
The final publication is available at Springer via https://doi.org/10.1007/978-3-030-16670-0_17

Hyper-bent Boolean Functions and Evolutionary
Algorithms

Luca Mariot1, Domagoj Jakobovic2, Alberto Leporati1, and Stjepan Picek3
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Abstract. Bent Boolean functions play an important role in the design
of secure symmetric ciphers, since they achieve the maximum distance
from affine functions allowed by Parseval’s relation. Hyper-bent func-
tions, in turn, are those bent functions which additionally reach maxi-
mum distance from all bijective monomial functions, and provide further
security towards approximation attacks. Being characterized by a stricter
definition, hyper-bent functions are rarer than bent functions, and much
more difficult to construct. In this paper, we employ several evolution-
ary algorithms in order to evolve hyper-bent Boolean functions of various
sizes. Our results show that hyper-bent functions are extremely difficult
to evolve, since we manage to find such functions only for the smallest in-
vestigated size. Interestingly, we are able to identify this difficulty as not
lying in the evolution of hyper-bent functions itself, but rather in evolv-
ing some of their components, i.e. bent functions. Finally, we present an
additional parameter to evaluate the performance of evolutionary algo-
rithms when evolving Boolean functions: the diversity of the obtained
solutions.

Keywords: Bent Functions · Hyper-bent Functions · Genetic Programming ·
Genetic Algorithms · Evolution Strategies

1 Introduction

Boolean functions are mathematical objects with numerous applications in cryp-
tography, coding theory, and sequences. As such, they received a great deal of
attention by the research community in the last decades. Bent Boolean func-
tions, which exist only for even numbers of input variables, are those functions
that have maximal nonlinearity, that is, they have the highest possible distance
from the set of affine functions. For their construction, one can employ a num-
ber of different primary constructions (where bent functions are generated from
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scratch) or secondary constructions (where one uses already known bent func-
tions to construct larger ones). As an alternative method one can use heuristics,
among which evolutionary algorithms proved to be especially adept in the last
years. In fact, the sheer amount of successful results obtained with evolutionary
algorithms makes the evolution of bent functions almost an easy problem [1–3].
Naturally, this is a somewhat oversimplified claim, since we can always aim to
evolve Boolean functions of a size large enough that the process will be unfeasible
from the computational perspective. There exist a sub-class of bent functions,
namely hyper-bent functions, that have even stronger properties and are rarer
than bent functions. Indeed, Hyper-bent functions are not only as far as possible
from all affine functions, but also from all coordinate functions of all bijective
monomials. Consequently, they can provide a good source of nonlinearity when
designing block ciphers [4]. Unfortunately, since hyper-bent Boolean functions
are rarer than bent Boolean functions, it could be that such functions are also
more difficult to generate than bent functions. Still, the authors of [4] proved
that hyper-bent functions exist for every even n, as general bent functions.

In this paper, we examine whether evolutionary algorithms can be a suitable
technique for constructing hyper-bent functions, since such techniques proved
to be very powerful when considering the generation of bent functions. More
precisely, we consider some well-known techniques like genetic algorithms (GA),
genetic programming (GP), and evolution strategy (ES) that proved to be able
to evolve bent functions for a number of different sizes. We pose the following
research questions. Can evolutionary algorithms be used to obtain hyper-bent
functions in various sizes? If so, we are additionally interested in what is the rich-
ness of the solution set. More precisely, a common argument for using heuristics
is that it allows us to obtain a number of different solutions which is sometimes
not possible with algebraic constructions. Consequently, we will not only be in-
terested in obtaining hyper-bent functions but also, but also in examining the
number of different hyper-bent functions we are able to construct. In order to
provide answers to the defined questions, we examine which of the considered
evolutionary techniques achieves the best results. To the best of our knowledge,
this is the first time evolutionary algorithms are considered for the evolution of
hyper-bent functions. The obtained results show us that this problem is much
more difficult for evolutionary algorithms than the evolution of bent functions,
since the latter has already been investigated in the literature with the same
techniques described in this paper. Hence, this problem could also represent a
good benchmark for evaluating the performance of heuristics.

