
is usually a hard task, as well as it is cryptanalyzing it. In this respect, Artificial
Intelligence (AI) provides a host of interesting approaches and tools to address problems
in the design of cryptographic schemes. By looking at the existing literature, one can
find many works that use various approaches from the field of AI to address several
use cases relevant to cryptography. One may classify such works in two main areas,
depending on the nature of the underlying problem:

Search and Optimization. Several questions in the design of cryptographic primi-
tives can be cast as combinatorial optimization problems over a discrete search space,
such as, among others, the search of Boolean functions and S-boxes with desirable cryp-
tographic properties, which are fundamental building blocks in the design of symmetric
encryption schemes. To this end, AI-based heuristic techniques such as Evolutionary
Algorithms [51], Simulated Annealing [14] and Swarm Intelligence [37] have proved to
be quite useful to tackle optimization problems related to cryptography.

Computational Models. The second area concerns the use of computational models
belonging to the domain of AI as components in the design of cryptographic schemes.
In this case, the underlying idea is to link the overall scheme’s security to the complex
dynamic behavior of such computational models, which in principle are difficult to
cryptanalyze. Perhaps the best known examples in this research thread are Cellular
Automata, which have been mainly studied to design symmetric encryption primitives
such as Pseudorandom Number Generators (PRNG) for stream ciphers [66, 67] and
S-boxes for block ciphers [20, 39].

This chapter aims to provide a broad overview of the state of the art concerning the
use of AI methods and models for designing cryptographic primitives and protocols, fo-
cusing on the two areas mentioned above. In particular, we consider the most significant
use cases of AI-based cryptography, namely the design of Boolean functions, S-boxes,
and Pseudorandom Number Generators (PRNG). For each use case, we introduce the
corresponding cryptographic design problem, and then we give an overview of the
related literature. We conclude by considering two new directions along which this
research field could evolve in the next years.

The rest of this chapter is organized as follows. Section 2 gives a concise introduction
to the basic notions of cryptography, and covers the basic notions related to AI-based
heuristic techniques and cellular automata. Sections from 3 to 5 focus on AI techniques
used to design cryptographic primitives, addressing, in particular, the use cases of
Boolean functions, S-boxes and pseudorandom number generators. Finally, Section 6
concludes the chapter by discussing open problems and directions for future research in
the field of AI-based cryptography.

2 Background
In this section, we first illustrate the basic terminology and concepts related to cryptog-
raphy over which we ground the discussion of the next sections. Next, we introduce the
basic AI techniques and models that have been used in the literature to design crypto-
graphic primitives, namely heuristic optimization techniques and cellular automata. A
complete treatment of these broad research fields is well beyond the scope of this chapter.
We refer the interested reader to standard textbooks such as [27, 64] for cryptography
and [17, 23] respectively for heuristic optimization algorithms and cellular automata.

2

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

2.1 Cryptography
As we mentioned in the Introduction, one of the goals of secure communication is
confidentiality, which ensures that only the intended recipient is able to read a particular
message. The main tools studied in cryptography to achieve this goal are encryption
schemes, which are applied to the following basic communication scenario. Suppose
that a sender, Alice, wants to send a plaintext message P to a receiver, Bob, over a
communication channel. In particular, the plaintext message P can be thought of as a
finite string over an alphabet Σ. However, the communication channel is eavesdropped
by an adversary, Eve, who can intercept and read everything transmitted over it. To
solve this problem, Alice and Bob adopt the encryption scheme depicted in Figure 1,
which works as follows. Alice first feeds P in input to an encryption function, which
also depends on an encryption key KE . The encryption function output is a ciphertext
C that Alice sends to Bob over the insecure channel tapped by Eve. On his end, Bob
applies a decryption function to the received ciphertext, which similarly depends on a
decryption key KD, and whose output is the original plaintext message P. The encryption
and decryption functions must be the inverses of one another so that Bob can decode
the correct message from the ciphertext.

The confidentiality property of this scheme rests on the assumption that Eve cannot
recover the plaintext message P by just observing the ciphertext C transmitted over the
communication channel. In particular, Kerchoff’s principle states that the security of
an encryption scheme should not rely on the secrecy of the encryption and decryption
functions used by Alice and Bob, but rather only on the secrecy of the decryption key
KD. Thus, one may assume that Eve knows the encryption and decryption functions, so
they must be designed not to leak any useful information on the plaintext message or
the decryption key if the latter is not known.

Depending on the nature of the keys employed by Alice and Bob, one can classify
encryption schemes in symmetric and asymmetric ones. In a symmetric encryption
scheme the same key is used both for encryption and decryption, i.e. one has that
KE = KD = K. Since this key must be kept secret, Alice and Bob have to figure out a
way to share it securely before the communication takes place. Symmetric encryption
schemes can be further divided in block ciphers and stream ciphers. In a stream cipher,
each symbol of the plaintext P is combined with a corresponding symbol of a keystream
z, computed from the initial secret key k through a keystream generator algorithm.
Perhaps the most widely studied model in this context is the Vernam-like cipher, where
the plaintext, the keystream and the ciphertext are all bitstrings of the same length, and

Alice Encryption
Function

KE

Channel

Eve

Decryption
Function

KD

Bob
P C C P

Figure 1: Block diagram of a generic encryption scheme.

3

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

the encryption operation corresponds to the bitwise XOR between the plaintext and the
keystream (see Fig. 2a). In a block cipher, on the contrary, the plaintext is processed in
fixed-size blocks, that are iteratively combined with several round keys derived from the
secret key through a scheduling algorithm. One of the most common paradigms for the
design of block ciphers is the Substitution-Permutation Network (SPN, see Fig. 2b). In
this case, the plaintext block undergoes first a confusion phase, followed by a diffusion
phase and finally by the key combination phase with the current round key. This process
is repeated for a certain number of rounds.

Confusion and diffusion are two general principles stated by Shannon [62] that every
symmetric encryption scheme should satisfy, to frustrate statistical attacks. In particular,
the aim of the confusion phase in an SPN cipher is to make the relationship between
the plaintext and the secret key the most complicated as possible. This property is
accomplished by processing the plaintext block through a set of smaller Substitution
boxes (S-Boxes), which we will discuss more in detail in Section 4. On the other hand,
the goal of the diffusion phase is to spread the statistical structure of the plaintext over
the ciphertext, so that each symbol of the ciphertext depends on many symbols of the
plaintext. In a SPN cipher this is done by using a permutation box (π-box, also called a
diffusion layer) right after the confusion phase.

In an asymmetric (or public-key) encryption scheme the keys used for encryption and
decryption are distinct. Typically, there are no key-sharing issues in this case since Bob
can make its encryption key public while he keeps only the decryption key private. Alice
will then use Bob’s public key to encrypt the plaintext and send him the corresponding
ciphertext.

Most of the applications of AI techniques to cryptography concern the symmetric
setting, although a few works also address the public-key case (see e.g. [1]). Therefore,
in the next sections, we will focus on the use cases related to symmetric cryptography.
Also, in this chapter, we will not consider AI-based approaches to solve other aspects of
secure communication such as message integrity and authentication, since the mass of
the existing literature about AI methods in cryptography is focused on encryption and
confidentiality.

The security of an encryption scheme is usually analyzed in terms of adversarial
goals, attack models and security levels. The adversarial goals specify when a particular
attack performed by Eve can be considered successful. In particular, in a total break
of the encryption scheme the goal is to recover the decryption key, while in a partial
break Eve is able to decrypt ciphertexts with a certain probability, without knowing the

k

g

z

⊕
P C

(a) Vernam-like Stream Cipher

P

S 3S 2S 1 S m· · ·

π-box⊕
ki

C

(b) SPN Block Cipher round

Figure 2: Encryption diagrams for Vernam-like stream ciphers and SPN block ciphers.

4

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

decryption key. Finally, Eve achieves a distinguishing break if is she can tell apart the
encryption of two distinct ciphertexts (usually corresponding to a plaintext chosen by
Alice and a random one) with a probability higher than 1/2.

The attack models define the type of information available to Eve to perform an
attack on an encryption scheme. These vary from very weak assumptions, as in the
ciphertext-only attacks where Eve only knows some ciphertexts encrypted under the
same unknown key, up to more sophisticated ones such as chosen-ciphertext attacks,
in which Eve can choose some ciphertexts and obtain the corresponding plaintexts
decrypted under the same unknown key.

The security level models the computational resources that Eve has at her disposal
to carry out a particular attack. In particular, in the unconditional security level an en-
cryption scheme cannot be broken under a particular attack model, even if the adversary
has unlimited computational resources. While this is the most robust definition that
a cryptographer can adopt, unconditional security usually yields encryption schemes
that are hardly usable in practice, typically because the encryption key has the same
length of the plaintext and the ciphertext. The provable security level is often employed
in the design of public-key encryption schemes. Here, the goal is to reduce a particu-
lar computational problem assumed to be hard (such as factoring integer numbers or
computing discrete logarithms) to the task of breaking the encryption scheme. Finally,
in the computational security level the best known attack that Eve can perform on
an encryption scheme requires at least N operations, where N is a very large number.
In particular, a scheme can be shown to be computationally secure only for certain
specific attacks, and there is no guarantee that it is not vulnerable to others. Despite
this drawback, computational security is perhaps the most widespread security level
considered in the design of cryptographic primitives, especially in the symmetric key
setting. One of the reasons is that low-level cryptographic primitives are simpler to
analyze, and few classes of attacks are known on them. Thus, it makes sense from a
practical point of view to defend these primitives in light of such attacks. Further, this
is the security level underlying most of the literature of AI-based cryptography and
cryptanalysis, which is why we will mainly consider it in the rest of this chapter.

2.2 Heuristic Optimization Algorithms
Optimization can be generally defined as the process of searching for a best solution to a
particular problem. Formally, one has a finite set S equipped with an objective function
f : S → R assigning to each candidate solution x ∈ S a measure of how good x is in
solving a particular problem instance. The goal of combinatorial optimization is to find
an optimal solution x∗ that maximizes f , that is, x∗ = argmaxx∈S { f (x)}.

In most combinatorial optimization problems of practical importance, the solution
space S is usually too huge to be explored in an exhaustive manner. One of the possible
ways to address this shortcoming is to resort to heuristic optimization algorithms, in
order to find a (sub)optimal solution in a reasonable amount of time. Several heuristic
techniques traditionally belong to the field of AI. The general characteristic shared
by these techniques is that they are iterative algorithms, i.e., they start from an initial
solution and iteratively tweak it using the objective function to drive the search. After a
certain number of evaluations, the best solution found so far is returned.

We now give a short overview of the main heuristic algorithms that have been used
to design cryptographic primitives, which of course is far from being exhaustive. The
reader is referred to [2, 10, 17] for more comprehensive treatments of this topic.

5

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

2.2.1 Single-state Optimization Methods

The idea underlying single-state optimization methods is to optimize a single solution
at a time, and to search in its neighborhood to find a solution with a better objective
function value. This approach assumes that a topology is defined on the solution space,
usually induced by the Hamming distance in the case of binary strings. Two of the most
widely used single-state optimization methods in cryptography are Hill Climbing (HC)
and Simulated Annealing (SA). Hill Climbing replaces the current solution whenever
another one having a better objective function value is sampled in the neighborhood.
This strategy tends however to get stuck in local optima. To overcome this drawback
of HC, simulated annealing accepts with a certain probability a worse solution in the
neighborhood than the current one. The acceptance probability in SA is controlled by a
temperature parameter, which is decreased throughout the optimization process. Hence,
at the beginning SA favors exploration of the search space, making the escape from
local optima more likely. In later iterations, the algorithm focuses on exploitation of the
current region of the search space.

2.2.2 Population-based Optimization Methods

In population-based optimization methods the main idea is to optimize a set of candidate
solutions instead of a single one. This approach allows for a more global search on the
solution space, decreasing the risk of getting stuck in local optima.

In this domain, the most popular methods are Evolutionary Algorithms (EA), which
are loosely inspired by the principles of biological evolution. Each individual in the
population is represented by a genotype which decodes to a candidate solution of
the search space, also called a phenotype in this context. At each iteration, an EA
manipulates the genotypes of the individuals in the population by following a three-step
process. First, the objective function (also called a fitness function in this case) is
evaluated on all individuals. Then, a selection operator is used to choose the individuals
that will reproduce in the next generation, using their fitness values to drive the selection
in a probabilistic way. Next, variation operators are used to create the new generation
from the selected individuals. This step usually consists of a crossover operator, where
the genotypes of two parent individuals is mixed to create an offspring, and then a
mutation operator is applied on the offspring to introduce random variation in its
genotype.

Several variants of EA have been considered in the literature depending on the
encoding adopted for the genotypes and the variation operators used to modify them.
For example, in Genetic Algorithms (GA), the genotypes are usually encoded by fixed-
length bitstrings, but integer vectors and permutations have also been used. In Genetic
Programming (GP), on the other hand, the aim is to evolve syntactically correct programs
that are usually represented by trees.

Finally, another type of population-based heuristics used in cryptography are Swarm
Intelligence methods, among which Particle Swarm Optimization (PSO) is the most
common one. In PSO, the elements of the population are particles that move over the
search space. Each particle is described by its current position and velocity. During a
single PSO iteration, each particle updates its position by adding its velocity. Then, the
velocity controlled by taking into account the global best solution found so far in the
particle’s neighborhood and the local best solution found so far by the particle itself.

6

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

2.3 Cellular Automata
A cellular automaton (CA) is a discrete computational model described by a regular
lattice of cells, where each cell updates itself by considering its current state and those
of the neighboring cells. In its simplest form, a CA is defined by a one-dimensional
array of n binary cells and by a local rule f : {0,1}d → {0,1} of diameter d ≤ n. The
update of the array’s global state is performed by evaluating in parallel f on each cell
and the neighborhood formed by the d−1 cells on its right (although variations on the
center of the neighborhood exist, e.g. by considering also the cells on the left). There
are several approaches to update the cells at the boundaries that do not have enough
neighbors to apply the local rule. One common solution is to consider the array as a ring,
with the first cell following the last one. This induces a global rule F : {0,1}n→ {0,1}n

that defines the next state of the CA array as:

F(x1, x2, · · · , xn) = (f (x1, · · · , xd), f (x2, · · · , xd+1), · · · , f (xn−d+1, · · · , xn)) ,

for all (x1, x2, · · · , xn) ∈ {0,1}n. Thus, a CA can be viewed as a vectorial function defined
by a shift-invariant coordinate function, with periodic boundary conditions.