This paper is organized as follows. In Section 2, we briefly introduce bent and
hyper-bent Boolean functions along with their relevant properties. Section 3 gives
an overview of related work. Section 4 discusses the evolutionary algorithms we
consider as well as the fitness functions we use in the experiments. In Section 5,
we present results from evolutionary algorithms for a number of relevant Boolean
function sizes. Additionally, we provide a review of the obtained results and we
discuss possible future research directions. Finally, in Section 6, we summarize
the main contributions of this work and conclude the paper.
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2 Background

We refer the reader to [5] for a thorough introduction to the notions about
Boolean functions discussed in this section.

In this work, we consider the set {0, 1} as the finite field with two elements,
equipped with the XOR ⊕ and AND · as field operations. Given a positive integer
n ∈ N, the set {0, 1}n of all binary strings of length n, which is composed of
2n elements, is denoted as Fn

2 and it is regarded as a vector space over F2.
Additionally, to introduce the definition of hyper-bent functions, we will also
consider {0, 1}n as the finite field F2n . The elements of F2n can be interpreted
as polynomials in F2[x] modulo an irreducible polynomial p(x) of degree n, i.e.
as elements of the quotient ring F2[x]/p(x). In particular, the components of an
n-bit string identify the coefficients of the associated polynomial in F2n . Since
F2n is isomorphic to Fn

2 , it can also be considered as a F2-vector space [6].
A Boolean function of n variables is a map f : Fn

2 → F2, and it can be
uniquely represented by its truth table (TT), which is a vector Ωf ∈ Fn

2 of length
2n that specifies the output value f(x) for each possible input vector x ∈ Fn

2 .
Usually, it is assumed that the function values inΩf are lexicographically ordered
with respect to their inputs.

The dot product of two vectors a, b ∈ Fn
2 is defined as a ·b = a1b1⊕· · ·⊕anbn,

and it satisfies the axioms of inner product over the vector space Fn
2 . The absolute

trace of an element x in the finite field F2n equals:

Tr(x) = x+ x2 + . . .+ x2n−1

, (1)

The trace Tr(ax) of a, x ∈ F2n is also an inner product over F2n , where ax
represents the field multiplication of the elements a and x (that is, polynomial
multiplication). A Boolean function La is called linear if it is defined by an inner
product. Thus, in the case of the vector space Fn

2 , a ∈ Fn
2 is an n-bit vector and

La : Fn
2 → F2 is defined as La(x) = a · x for all x ∈ Fn

2 . Likewise, for the finite
field case a ∈ F2n is a polynomial in F2[x]/p(x) and La : F2n → F2 is defined
as La(x) = Tr(ax). Linear functions which also sum a constant a0 ∈ F2 to the
inner product are called affine.

The Walsh-Hadamard transform is another unique representation for Boo-
lean functions. Formally, given f : Fn

2 → F2, its Walsh-Hadamard transform
Wf : Fn

2 → Z is defined for all a ∈ Fn
2 as:

Wf (a) =
∑
x∈Fn

2

(−1)f(x)⊕a·x . (2)

In other words, the coefficient Wf (a) measures the correlation between f and
the linear function a · x. The maximum absolute value |Wf (a)| of Wf over all
a ∈ Fn

2 is also called the spectral radius of f . Parseval’s relation states that
the sum of the squared Walsh coefficients is constant for every Boolean function
f : Fn

2 → F2: ∑
a∈Fn

2

Wf (a)2 = 22n . (3)
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The nonlinearity of a Boolean function f : Fn
2 → F2 is defined as the min-

imum Hamming distance between the truth table of f and the set of affine
functions, and it can be expressed as [5]:

Nlf = 2n−1 − 1

2
max
a∈Fn

2

|Wf (a)| , (4)

from which it follows that the lower the spectral radius of a Boolean function is,
the higher its nonlinearity will be. By Parseval’s relation, one can see that the
the spectral radius is minimum if and only if all Walsh coefficients equal ±2

n
2 .

Functions satisfying this property are called bent, and they achieve the maximum
value of nonlinearity 2n−1 − 2

n
2−1. Since the Walsh-Hadamard coefficients must

be integer numbers, it follows that bent functions exist only when the number
of variables n is even.