Traditionally, CA have been studied in the domain of natural computing, and thus
belong to the larger class of nature-inspired AI computational models. The reason
underlying the interest of CA for implementing cryptographic applications is twofold.
First, the shift-invariance property that characterizes CA allows for uniform and efficient
hardware implementations. Second, depending on the underlying local rule, the dynamic
evolution of a CA can be quite complex and unpredictable. We point the reader to [26]
for a broader introduction to the basic concepts concerning CA.

3 Boolean Functions
Boolean functions are a fundamental class of cryptographic primitives used in the design
of stream and block ciphers. This section gives a brief introduction to Boolean functions
and the optimization problems related to their cryptographic properties. Next, we
survey the main works in the literature addressing the design of cryptographically strong
Boolean functions using AI techniques.

3.1 Background
One of the most common models for the keystream generator in the Vernam-like stream
cipher defined in Section 2.1 is the combiner model, where the bits produced by several
Linear Feedback Shift Registers (LFSR) are combined by a Boolean function, whose
output is used as the next keystream bit. The computational security of this model can
be reduced to the study of the combiner function’s cryptographic properties, the reason
being that some attacks become more efficient if the function does not meet certain
criteria.

We now give a concise overview of the properties that Boolean functions used
as cryptographic primitives in stream and block ciphers should satisfy, referring the
reader to [6] for a thorough treatment of the subject. In what follows, we denote by
F2 = {0,1} the finite field with two elements, and Fn

2 the set of n-bit vectors endowed
with a vector space structure, with bitwise XOR as the vector sum and logical AND
as the multiplication by a scalar. A Boolean function of n variables is then defined
as a mapping f : Fn

2→ F2. There are mainly three unique representations of Boolean

7

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

functions used in cryptography, the most natural one being the truth table. Assuming that
the vectors of Fn

2 are totally ordered, the truth table of a function is a 2n-bit vector Ω f
that specifies the corresponding output value f (x) for each vector x ∈ Fn

2. The Algebraic
Normal Form (ANF) represents a Boolean function as a multivariate polynomial over
F2, i.e., as a sum (XOR) of monomials, where each monomial is the product (AND) of
a subset of input variables. Finally, the Walsh transform represents a Boolean function
f in terms of correlations with linear functions, which are defined as the XOR over a
subset of the input variables. Hence, each monomial in their ANF is composed of a
single variable.

These three representations can be used to define several cryptographic properties for
Boolean functions used in stream ciphers. We briefly mention the four most important
criteria below:

• Balancedness: the truth table of f should be composed of an equal number of
zeros and ones. Unbalanced functions present a bias that can be exploited in
statistical attacks.

• Algebraic degree: the degree of the polynomial represented by the ANF of
f should be as high as possible, to avoid attacks that exploit the low linear
complexity of the LFSRs used in the combiner model.

• Nonlinearity: the distance of the truth table of f from the set of all linear functions
should be as high as possible. This property can be measured by considering
the highest absolute value in the Walsh transform of f . Functions with low
nonlinearity can be vulnerable to fast-correlation attacks in stream ciphers.

• t-th order correlation immunity: Each subset of t or fewer variables should be
statistically independent from the output value of f . This condition is met if and
only if the Walsh transform vanishes for all input vectors with at most t ones.
Functions used in the combiner model should be correlation immune of a high
order to avoid correlation attacks.

As we touched upon earlier, all the above properties are always considered in a
computational security setting. Therefore, using a Boolean function that satisfies a subset
of these properties protects from the specific attacks for which they are tailored, but does
not grant security concerning other attacks. Moreover, as there exist several theoretical
bounds among these properties, most of them cannot be satisfied simultaneously. The
problem thus becomes to select a Boolean function with a suitable trade-off of the
most important criteria. Finding such a function can be formulated as a combinatorial
optimization problem: given the desired number of variables n, the designer’s goal is
to find an n-variable Boolean function which is balanced and has the highest possible
degree, nonlinearity and order of correlation immunity. However, this problem cannot
be solved by enumerating all Boolean functions of n variables. Indeed, the size of
the resulting search space is 22n

, which hinders exhaustive search already for n = 6
variables. To give an intuition of the search space size, for n = 8 variables, there exist
2256 ≈ 1.16 ·1077 functions, which is approximately equal to the number of atoms in the
observable universe. Since in practical stream ciphers a larger number of variables is
required (at least n = 13 for the functions in the combiner model), the designer needs
to resort either to algebraic constructions (for which the reader can refer to [6]) or
to heuristic optimization algorithms, which include the AI-based methods introduced
in Section 2.2. There are two main reasons for using heuristic algorithms to find
proper Boolean functions in place of algebraic constructions. The first one is diversity:

8

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

although algebraic constructions are easy to use and there is a formal proof that they
satisfy specific cryptographic properties, the resulting functions usually belong to only
a few known classes under affine equivalence relations.

On the other hand, heuristic algorithms from the AI domain are "blind", that is, they
base their search solely upon the optimization of an objective function. Hence, heuristic
algorithms can provide a wider variety of optimal Boolean functions, and in principle,
they can discover new ones belonging to previously unknown classes. The second
reason is that heuristic algorithms are more flexible than algebraic constructions. Indeed,
the designer can take into account more properties of interest by merely combining the
appropriate terms to optimize in the objective function. Notice also that these properties
do not need to be all related to cryptographic criteria: one may also include, for instance,
properties concerning the implementation costs of the resulting Boolean functions in
hardware, such as gate count or circuit area.

3.2 Survey of Related Works
Most of the AI-based approaches that tackle the search of Boolean functions and S-
boxes with good cryptographic properties revolve around the use of genetic algorithms
(GA) and genetic programming (GP). Especially among earlier works, one can see that
simulated annealing (SA) was also a quite popular technique employed on this problem.
At the same time, a minor research thread considered the use of swarm intelligence
optimization algorithms such as particle swarm optimization (PSO).

Historically, GA have been extensively investigated to evolve the truth tables of
Boolean functions with good cryptographic properties. The first attempt in this area
can be traced back to Millan et al. [44]. There, the authors used the classic bitstring
representation of GA to encode the truth table of Boolean functions, to maximize
their nonlinearity. The same authors refined their approach in [45] by forcing the GA
to generate only balanced Boolean functions, through the use of a custom crossover
operator. The authors further combined their GA with a hill climbing step, and the
fitness function maximized the correlation immunity order, besides the nonlinearity of
the candidate Boolean functions. The idea of designing ad-hoc crossover operators to
reduce the space explored by GA when searching for cryptographic Boolean functions
has been later adopted in other works [36, 38]. However, its advantage over classic
operators such as one-point crossover has been systematically confirmed only recently
by Manzoni et al. [33].

The first work considering the use of SA to generate Boolean functions with high
nonlinearity is that of Clark et al. [11], where the authors adopted a two-stage optimiza-
tion approach. In the first stage, SA was used to drive the search into a region containing
highly nonlinear Boolean functions, which were then located in the second stage using
a hill climbing algorithm. Successively, SA has also been investigated by Clark et al.
in [14], where correlation immunity was also considered in the optimization process,
and by Clark et al. in [12], where the authors adopted a different representation for the
candidate solutions. In particular, they proposed to use the spectral inversion method,
where the candidate solutions are represented as Walsh spectra already satisfying spe-
cific properties (e.g., vanishing for all coefficients with at most t ones to meet t-th order
correlation immunity). The optimization objective is to minimize the deviation of the
pseudo-Boolean function resulting from the inverse Walsh transform applied on the
spectra searched by SA; when this deviation is zero, the corresponding map is a Boolean
function with the desired cryptographic criteria. The authors adopted this approach to
design plateaued Boolean functions, which satisfy the best possible trade-off among

9

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

algebraic degree, nonlinearity, balancedness, and correlation immunity. More recently,
Mariot et al. [36] investigated the spectral inversion method with GA, remarking that it
is more efficient than SA in finding plateaued Boolean functions.

The approach considering swarm intelligence algorithms also gave interesting results
and insights in this optimization problem. However, this research line is not as developed
as those based on GA and SA. Saber et al. [60] used a Particle Swarm Optimizer (PSO)
to evolve Walsh spectra of plateaued functions, leveraging on the spectral inversion
method of Clark et al. mentioned above. In particular, the position of a particle is
updated by permuting the coefficients of the Walsh spectrum. Interestingly, this method
allowed them to discover balanced Boolean functions of 9 variables with nonlinearity
240, algebraic degree 5, and correlation immunity order 3, whose existence question
was open until then. Mariot et al. [37] designed a discrete PSO algorithm to search for
Boolean functions with a good trade-off of nonlinearity and correlation-immunity, using
the truth table encoding. The position update operation only swaps the bits in the truth
table, to preserve balancedness.

To date, Genetic Programming turned out to be the most successful optimization
technique for designing Boolean functions with good cryptographic properties. Although
GP shares the same evolutionary algorithm structure of GA, the candidate solutions
are computer programs instead of bitstrings, which are usually represented as trees.
In this case, a Boolean function is encoded by a tree where the leaves represent the
input variables, while the internal nodes are Boolean operators, and the root node
gives the output of the function. The truth table is thus obtained by evaluating the GP
tree over all possible assignments of the input variables on the leaf nodes and then
taking the corresponding output value on the root. Castro et al. [7] were the first to
address the design of Boolean functions for cryptographic applications. In particular,
the authors considered the average avalanche effect as an optimization criterion, which
is relevant for Boolean functions used in cryptographic hash functions. Picek et al. [50]
applied GP to the evolution of Boolean functions with good cryptographic properties,
comparing its performance with GA. Successively, Picek et al. [54] experimented with
several EA algorithms, including GP, and combined them with algebraic constructions to
investigate the maximum nonlinearity value achievable by balanced Boolean functions
of 8 variables, which is today still an open question. More recently, Picek et al. [51]
performed a systematic comparison of four evolutionary algorithms under three different
fitness functions, that took into account several combinations of cryptographic properties
of Boolean functions. The results showed that Cartesian GP (a GP variant where the
solutions are represented as graphs, instead of trees) obtained the best results.

Pushing the hybrid approach of [54] further, Picek et al. [49] used GP to directly
evolve secondary algebraic constructions of bent functions, which are those Boolean
functions reaching the highest possible nonlinearity value. Although they exist only
for even numbers of variables, and they are always unbalanced, bent functions can
be used to construct highly nonlinear balanced functions (see [6] for an overview of
related methods). The search for bent functions with heuristic optimization algorithms is
nonetheless an interesting problem, even though bent functions cannot be directly used
in the design of stream ciphers. Using this approach, the authors of [49] were able to
construct bent Boolean functions of up to 24 variables, which are practically impossible
to find using direct search methods based on more traditional representations such as
the truth table encoding. Along this research direction, we also mention the work by
Hrbacek et al. [22], who evolved bent functions up to 16 variables with Cartesian GP.
Picek et al. [53], on the other hand, used GA ad GP to design quaternary bent functions,
that can be turned into bent Boolean functions of a larger number of variables. Finally,

10

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

Mariot et al. [34] applied GA and GP to search for hyper-bent functions. Hyper-bent
functions are a subclass of bent Boolean functions at the highest possible distance from
the set of linear functions represented by bijective monomials. This property is useful to
thwart approximation attacks.

The merits of evolutionary algorithms concerning the property of correlation im-
munity have been investigated by Picek et al. in [46], where the authors compared
the performances of GA, GP, and Cartesian GP in the design of correlation immune
functions. Besides its utility in stream ciphers, correlation immunity is relevant in
masking countermeasures for side-channel attacks. In this context, the goal is to find a
t-th order correlation immune function with minimal Hamming weight (i.e., with the
lowest possible number of ones in the truth table), in order to minimize the implementa-
tion cost of the countermeasure. To this end, Picek et al. [48] employed GP to design
low-weight Boolean functions with various orders of correlation immunity. Correlation
immune functions can also be defined in terms of different combinatorial objects, such
as binary Orthogonal Arrays (OA). Indeed, the rows of an OA form the support (that is,
the set of input vectors mapping to 1) of a correlation immune function. Therefore, a
different approach to designing low-weight correlation immune functions of order t for
side-channel countermeasures is to construct binary OA of strength t with the smallest
number of rows N possible. Along this direction, Mariot et al. [38] investigated the use
of GA and GP to evolve binary OA of various sizes, remarking that GP is much more
effective at generating them.

4 S-Boxes
S-boxes, which we already introduced in Section 2.1 as cryptographic primitives for
block ciphers based on the SPN paradigm, are the parallelization of several Boolean
functions computed on the same input vector. In this section, we cover the background
notions concerning S-boxes. Then, we overview the literature about using AI methods
to construct S-boxes with good cryptographic properties.

4.1 Background
An S-box is a vectorial mapping F : Fn

2 → Fm
2 , mapping n-bit to m-bit vectors, also

denoted as an (n,m)-function. In SPN block ciphers, usually, one has n = m since the
S-boxes are required to be bijective for decryption purposes. An S-box is defined by m
coordinates functions fi : Fn

2→ F2, which determine the i-th output bit of F for 1 ≤ i ≤m.
The component functions of an S-box, additionally, are all the linear combinations of its
coordinate functions (excluding the null combination). Similarly to Boolean functions in
stream ciphers, the S-boxes composing the confusion layer in an SPN block cipher must
also satisfy certain cryptographic properties to thwart attacks, among which we describe
the most important ones below. The reader can refer to [6] for a deeper treatment of the
cryptographic properties of vectorial Boolean functions.

• Balancedness/Bijectivity: Analogously to the single-output setting, an S-box
F : Fn

2→ Fm
2 needs to be balanced, meaning that each output vector in Fm

2 must
appear the same number of times 2n−m. When n = m as in the case of S-box for
SPN ciphers, balancedness corresponds to bijectivity.

• Nonlinearity: The nonlinearity of an S-box S is defined as the minimum nonlin-
earity among all its component functions, and it should be as high as possible to

11

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

withstand linear cryptanalysis attacks.