Remark that the notion of bent function is independent of the underlying
inner product used in the Walsh-Hadamard transform [5]. Hence, one could
substitute the dot product a · x in Eq. 2 with the trace Tr(ax) and obtain
the same set of bent functions. This is important to introduce the notion of
hyper-bent functions, the main object we are interested in this paper. In fact,
hyper-bent functions are characterized through the so-called extended Walsh-
Hadamard transform, which is defined over the finite field F2n as follows:

Wf (a, i) =
∑
x∈Fn

2

(−1)f(x)⊕Tr(axi), (5)

where i is coprime with 2n − 1, i.e., gcd(i, 2n − 1) = 1. Hence, in the extended
transform we are computing several spectra of Walsh coefficients. The reason to
consider the linear functions defined by Tr(axi) is that xi represents a bijective
monomial, since i is coprime with 2n − 1. By considering only i = 1, one gets
the usual Walsh-Hadamard transform.

A function f which is bent with respect to the extended transform for all i
coprime with 2n − 1 is called hyper-bent. Thus, hyper-bent functions have the
highest Hamming distance from all affine functions defined by bijective mono-
mials. Notice that the number of indices i coprime with 2n − 1 is determined
by Euler’s totient function φ(2n − 1), which grows as O

(
2n
)
. Thus, the number

of indices against which the bent property must be checked with the extended
transform is exponential in the number of variables n, and it becomes computa-
tionally expensive already for small values of n.

Table 1 reports the number of Boolean functions Bn of n variables, the num-
ber of exponents In coprime with 2n−1, the number of bent An and hyper-bent
Hn Boolean functions, and their nonlinearity Nlf for sizes n = 4, 6, 8. The values
for An and Hn have been taken from [7].

Observe that for n = 4 variables the resulting space of Boolean functions can
be completely enumerated, since it is composed of only 216 = 65 536 elements.
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Table 1: The number and nonlinearity of Boolean functions for various input
sizes n.

n 4 6 8

Bn 216 264 2256

In 8 36 128

An 896 ≈ 232.3 ≈ 2106.3

Hn 56 252 48 620

Nlf 6 28 120

3 Related Work

Golomb and Gong proposed hyper-bent functions as components of Substitution
Boxes to ensure the security of cryptographic algorithms [8]. Charpin and Gong
investigate how to classify hyper-bent functions [9]. Carlet and Gaborit show that
hyper-bent functions known at the time belong to the PS#

ap class. Next, they
show how such functions can be obtained from certain codewords of extended
cyclic code with small dimension and they enumerate hyper-bent functions up
to n = 10 [10].

As already mentioned, there is a significant corpus of papers dealing with
the heuristic generation of bent Boolean functions. At the same time, there are
no works, to the best of our knowledge, considering the heuristic generation of
hyper-bent functions. Consequently, here we remind the readers on relevant re-
sults in the heuristic generation of bent Boolean functions as well as the relevant
theoretical results.

As far as we are aware, the first paper that uses evolutionary algorithms
with a goal of evolving cryptographic Boolean functions dates back to 1997.
There, Millan et al. used genetic algorithms to evolve Boolean functions with high
nonlinearity [11]. Millan, Clark, and Dawson experimented with GA to evolve
Boolean functions that have high nonlinearity [12]. They used a combination of
GAs and hill climbing together with a resetting step in order to find Boolean
functions up to 12 inputs with high nonlinearity. Millan, Fuller, and Dawson
proposed an adaptive strategy for a local search algorithm for the generation of
Boolean functions with high nonlinearity [13]. Additionally, they introduced the
notion of the graph of affine equivalence classes of Boolean functions.