• Differential uniformity: The differential uniformity corresponds to the minimum
value that can be observed in the difference distribution table of the S-box,
where each entry is indexed by a pair of vectors a ∈ Fn

2 \ {0}, b ∈ Fm
2 and it

reports the number of times that the value of F(x)⊕F(x⊕ a) equals b. Ideally,
the differential uniformity of an S-box should be as low as possible to avoid
differential cryptanalysis attacks.

The unfeasibility of exhaustive search is even more prominent for S-boxes than
in the case of Boolean functions. The number of (n,m)-functions is 2m2n

, since each
S-box is defined by the m truth tables of its coordinate functions. Considering only
bijective (n,n)-functions, their number is approximately 2.6 · 1035 already for n = 5
variables, which is not amenable to exhaustive enumeration. Hence, the use of heuristic
optimization algorithms is even more motivated when searching for an S-box that is
optimal with respect to the three properties above. Indeed, as in the Boolean functions’
case, the designer can resort to algebraic constructions of good S-boxes, which, however,
cover only a tiny fraction of all possible optimal S-boxes. Heuristic algorithms can
provide a wider variety of S-boxes, that can also be optimal concerning additional
properties such as those related to their implementation costs.

4.2 Survey of Related Works
The body of literature regarding the use of AI methods to construct cryptographically
strong S-boxes can be roughly divided into two main approaches. The first one seeks
to solve the optimization problem related to the cryptographic properties of S-boxes
using nature-inspired optimization algorithms, which is the straightforward extension of
the same approach applied to single-output Boolean functions discussed in Section 3.2.
On the other hand, the second direction leverages on AI-based computational models
to synthesize S-boxes with good properties. Perhaps the best known example in this
regard is the cellular automata (CA) model, which we introduced in Section 2.3

We start with an overview of the first approach. The first work adopting evolutionary
algorithms to optimize the cryptographic properties of S-boxes dates back to Millan et
al. [43]. There, the authors designed a genetic algorithm to evolve S-boxes with high
nonlinearity and low autocorrelation, a property that is closely related to differential
uniformity. Burnett et al. [5] designed a heuristic method, mostly based on hill climbing,
to generate S-boxes with the same structure of those used in the Mars block cipher, one
of the AES finalists. Fuller et al. [19] proposed a multi-objective optimization approach
for the heuristic construction of cryptographically strong S-boxes. In particular, they
showed that power mappings (S-boxes whose polynomial representation is defined by
a single monomial) could be evolved through iterated mutations to obtain solutions
with the best possible trade-off of nonlinearity and autocorrelation. Clark et al. [13]
employed a two-stage process inspired by that adopted for Boolean functions in [11]
to search for highly nonlinear S-boxes, using simulated annealing and hill climbing
to minimize a new objective function motivated by Parseval relation. Picek et al. [57]
applied GP and Cartesian GP to the evolution of S-boxes, devising a method to adapt
these two heuristics to the permutation encoding which limited the search space only to
bijective (n,n)-functions.

Further, Picek et al. proposed a new fitness function in [47] to design S-boxes
with evolutionary algorithms, experimentally assessing that it allows one to find highly
nonlinear solutions more quickly than other objective functions already defined in

12

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

the literature. Ivanov et al. [24] set forth an interesting reverse approach where one
starts from an initial pool of optimal S-boxes in terms of nonlinearity and differential
uniformity (obtained, for example, through algebraic constructions based on finite field
inversion). Then, they apply a GA to tweak these S-boxes and generate new ones with
slightly suboptimal properties. The motivation for this strategy is to generate a large
set of S-boxes with similar cryptographic properties. The designer can then choose
among them those that satisfy additional implementation requirements for a specific
block cipher.

Let us now turn to the second approach based on cellular automata. Daemen et
al. [15] were among the first to pioneer the use of CA for the design of S-boxes in
block ciphers. There, the authors studied a simple local rule called χ, which flips a
cell’s state if and only if the two cells on its right present the pattern 10, and proved
that the resulting S-box is bijective only when the size of the CA is odd. Moreover,
they showed that rule χ induces CA-based S-boxes with good nonlinearity and diffusion
properties. Interestingly, the only nonlinear component used in the design of Keccak [4],
the cryptographic primitive that has been adopted as the SHA-3 standard for hash
functions, is a CA of 5 cells defined by rule χ. Seredynsky et al. [61] investigated
S-boxes defined by second-order CA, whose invertibility is granted by the fact that the
next state of each cell is computed as the XOR of the result of the local rule evaluated on
its neighborhood and its previous state. In particular, the authors analyzed the avalanche
properties of the S-boxes defined by such CA equipped with local rules of 5 and 7
variables. Szaban et al. [65] investigated the set of all 256 local rules of 3 variables.
They selected those which resulted in the best nonlinearity and autocorrelation values by
evolving a CA-based S-box of size 8×8 for a certain number of steps. Ghoshal et al. [20]
considered 4×4 S-boxes with optimal nonlinearity and differential uniformity defined
by multiple iterations of CA rules, and presented efficient threshold implementations for
them that can be used for the design of lightweight SPN block ciphers.

We conclude this section by mentioning some works at the intersection of the
two approaches discussed above, i.e., those based on the use of heuristic optimization
algorithms to construct S-boxes defined by CA. Up to now, this last direction turned out
to be the most successful one, since it can produce S-boxes on par with those yielded
by algebraic constructions from the cryptographic point of view and also having good
implementation properties. Picek et al. [55] used GP to evolve CA-based S-boxes
with sizes ranging from 5× 5 to 8× 8, obtaining optimal solutions for nonlinearity
and differential uniformity up to size 7× 7. Picek et al. [56] further explored this
optimization approach based on GP by considering the S-boxes defined by CA rules also
from the implementation perspective. Under this experimental setting, they managed
to evolve CA-based S-boxes with optimal nonlinearity and differential uniformity, and
having hardware implementation costs to those of other state of the art S-boxes. Finally,
Mariot et al. [39] performed a systematic theoretical investigation of the cryptographic
properties of CA-based S-boxes and developed a reverse-engineering approach based
on GP to find what is the shortest CA rule resulting in a specific S-box.

5 Pseudorandom Number Generators
Pseudorandom number generators (PRNG) are a crucial component for the security of
basically any cryptographic scheme. In this section, we first cover the basic notions about
PRNG and the statistical tests used to assess the quality of pseudorandom sequences.
Next, we survey the main applications of AI methods to design PRNG.

13

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

5.1 Background
Random numbers and sequences are fundamental for several cryptographic tasks, such as
the generation of keys, nonces, and masks for side-channel countermeasures. However,
truly random numbers are difficult to come by since they can be generated only through
physical phenomena such as radioactive decay, atmospheric noise, or reflection of
photons in semi-transparent mirrors, which require specialized (and expensive) hardware
generators. Consequently, the designers of cryptographic primitives mostly rely on
Pseudorandom Number Generators (PRNG), which stretch a short initial random seed
into an arbitrarily long pseudorandom sequence.