Picek, Jakobovic, and Golub used GA and GP to find Boolean functions that
have several optimal cryptographic properties [14]. To the best of our knowledge,
this is the first application of GP for evolving cryptographic Boolean functions.
Hrbacek and Dvorak used CGP in order to evolve bent Boolean functions of
sizes up to 16 inputs [1]. The authors experimented with several configurations
of algorithms in order to speed up the evolution process where they did not
limit the number of generations in their search. With such an approach, they
succeeded in finding bent function in each run for sizes between 6 and 16 inputs.
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Mariot and Leporati designed a discrete particle swarm optimizer to search for
balanced Boolean functions with high nonlinearity [15]. The same authors in [16]
used GA where the genotype consists of the Walsh-Hadamard values in order
to evolve semi-bent Boolean functions by spectral inversion. An analysis of the
efficiency of several evolutionary algorithms when evolving Boolean functions
satisfying different cryptographic criteria is given in [17]. Picek and Jakobovic
experimented with GP with a goal of evolving algebraic constructions, which
are then used to construct bent functions [2]. There, the authors are able to
find bent Boolean functions for sizes up to 24 inputs. Picek, Sisejkovic, and
Jakobovic experimented with several immunological algorithms to construct bent
or balanced, highly nonlinear Boolean functions [3].

4 Experimental Setup

In this section, we describe the solution representations, the search algorithms,
and the fitness functions we use in our experiments.

4.1 Truth Table Representation

The most intuitive encoding for a Boolean function is in the form of a truth
table. In this case, individuals are represented as strings of bits which present
truth tables of Boolean functions. The string length is determined by the number
of Boolean variables n and equals 2n. Using this encoding, we experiment with
two search algorithms: a genetic algorithm and an evolution strategy.

For GA, we employ a 3-tournament selection which serves to eliminate the
worst individual among three randomly selected ones. After the elimination, a
new individual is produced using the crossover operator applied on the remaining
two. The new individual immediately undergoes mutation subject to a given
individual mutation rate.

The crossover operators are one-point and uniform crossover, performed uni-
formly at random for each new offspring. The mutation operator is selected
uniformly at random between a simple mutation, where a single bit is inverted,
and a mixed mutation, which randomly shuffles the bits in a randomly selected
subset. The mutation probability is used to select whether an individual would
be mutated or not, and the mutation operator is executed only once on a given
individual. For example, if the mutation probability is 0.7, then on average 7 out
of every 10 new individuals will be mutated and one mutation will be performed
on each of those individuals. The selected population size equals 100 individuals,
whereas the individual mutation probability is 0.3.

When experimenting with evolution strategy (ES), we use (µ+λ)-ES. In this
algorithm, in each generation, parents compete with offspring and from their
joint set µ fittest individuals are kept. In our experiments, offspring population
size λ has a value equal to 5 and parent population size µ has a value of 100.
Although it is not standard in the ES literature to have such a big population,
we adopted this size since some works (see e.g. [17]) showed that it brings good

6

https://doi.org/10.1007/978-3-030-16670-0_17


The final publication is available at Springer via https://doi.org/10.1007/978-3-030-16670-0_17

results when evolving cryptographic Boolean functions. For further information
on ES, we refer interested readers to [18–20].

4.2 Tree Representation

Tree encoding is commonly related to genetic programming (GP) in which the
data structures that undergo optimization are executable expressions) [18]. Each
individual in a GP population represents a computable expression, whose most
common form are symbolic expressions corresponding to parse trees. A tree can
represent a mathematical expression, a rule set or a decision tree. The building
elements in a tree-based GP are functions (inner nodes) and terminals (leaves,
problem variables).

As opposed to truth table encoding, the other option we consider is to use
a symbolic representation of a Boolean function. This is performed in a way
such that genetic programming can be used to evolve a Boolean function in the
form of a syntactic tree. Here, the terminal set consists of the n input Boolean
variables, denoted {v0, . . . , vn}. The function set (i.e., the set of inner nodes of
a tree) should consist of appropriate Boolean operators that allow the definition
of any function with n inputs.

The function set for genetic programming in all the experiments consists of
Boolean functions OR, XOR, AND (taking two arguments), NOT (one argu-
ment), and IF. The function IF takes three arguments and returns the second
argument if the first one evaluates to ’true’, and the third one otherwise.

In our experiments, GP uses the same steady-state tournament selection
algorithm of GA. The variation operators are simple tree crossover, uniform
crossover, size fair, one-point, and context preserving crossover (selected at ran-
dom), and subtree mutation [21]. All our experiments suggest that having a
maximum tree depth equal to the number of Boolean variables is sufficient (i.e.,
tree depth equals n). The initial population is created at random and the pop-
ulation size equals 500.

4.3 Boolean Construction Representation

Finally, we experiment with a concept that stems from Boolean algebraic con-
struction methods. In this setting, we try to construct a Boolean function of
n+ 2 variables using previously obtained Boolean functions of n variables. The
process can be described as: first, the optimization problem is solved for a Boo-
lean function size which allows the solutions to be found without much effort.
In many cases, we can always start with the number of Boolean variables that
produces the search space that can be scanned by an exhaustive search. For this
problem, we start with n = 4, where we can enumerate all possible solutions,
e.g. 56 hyper-bent Boolean functions of size 4.

The second step is to use GP to evolve Boolean functions of size n + 2; in
this case, the terminals are not the n + 2 Boolean variables; rather, the termi-
nal set includes four predefined Boolean functions with n variables which were
previously obtained. These terminals are denoted with f0, f1, f2, and f3 (input
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functions). Additionally, the terminal set includes two independent Boolean vari-
ables, v0 and v1 (since we are constructing functions in size n+2). The choice of
having four input functions is inspired by the Rothaus’ construction [22], where
three bent functions such that their exclusive OR is again bent (consequently,
we can consider this as having four functions) are used to construct new bent
functions.

Finally, each resulting construction (a GP expression) that includes input
functions and additional two variables, represents a new Boolean function with
n+2 variables. This construction is based on truth table representations of input
functions, which are the size of 2n, and the extension with two Boolean variables
which, for every combination of their values, extend the resulting truth table to
the size of 2n+2.

With the goal of obtaining hyper-bent functions of size n+2, the input func-
tions are presumed to be hyper-bent themselves. Since 56 hyper-bent functions
of size 4 are available, we define 14 sets with four input functions in each set,
and every construction is evaluated using each of the 14 input sets. As we are
interested only in optimizing the objective value (and not in finding a general
construction method), we assign the fitness function of a candidate construction
as the best objective value among all possible 14 resulting functions.

Note that this process can be self-sustained: if the resulting construction pro-
duces the desired solutions, then those solutions can be used as input functions
for the next construction stage for size n + 4. However, in each stage we need
to add only two additional Boolean variables; this greatly reduces the search
size and computational effort, as compared to the common approach where the
solution size is increased with increasing number of Boolean variables. Apart
from the terminals set, all the other GP parameters, as well as the function set,
remain the same.

4.4 Fitness Functions

The first fitness function aims to find hyper-bent functions by considering the
nonlinearity of the bent function for each i (see Eq. (5)). The aim is to minimize
the following expression:

fitness1 =

2n−1∑
i=1,gcd(i,2n−1)=1

(
2n−1 − 2

n
2−1 −Nlfi

)
. (6)

Note, we simply subtract the nonlinearity value of the obtained function from
the nonlinearity of the bent function (see Section 2). This fitness function we
also use when trying to obtain hyper-bent functions via secondary constructions.

In the second fitness function, we consider the whole Walsh-Hadamard spec-
trum and we penalize proportionally to the number of the Walsh-Hadamard
coefficients differing from 2

n
2 (see Eq. (3) and conclusions stemming from it).
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Again, the goal is to minimize the following expression:

fitness2 =

2n−1∑
i=1,gcd(i,2n−1)=1

Ti, (7)

where Ti equals the number of times the Walsh-Hadamard coefficients differ from
2

n
2 for each i.

Finally, we define the third fitness function which tries to increase the num-
ber of cases in the above sum (different values of i) where the obtained function
is bent. This factor is multiplied with an arbitrary constant to make it a pri-
mary criterion; the secondary criterion is then simply the relative difference from
maximum nonlinearity for all the cases where a bent function is not found. The
third objective function is defined as a minimization of the following:

fitness3 = 100× Si +

2n−1∑
i=1,gcd(i,2n−1)=1

(
1− Nlfi

2n−1 − 2
n
2−1

)
, (8)

where Si equals the number of different values of i in the above sum where the
Nlfi was not equal to maximum nonlinearity.

5 Experiments

In this section, we first give results for GA, GP, and ES. Afterward, we discuss
the difficulty of this problem, the diversity of solutions, and finally, possible
future works.