The term "pseudo" comes from the fact that a PRNG is a deterministic function;
hence it always generates the same pseudorandom sequence if it starts from the same
seed. In particular, achieving unconditional security under a distinguishing attack is not
possible with a PRNG, since given enough time any pseudorandom sequence can be
trivially distinguished from a true one. Thus, cryptographic PRNG are usually designed
under the computational security setting. One of the possible approaches is to model the
PRNG with Boolean functions, thus leveraging the cryptographic properties discussed
in Section 3.1. Indeed, the keystream generator used in the Vernam-like stream cipher
can be considered a PRNG and can thus be designed using the combiner model, for
instance.

On the other hand, the most common way to assess the quality of a cryptographic
PRNG is by applying a battery of statistical tests on a sample of its sequences. The
rationale is that if the pseudorandom sequences do not pass one or more tests in the suite,
then the PRNG that produced them should not be used in cryptographic applications.
Examples of statistical tests for cryptographic PRNG include the DIEHARD suite [40]
and the NIST suite [3].

5.2 Survey of Related Works
Like S-boxes, one can remark two common trends in the use of AI methods for the
design of cryptographic PRNG. The first one is centered on the use of cellular automata
(CA) to define the structure of a PRNG. The second direction employs evolutionary
algorithms to directly optimize the structure of a PRNG, or to evolve a CA whose
dynamics is then used to produce pseudorandom sequences.

Wolfram [67] was the first to propose a PRNG based on a cellular automaton for
stream ciphers. Specifically, he suggested using a CA equipped with local rule 30, which
is known to induce a chaotic behavior in the CA dynamics. The seed of the PRNG is
represented by the initial configuration of the CA, while the trace of the central cell
(i.e., the sequence of states assumed by the central cell through multiple iterations) is
taken as the pseudorandom sequence produced by the CA. However, Meier et al. [42]
proved that Wolfram’s PRNG is very weak from a cryptographic standpoint since it is
vulnerable to a known-plaintext attack that exploits the quasi-linearity of rule 30, which
allows to rewrite it in an equivalent way where the initial seeds are not equiprobable.
Martin [41] remarked that this weakness is linked to the fact that rule 30 is not first-order
correlation immune when interpreted as a Boolean function. Thus, later works in this
direction, such as Formenti et al. [18] and Leporati et al. [31], focused on the search of
larger CA local rules with a good trade-off of nonlinearity and correlation immunity.
In particular, they assessed the quality of the pseudorandom sequences produced by
the selected CA rules, respectively, with the DIEHARD and NIST statistical test suites.
More recently, Manzoni et al. [32] considered CA-based PRNG from the asynchrony

14

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

perspective, where the cells do not update all at the same time. Interestingly, through
the NIST suite, the authors remarked that the quality of the pseudorandom sequences
produced by certain local rules improves by allowing a small degree of asynchrony.

Concerning the approach based on evolutionary algorithms, Koza [28] used genetic
programming to evolve Boolean trees used as CA local rules in Wolfram’s PRNG model.
In particular, the fitness function measured the entropy of the sequence produced by a
CA equipped with the local rule defined by a GP tree, and the optimization objective
was to maximize it. Remarkably, the best local rule resulting from Koza’s experiments
turned out to be equivalent to rule 30 used by Wolfram. Sipper and Tomassini [63]
proposed a cellular programming approach based on a hybrid CA, where each cell can
update its state according to a different local rule. In particular, the rule map was evolved
using a genetic algorithm variation, where the fitness function to maximize was again
Koza’s entropy. Castro et al. [8] applied GP to design PRNG not based on the cellular
automata approach; instead, the trees evolved by GP directly represented computer
programs to generate pseudorandom numbers. In order to drive the GP optimization
process, the authors adopted a fitness function based on the avalanche effect, which
measures how many bits change in the output of the generator when only a single bit is
complemented in the seed. Martinez et al. [30] later refined this approach, by proposing
the PRNG Lamar designed through GP, and assessed through the DIEHARD test suite.
Picek et al. [58] investigated the construction of PRNG with cartesian GP, showing that
the evolved generators passed all NIST randomness tests and were quite efficient and
small to be implemented in hardware. Along a similar research line, Picek et al. [59]
presented three different methods based on Cartesian GP to design PRNG for masking
countermeasures in side-channel attacks, each one allowing for a different degree of
reconfigurability in hardware implementations.

6 Conclusions and New Directions
As we have seen in the previous sections, the field of AI-based cryptography is char-
acterized by an extensive literature. We remark that our overview is far from being
exhaustive. As a matter of fact, in this chapter, we did not cover several other minor
research threads, such as the construction of ciphers with co-evolutionary methods [52],
the design of secret sharing schemes based on cellular automata [35], construction of
quantum key distribution protocols with evolutionary algorithms [29], and AI-driven
cryptanalysis [9, 21]. However, we believe that the use cases of Boolean functions,
S-boxes, and pseudorandom generators are representative of the main research trends in
this area, both for the variety of methods adopted to address their design and also for
the research challenges underlying them.

We conclude by discussing two new directions of research regarding the design of
cryptographic primitives, where AI methods could be applied in the future.

Concerning the area of Boolean functions and S-boxes, most of the related liter-
ature focuses on applying a particular heuristic and then experimentally assessing its
performances by verifying the cryptographic properties of the solutions produced by
it. However, different heuristic techniques can have a very different degree of suc-
cess in generating good Boolean functions and S-boxes. The reasons underlying these
performance gaps are still not very clear. It would thus be interesting to perform a meta-
analysis of the main heuristic techniques used up to now (e.g., evolutionary algorithms
and swarm intelligence methods), and investigate more closely why some approaches
are more successful than others. Along the same direction, it would also be useful to

15

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

study more in detail the difficulty of the combinatorial optimization problems related to
Boolean functions and S-boxes, for example, by employing fitness landscape analysis
techniques on the underlying search spaces. As far as the authors know, only Jakobovic
et al. [25] performed an analysis of the fitness landscape associated with S-boxes, and
there are still several avenues for further research that could be explored in this domain.

Joan Daemen suggested an alternative approach to the design of block ciphers where
AI techniques could help, which does not focus on the cryptographic properties of
S-boxes1. This approach starts from the observation that recent lightweight primitives
inspired by the structure of Keccak [4] employ very simple and small S-boxes, whose
optimality can be easily achieved without having to resort to heuristic algorithms.
Examples in this class of primitives include the cryptographic permutation Xoodoo [16],
which employs a 3×3 S-box defined by the same CA rule χ of Keccak. The design
of Xoodoo depends on several real-valued parameters, such as round constants, used
to break the symmetry produced by the shift-invariant structure of χ. An interesting
direction of research in this setting would be to use heuristic techniques, such as
evolutionary algorithms, to optimize the parameters of Xoodoo for different dimensions,
for example, by considering more constrained hardware implementations.