5.1 Results

We present the results of three evolutionary algorithms (GA, ES, and GP) based
on the function size and fitness functions defined in the previous section. Regard-
less of the representation and the search algorithm, every experiment is repeated
30 times and the stopping condition is the number of fitness evaluations, which
is set to 500 000.

In the case of Boolean functions of 4 variables, all tested methods easily
converge to fitness value of zero, i.e., we find a hyper-bent function in every run.
This is expected since the search size is relatively small and this presents no
problem regardless of the solution encoding. Consequently, we do not present
results for n = 4.

For size n = 6, the results for all the three algorithms and three variants
of fitness functions are shown in Table 2. Since we are using different fitness
functions that are not comparable, we divide the results in two groups: the left
side of the table shows the statistics of obtained solutions using the objective
function for which they were evolved (i.e. a separate set for each one of the
three fitness functions). The right half of the table shows the same solutions
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evaluated on the basis of the first fitness function, so the efficiency of different
fitness functions can be assessed.

In terms of objective functions, we can see that the first and the third fitness
function provided solutions of the same quality, while the second fitness was
inferior to the other two. At the same time, the tree encoding used with GP was
convincingly better than the truth table representation, regardless of the search
algorithm. Unfortunately, no single algorithm or objective function was able to
provide a hyper-bent Boolean function of 6 variables, which would correspond
to the fitness value of zero. When considering the obtained results, we can see
that GP performs the best. More precisely, for all three fitness functions, it
outperforms GA and ES significantly. At the same time, the behavior for GA
and ES is similar but still slight advantage goes to GA.

Table 2: Optimization results for Boolean functions of 6 variables

Optimized objective Evaluated by fitness1

fitness1 min median avg max

ES 108 132 129.64 144
GA 108 132 135.03 156
GP 72 120 113.73 156

fitness2 min median avg max min median avg max

ES 1 260 1 365 1 361.8 1 422 156 216 217.69 276
GA 1 206 1 380 1 375.9 1 458 144 216 215.51 288
GP 648 864 881.4 1 272 72 204 207.87 432

fitness3 min median avg max min median avg max

ES 3 602.7 3 603.8 3 603.6 3 604.3 108 132 128.55 144
GA 3 005.3 3 604.1 3 596.5 3 604.3 108 144 137.77 156
GP 1 802.1 3 003.6 2 570.7 3 604.3 72 120 116 144

As for the Boolean construction method (see Section 4.3), it has also proven
unsuccessful; this approach is tested with GP using groups of different previ-
ously obtained hyper-bent functions of 4 variables as input functions. In every
GP run, the obtained constructed function converged to the objective value of
120 according to the first fitness function. Since the results do not show any de-
viation, we omit those from the table. Interestingly, our experiments show that
the well-known Rothaus construction cannot be used to construct hyper-bent
functions despite the fact that it can construct bent functions. To the best of
our knowledge, this information is new (albeit, not unexpected). Additionally,
since we have been unable to obtain hyper-bent functions for n = 6, we were
unable to apply this construction method for larger sizes.

Finally, Table 3 presents the results for optimizing Boolean functions of 8
variables, in the same form as Table 2. From the results obtained for n = 8, we
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can see that for fitness1, GP is now actually the worst performing algorithm.
For the second scenario, fitness2, we observe GP has the best value but as
evaluated relative to fitness1, GP is still the worst performing algorithm. Only
for fitness3 GP is the best choice. Similar as for n = 6, the performance of
GA and ES is similar with a small advantage for GA (except for fitness2 as
evaluated relative to fitness1).

Table 3: Optimization results for Boolean functions of 8 variables

Optimized objective Evaluated by fitness1

fitness1 min median avg max

ES 1 472 1 504 1 501.7 1 536
GA 1 440 1 520 1 527.6 1 616
GP 1 536 1 632 1 630 1 696

fitness2 min median avg max min median avg max

ES 27 704 27 824 27 818 27 944 1 920 2 096 2 107 2 288
GA 27 568 27 808 27 793 28 016 1 984 2 080 2 095.5 2 272
GP 17 456 17 456 17 456 17 456 3 456 3 456 3 456 3 456

fitness3 min median avg max min median avg max

ES 254.04 254.06 254.05 254.06 2 016 2 088 2 149.3 2 336
GA 254.04 254.06 254.05 254.06 1 936 1 984 2 008 2 160
GP 248.06 248.06 248.07 248.1 1 792 1 872 1 938.6 2 176

In Figures 1a until 1e, we display results for n = 6, all algorithms and fitness
functions 1, 2, and 3, respectively. We display the average values as averaged
over 30 runs. When considering fitness1, we see that GP obtains the best results
but also the worst average, which indicates that the results are not always stable
and more evaluations could be needed. Evolution strategy, on the other hand,
performs the worst while having all the values approximately the same. The
second fitness allows GP to become more stable and we can actually see that
even the worst values for GP are better than median values for GA and ES.
Interestingly, we also observe that GA has better general performance than ES
but worse outlier solutions. Finally, for fitness3, we see a significant difference
in the performance between GP on one side and GA and ES on the other side.
More precisely, GA and ES perform similarly and much worse than GP where
only the best GA outliers reach the worst performance for GP.

Figures 1b until 1f give results for case when n = 8. As already noted, for
fitness1 we surprisingly see that GP performs the worst. What is more, both
GA and ES exhibit significantly better performance where GA is the best. In
the second scenario (fitness2), the situation changes completely and now GP is
by far the best. At the same time, the difference between GA and ES is quite
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(a) Results for fitness1, n = 6.
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(e) Results for fitness3, n = 6
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(f) Results for fitness3, n = 8.

Fig. 1: Results for all tested algorithms with n = 6, 8.
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small. Finally, for fitness3, GP is again the best with (almost) no differences
between GA and ES.

On the Diversity of Solutions As already mentioned, we propose a new
criterion to evaluate the performance of evolutionary algorithms. When working
on problems where we know a deterministic method to obtain solutions (as in
the case with the hyper-bent functions), the need to use evolutionary algorithms
is less obvious. One reason why heuristics still could provide a viable alternative
to algebraic constructions is if it can offer a large body of different solutions.
Indeed, with algebraic constructions, we are always limited in the number of
possible solutions (since different affine transformations always result in solutions
from the same class). To that end, we explore how many different solutions are
obtained with GP, GA, and ES when n = 4, by comparing the truth tables
of the resulting hyper-bent functions. For this scenario, all the experiments are
run 100 times. For ES and the first fitness function, out of 100 experiments,
we obtained 49 different solutions. Next, GA finds 45 solutions and GP only 41
different solutions. For the second fitness function, ES finds 46 unique solutions,
GA 52 unique solutions, and, GP 37 unique solutions. When considering fitness
function 3, ES obtains 42 unique solutions, GA finds 48 unique solutions, and
GP 30 unique solutions.

From these results, we can see that despite the fact that ES and GA per-
formed worse than GP when considering the results obtained from the fitness
functions, the situation differs when considering the diversity of solutions. With
this criterion, GA and ES actually proved to be more powerful than GP. Still,
we can conclude that all three algorithms are able to find a significant number
of different solutions since the total number of solutions for n = 4 equals 56.

Deceptive Problem or Simply Difficult Problem Since we are unable to
find solutions already for n = 6, the question is why the problem of finding
hyper-bent functions is so difficult. One explanation for the difficulty would be
if the problem has some sort of deceptive behavior: since the extended Walsh-
Hadamard transform needs to calculate Tr(axi) for every i such that gcd(i, 2n−
1) = 1, one scenario would be that solutions for certain values of i conflict with
some other values.

To check this, we run the experiments with GP where we checked what
happens with every value of i and we noticed that in our experiments we always
fail for the same i values. As such, this could indicate a deceptive behavior since
it could happen that the solution for a previous value of i got stuck in local
optima and it cannot move to another local optimum. Next, we experiment only
with those values i where we could not obtain the maximal nonlinearity when
considering all allowed i values. Interestingly, we observe that for such values
i we cannot obtain maximal nonlinearity even if we consider it as a separate
case (for instance, i = 5). This is a surprising result since all the experiments
up to now indicate that we are able to easily find bent functions. To conclude,
there are certain values of i that are difficult for EA even when considered
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separately, where by difficult we consider the inability to reach the maximal
nonlinearity. Thus, when considering all possible i values, it is impossible to find
hyper-bent functions. From these observations, we conclude that the problem
is not deceptive but is “simply” difficult in certain components. Currently, we
leave it as an open question what does make certain values of i so difficult.