References
[1] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography by cellular automata or

how fast can complexity emerge in nature? In: Proceedings of ICS 2010, pp. 1–19
(2010)

[2] Bäck, T.: Evolutionary algorithms in theory and practice - evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press (1996)

[3] Bassham III, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker,
E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks, D.L., et al.: Sp 800-22 rev.
1a. a statistical test suite for random and pseudorandom number generators for
cryptographic applications. National Institute of Standards & Technology (2010)

[4] Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference (2011).
URL http://keccak.noekeon.org/

[5] Burnett, L., Carter, G., Dawson, E., Millan, W.: Efficient methods for generating
MARS-like s-boxes. In: Proceedings of FSE 2000, pp. 300–314 (2000)

[6] Carlet, C.: Boolean functions for cryptography and coding theory. Cambridge
University Press (2021)

[7] Castro, J.C.H., Isasi, P., del Arco-Calderón, C.L.: Finding efficient nonlinear
functions by means of genetic programming. In: V. Palade, R.J. Howlett, L.C. Jain
(eds.) Proceedings of KES 2003, Part I, Lecture Notes in Computer Science, vol.
2773, pp. 1192–1198. Springer (2003)

[8] Castro, J.C.H., Seznec, A., Isasi, P.: On the design of state-of-the-art pseudoran-
dom number generators by means of genetic programming. In: IEEE Congress on
Evolutionary Computation, pp. 1510–1516. IEEE (2004)

1Personal communication.

16

https://doi.org/10.1007/978-3-030-98795-4_1
http://keccak.noekeon.org/

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

[9] Castro, J.C.H., Viñuela, P.I.: New results on the genetic cryptanalysis of TEA
and reduced-round versions of XTEA. New Generation Comput. 23(3), 233–243
(2005)

[10] Chopard, B., Tomassini, M.: An Introduction to Metaheuristics for Optimization.
Natural Computing Series. Springer (2018)

[11] Clark, J.A., Jacob, J.: Two-stage optimisation in the design of boolean functions.
In: Proceedings of ACISP 2000, pp. 242–254 (2000)

[12] Clark, J.A., Jacob, J.L., Maitra, S., Stanica, P.: Almost boolean functions: The
design of boolean functions by spectral inversion. Computational Intelligence
20(3), 450–462 (2004)

[13] Clark, J.A., Jacob, J.L., Stepney, S.: The design of s-boxes by simulated annealing.
New Generation Comput. 23(3), 219–231 (2005)

[14] Clark, J.A., Jacob, J.L., Stepney, S., Maitra, S., Millan, W.: Evolving boolean
functions satisfying multiple criteria. In: A. Menezes, P. Sarkar (eds.) Proceedings
of INDOCRYPT 2002, LNCS, vol. 2551, pp. 246–259. Springer (2002)

[15] Daemen, J., Govaerts, R., Vandewalle, J.: Invertible shift-invariant transformations
on binary arrays. Applied Mathematics and Computation 62(2), 259 – 277 (1994)

[16] Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of xoodoo and xoofff.
IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

[17] Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, Second Edition.
Natural Computing Series. Springer (2015)

[18] Formenti, E., Imai, K., Martin, B., Yunès, J.: Advances on random sequence
generation by uniform cellular automata. In: C.S. Calude, R. Freivalds, K. Iwama
(eds.) Computing with New Resources, LNCS, vol. 8808, pp. 56–70. Springer
(2014)

[19] Fuller, J., Millan, W., Dawson, E.: Multi-objective optimisation of bijective s-
boxes. In: Proceedings of CEC 2004, pp. 1525–1532 (2004)

[20] Ghoshal, A., Sadhukhan, R., Patranabis, S., Datta, N., Picek, S., Mukhopadhyay,
D.: Lightweight and side-channel secure 4 × 4 s-boxes from cellular automata
rules. IACR Trans. Symmetric Cryptol. 2018(3), 311–334 (2018)

[21] Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning.
In: Proceedings of CRYPTO (2), LNCS, vol. 11693, pp. 150–179. Springer (2019)

[22] Hrbacek, R., Dvorak, V.: Bent function synthesis by means of cartesian genetic
programming. In: Proceedings of PPSN 2014, LNCS, pp. 414–423 (2014)

[23] Ilachinski, A.: Cellular automata: a discrete universe. World Scientific Publishing
Co Inc (2001)

[24] Ivanov, G., Nikolov, N., Nikova, S.: Reversed genetic algorithms for generation of
bijective s-boxes with good cryptographic properties. Cryptogr. Commun. 8(2),
247–276 (2016)

17

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

[25] Jakobovic, D., Picek, S., Martins, M.S.R., Wagner, M.: A characterisation of s-box
fitness landscapes in cryptography. In: A. Auger, T. Stützle (eds.) Proceedings of
GECCO 2019, pp. 285–293. ACM (2019)

[26] Kari, J.: Basic concepts of cellular automata. In: G. Rozenberg, T. Bäck, J.N. Kok
(eds.) Handbook of Natural Computing, pp. 3–24. Springer (2012)

[27] Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. CRC
Press (2014)

[28] Koza, J.R.: Evolving a computer program to generate random numbers using the
genetic programming paradigm. In: ICGA, pp. 37–44. Morgan Kaufmann (1991)

[29] Krawec, W., Picek, S., Jakobovic, D.: Evolutionary algorithms for the design of
quantum protocols. In: International Conference on the Applications of Evolution-
ary Computation (Part of EvoStar), pp. 220–236. Springer (2019)

[30] Lamenca-Martinez, C., Castro, J.C.H., Estévez-Tapiador, J.M., Ribagorda, A.:
Lamar: A new pseudorandom number generator evolved by means of genetic
programming. In: PPSN, LNCS, vol. 4193, pp. 850–859. Springer (2006)

[31] Leporati, A., Mariot, L.: Cryptographic properties of bipermutive cellular automata
rules. J. Cell. Autom. 9(5-6), 437–475 (2014)

[32] Manzoni, L., Mariot, L.: Cellular automata pseudo-random number generators
and their resistance to asynchrony. In: G. Mauri, S.E. Yacoubi, A. Dennunzio,
K. Nishinari, L. Manzoni (eds.) Proceedings of ACRI 2018, LNCS, vol. 11115, pp.
428–437. Springer (2018)

[33] Manzoni, L., Mariot, L., Tuba, E.: Balanced crossover operators in genetic algo-
rithms. Swarm Evol. Comput. 54, 100646 (2020)

[34] Mariot, L., Jakobovic, D., Leporati, A., Picek, S.: Hyper-bent boolean functions
and evolutionary algorithms. In: L. Sekanina, T. Hu, N. Lourenço, H. Richter,
P. García-Sánchez (eds.) Proceedings of EuroGP 2019, LNCS, vol. 11451, pp.
262–277. Springer (2019)

[35] Mariot, L., Leporati, A.: Sharing secrets by computing preimages of bipermutive
cellular automata. In: J. Was, G.C. Sirakoulis, S. Bandini (eds.) Proceedings of
ACRI 2014, LNCS, vol. 8751, pp. 417–426. Springer (2014)

[36] Mariot, L., Leporati, A.: A genetic algorithm for evolving plateaued cryptographic
boolean functions. In: A. Dediu, L. Magdalena, C. Martín-Vide (eds.) Proceedings
of TPNC 2015, LNCS, vol. 9477, pp. 33–45. Springer (2015)

[37] Mariot, L., Leporati, A.: Heuristic search by particle swarm optimization of
boolean functions for cryptographic applications. In: S. Silva, A.I. Esparcia-
Alcázar (eds.) Companion Proceedings of GECCO 2015, pp. 1425–1426. ACM
(2015)

[38] Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary search of binary
orthogonal arrays. In: A. Auger, C.M. Fonseca, N. Lourenço, P. Machado, L. Pa-
quete, L.D. Whitley (eds.) Proceedings of PPSN 2018, Part I, LNCS, vol. 11101,
pp. 121–133. Springer (2018)

18

https://doi.org/10.1007/978-3-030-98795-4_1

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

[39] Mariot, L., Picek, S., Leporati, A., Jakobovic, D.: Cellular automata based s-boxes.
Cryptography and Communications 11(1), 41–62 (2019)

[40] Marsaglia, G.: The marsaglia random number cdrom including the diehard bat-
tery of tests of randomness (2008). URL http://www.stat.fsu.edu/pub/
diehard/

[41] Martin, B.: A walsh exploration of elementary CA rules. J. Cell. Autom. 3(2),
145–156 (2008)

[42] Meier, W., Staffelbach, O.: Analysis of pseudo random sequence generated by
cellular automata. In: D.W. Davies (ed.) Proceedings of EUROCRYPT ’91, LNCS,
vol. 547, pp. 186–199. Springer (1991)

[43] Millan, W., Burnett, L., Carter, G., Clark, A.J., Dawson, E.: Evolutionary heuristics
for finding cryptographically strong s-boxes. In: Proceedings of ICICS’99, pp.
263–274 (1999)

[44] Millan, W., Clark, A.J., Dawson, E.: An effective genetic algorithm for finding
highly nonlinear boolean functions. In: Proceedings of ICICS’97, pp. 149–158
(1997)

[45] Millan, W., Clark, A.J., Dawson, E.: Heuristic design of cryptographically strong
balanced boolean functions. In: K. Nyberg (ed.) Proceedings of EUROCRYPT
’98, LNCS, vol. 1403, pp. 489–499. Springer (1998)

[46] Picek, S., Carlet, C., Jakobovic, D., Miller, J.F., Batina, L.: Correlation immunity
of boolean functions: An evolutionary algorithms perspective. In: Proceedings of
GECCO 2015, pp. 1095–1102 (2015)

[47] Picek, S., Cupic, M., Rotim, L.: A new cost function for evolution of s-boxes.
Evolutionary Computation 24(4), 695–718 (2016)

[48] Picek, S., Guilley, S., Carlet, C., Jakobovic, D., Miller, J.F.: Evolutionary approach
for finding correlation immune boolean functions of order t with minimal Hamming
weight. In: Proceedings of TPNC 2015, pp. 71–82 (2015)

[49] Picek, S., Jakobovic, D.: Evolving algebraic constructions for designing bent
boolean functions. In: T. Friedrich, F. Neumann, A.M. Sutton (eds.) Proceedings
of GECCO 2016, pp. 781–788. ACM (2016)

[50] Picek, S., Jakobovic, D., Golub, M.: Evolving cryptographically sound boolean
functions. In: C. Blum, E. Alba (eds.) Companion Proceedings of GECCO 2013,
pp. 191–192. ACM (2013)

[51] Picek, S., Jakobovic, D., Miller, J.F., Batina, L., Cupic, M.: Cryptographic boolean
functions: One output, many design criteria. Appl. Soft Comput. 40, 635–653
(2016)

[52] Picek, S., Knezevic, K., Jakobovic, D., Derek, A.: C3po: cipher construction with
cartesian genetic programming. In: M. López-Ibáñez, A. Auger, T. Stützle (eds.)
Companion Proceedings of GECCO 2019, pp. 1625–1633. ACM (2019)

19

https://doi.org/10.1007/978-3-030-98795-4_1
http://www.stat.fsu.edu/pub/diehard/
http://www.stat.fsu.edu/pub/diehard/

This is a post-print version of a chapter in the book Security and Artificial Intelligence. The final publication is available at

Springer via https://doi.org/10.1007/978-3-030-98795-4_1

[53] Picek, S., Knezevic, K., Mariot, L., Jakobovic, D., Leporati, A.: Evolving bent
quaternary functions. In: 2018 IEEE Congress on Evolutionary Computation,
CEC 2018, Rio de Janeiro, Brazil, July 8-13, 2018, pp. 1–8. IEEE (2018)

[54] Picek, S., Marchiori, E., Batina, L., Jakobovic, D.: Combining evolutionary
computation and algebraic constructions to find cryptography-relevant boolean
functions. In: Proceedings of PPSN 2014, pp. 822–831 (2014)

[55] Picek, S., Mariot, L., Leporati, A., Jakobovic, D.: Evolving s-boxes based on
cellular automata with genetic programming. In: P.A.N. Bosman (ed.) Companion
Proceedings of GECCO 2017, pp. 251–252. ACM (2017)

[56] Picek, S., Mariot, L., Yang, B., Jakobovic, D., Mentens, N.: Design of s-boxes
defined with cellular automata rules. In: Proceedings of CF’17, pp. 409–414.
ACM (2017)

[57] Picek, S., Miller, J.F., Jakobovic, D., Batina, L.: Cartesian genetic programming
approach for generating substitution boxes of different sizes. In: Companion
Proceedings of GECCO 2015, pp. 1457–1458 (2015)

[58] Picek, S., Sisejkovic, D., Rozic, V., Yang, B., Jakobovic, D., Mentens, N.: Evolving
cryptographic pseudorandom number generators. In: PPSN, LNCS, vol. 9921, pp.
613–622. Springer (2016)

[59] Picek, S., Yang, B., Rozic, V., Vliegen, J., Winderickx, J., Cnudde, T.D., Mentens,
N.: Prngs for masking applications and their mapping to evolvable hardware. In:
K. Lemke-Rust, M. Tunstall (eds.) CARDIS 2016, Revised Selected Papers, LNCS,
vol. 10146, pp. 209–227. Springer (2016)

[60] Saber, Z., Uddin, M.F., Youssef, A.M.: On the existence of (9, 3, 5, 240) resilient
functions. IEEE Trans. Information Theory 52(5), 2269–2270 (2006)

[61] Seredynski, F., Bouvry, P., Zomaya, A.Y.: Cellular automata computations and
secret key cryptography. Parallel Computing 30(5-6), 753–766 (2004)

[62] Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J.
28(4), 656–715 (1949)

[63] Sipper, M., Tomassini, M.: Generating parallel random number generators by
cellular programming. International Journal of Modern Physics C 7(02), 181–190
(1996)

[64] Stinson, D.R., Paterson, M.: Cryptography: theory and practice. CRC press (2018)

[65] Szaban, M., Seredynski, F.: Cryptographically strong s-boxes based on cellular
automata. In: Proceedings of ACRI 2008, pp. 478–485 (2008)

[66] Tomassini, M., Perrenoud, M.: Cryptography with cellular automata. Appl. Soft
Comput. 1(2), 151–160 (2001)

[67] Wolfram, S.: Cryptography with cellular automata. In: Proceedings of CRYPTO
’85, pp. 429–432 (1985)

20

https://doi.org/10.1007/978-3-030-98795-4_1

	Introduction
	Background
	Cryptography
	Heuristic Optimization Algorithms
	Single-state Optimization Methods
	Population-based Optimization Methods

	Cellular Automata

	Boolean Functions
	Background
	Survey of Related Works

	S-Boxes
	Background
	Survey of Related Works

	Pseudorandom Number Generators
	Background
	Survey of Related Works

	Conclusions and New Directions