5.2 Future Work

There are several directions along which the present work can be extended. A first
idea to improve the performance of GA would be to design specific crossover and
mutation operators which reduce the search space of candidate solutions. In fact,
as discussed in Section 2, the Walsh-Hadamard coefficients of a bent functions of
n variables are all equal to ±2

n
2 . Since the Walsh-Hadamard coefficient Wf (0) of

the null vector is the deviation of the function from being balanced, it follows that
the truth table of any bent function is composed of hwtf = 2n−1 ± 2

n
2−1 ones.

This suggests evolving through GA bitstrings with the fixed Hamming weight.
A similar strategy was initially proposed by Millan et al. [23] to evolve balanced
Boolean functions, where the authors proposed a crossover operator that used
counters to keep track of the multiplicities of zeros and ones in the offspring.
More recently, the same approach has been used by Mariot and Leporati [16]
to evolve plateaued functions by spectral inversion, and by Mariot et al. [24] to
evolve binary orthogonal arrays.

In our setting, a possible idea would be to adapt Millan et al.’s counter-
based crossover operator to the case of bent functions, with the number of ones
in the offspring constrained to be equal to either 2n−1 − 2

n
2−1 or 2n−1 + 2

n
2−1.

Subsequently, it would be interesting to assess if the performances of our GA
improve in generating hyper-bent functions.

On a more general level, a computational bottleneck is the calculation of the
extended Walsh-Hadamard spectrum. The naive implementation of the Walsh-
Hadamard transform has a complexity of O(22n) where n is the Boolean function
size. This can be improved by using the butterfly algorithm where the complexity
decreases only to O(n2n). Unfortunately, there does not seem to be an easy way
to use the butterfly algorithm when calculating the extended Walsh-Hadamard
transform. Consequently, the exponential rise in the complexity makes the cal-
culation already extremely difficult for n ≥ 8, especially coupled with a high
number of evaluations occurring in the heuristic approaches. In future work, we
plan to explore how to implement more efficiently the extended Walsh-Hadamard
spectrum. Alternatively, since it is known that hyper-bent functions have alge-
braic degree equal to n/2 [10], one could try to include this information in the
fitness function to speed up the search.

6 Conclusions

In this paper, we consider the evolution of hyper-bent functions, i.e., functions
that are bent up to a primitive root change. Hyper-bent functions have real-world
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applications and are extremely rare objects, which makes them an interesting
target for evolutionary algorithms. Our results indicate this problem to be of
extreme difficulty and even out of reach for evolutionary algorithms. Indeed, we
are able to find hyper-bent functions only for n = 4, which is the dimension
where also exhaustive search is easily conducted.

Despite the failure in finding hyper-bent functions for n > 4, we can still
discuss the performance of tested algorithms where we see that GP behaves the
best. This is probably not surprising since GP also showed excellent results when
evolving bent functions. When considering the diversity of obtained solutions,
we observe that GA is the best but all algorithms show very good results: on
average every second solution (or third for GP when considering fitness3) is a
new one. Finally, our experiments indicate that the difficulty of evolving hyper-
bent functions stems from the fact that our algorithms are not able to find
certain bent components of hyper-bent functions. It remains to be explored why
is that and how can we overcome this obstacle. We note that our results open the
problem of evolving hyper-bent functions as a strong benchmark when evaluating
the performance of evolutionary algorithms.

7 Acknowledgments

The authors wish to thank the anonymous referees for their useful comments on
improving the presentation quality of the paper. This work has been supported
in part by Croatian Science Foundation under the project IP-2014-09-4882. In
addition, this work was supported in part by the Research Council KU Leuven
(C16/15/058) and IOF project EDA-DSE (HB/13/020).

References

1. Hrbacek, R., Dvorak, V.: Bent Function Synthesis by Means of Cartesian Genetic
Programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.)
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