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Abstract. A secret sharing scheme based on one-dimensional bipermutive cel-
lular automata is discussed in this paper. The underlying idea is to represent the
secret as a configuration of a bipermutive CA and to iteratively apply a preimage
computation algorithm until a sufficiently long configuration to be splitted among
the participants is obtained. The scheme is proved to be both perfect and ideal,
and a simple extension is shown to induce a sequential access structure which
eventually becomes cyclic, where the upper bound on the length of the cycles
depends on the radius of the adopted local rule.
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1 Introduction

Secret sharing schemes (SSS) were originally introduced by Shamir [8] and Blakley [1]
as a method to securely share a secret among a set P of n participants, in such a way
that only the members belonging to some authorized subsets of P , specified through an
access structure, can recover the secret by pooling their shares.

During the last few years some SSS based on cellular automata (CA) have been
proposed in the literature, the first of which can be traced back to del Rey, Mateus and
Sánchez [2]. Specifically, the scheme described in [2] exploits the reversibility of linear
memory cellular automata (LMCA). The secret is represented as one of the k initial
conditions in a k-th order LMCA which is then evolved for n iterations. Each player
then receives one of the n resulting CA configurations as a share. The access structure
generated by this scheme can be defined as a (k,n) sequential threshold, since at least
k consecutive shares are required in order to evolve backwards the LMCA and recover
the secret, meaning that there are in total n−k+1 minimal authorized subsets. Most of
the later CA-based SSS [6,4,3] use the same LMCA principle of del Rey, Mateus and
Sánchez’s scheme, and thus feature similar access structures.

In this paper, we propose a secret sharing scheme designed upon a different CA
primitive, namely bipermutive cellular automata (BCA), which is less complex (since
BCA are memoryless) and which generates a more flexible access structure than LMCA-
based schemes. We initially show a basic version of our scheme where all participants
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are required to combine their shares to recover the secret, which is set by the dealer as
an m-bit configuration of a one-dimensional BCA. The automaton is then evolved back-
wards by iteratively applying a preimage computation algorithm until a configuration
of length k ·m is obtained, which is finally splitted among the k players. To recover the
secret, the players just have to juxtapose their shares and evolve the CA forwards.

We prove that the scheme is perfect, meaning that an attacker knowing fewer than
k shares cannot determine anything about the secret in an information-theoretic sense,
and ideal, since the size of the shares equals the size of the secret. We finally introduce
an extension to the scheme, called secret juxtaposition, which induces a (k,n) sequen-
tial threshold access structure that eventually becomes cyclic, thus yielding n minimal
authorized subsets where n is bounded by 22r, being r the radius of the local rule.

The rest of the paper is structured as follows. Section 2 covers the basic notions and
terminology about cellular automata and secret sharing schemes used throughout the
paper. Section 3 shows the algorithm PREIMAGE-CONSTRUCTION, used to compute
the preimage of a CA configuration under a bipermutive rule. Section 4 describes the
basic version of our SSS, where all the k shares are required to recover the secret.
Section 5 analyses the security properties of the basic scheme, proving that it is both
perfect and ideal. In Section 6, the extended scheme is introduced and shown to generate
an eventually cyclic access structure. Finally, Section 7 recaps the key features of the
proposed scheme and its advantages over del Rey, Mateus and Sánchez’s scheme, and
sketches some possible developments for future research.

2 Preliminary Definitions

2.1 Cellular Automata

In this work we focus on the model of one-dimensional finite boolean cellular automata,
which we define as a triple 〈C,r, f 〉 where C is a finite one-dimensional array of cells,
r ∈ N is the radius and f : F2r+1

2 → F2 is a boolean function specifying the local rule.
We denote by |C|= m the size of the array. During a single time step, each of the central
cells i∈{r+1, · · · ,m−r} in C updates its binary state by computing in parallel the local
rule f on the neighbourhood formed by itself, the r cells at its left and the r cells at its
right. We do not deal with any boundary condition, since the leftmost and rightmost
r cells are not updated. Consequently, the global rule of a CA can be considered as a
vectorial boolean function F : Fm

2 → Fm−2r
2 , and thus the size of the cell array shrinks

by 2r cells from one time step to the next. Clearly, this means that the global rule can
be applied only a limited number of times, as long as m≥ 2r+1.

Given the radius r, there exist 222r+1
local rules. Each rule f can be compactly

indexed by its corresponding Wolfram code, which is the decimal representation of
the truth table of f . A local rule f : F2r+1

2 → F2 is leftmost permutive if there ex-
ists a generating function gL : F2r

2 → F2 such that f (x) = x1 ⊕ gL(x2, · · · ,x2r+1) for
all x = (x1, · · · ,x2r+1) ∈ F2r+1

2 . Similarly, f is called rightmost permutive if there is
gR : F2r

2 → F2 such that f (x) = gR(x1, · · · ,x2r)⊕x2r+1. Rule f is called bipermutive if
it is both leftmost and rightmost permutive. In this case, gL is itself rightmost permutive
with a certain generating function g :F2r−1

2 →F2 (equivalently, gR is leftmost permutive
with the same g). Hence, f can be written as f (x) = x1⊕g(x2, · · · ,x2r)⊕ x2r+1.
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2.2 Secret Sharing Schemes

Generally speaking, a secret sharing scheme is a procedure which enables a dealer D
to share a secret S (for instance, a cryptographic key) among a set P = {P1,P2, · · · ,Pn}
of participants or players. Each player Pi receives a share Bi from the dealer, and a
subset A⊆ P is authorized if its members can reconstruct S by combining their shares.
Authorized subsets are specified through an access structure Γ ⊆ 2P . Usually, Γ is re-
quired to be monotone, that is, if A1 ∈ Γ and A1 ⊆ A2 then A2 ∈ Γ. An authorized subset
M ∈ Γ is called minimal if N /∈ Γ for all N ⊂ M. A monotone access structure Γ can
thus be defined as the union-closure of the basis Γ0, which is the family of all minimal
authorized subsets. In (k,n) threshold schemes, such as Shamir’s scheme [8], the basis
is defined as Γ0 = {A⊆ P : |A|= k}, meaning that all subsets of k or more players can
recover the secret. The CA-based secret sharing scheme proposed by del Rey, Mateus
and Sánchez [2] can be defined as a sequential (k,n) threshold scheme, since at least k
consecutive shares are required to recover the secret. The minimal authorized subsets
are thus of the form A = {Pi,Pi+1, · · · ,Pi+k−1}, with 1≤ i≤ n− k+1.

The security model adopted for the study of secret sharing schemes considers the
information an attacker can obtain about the secret S by having the shares of a generic
unauthorized subset. In particular, schemes which do not leak any information on S by
knowing the shares of any unauthorized subset U /∈ Γ are called perfect. To formalise
this notion in a probabilistic framework, we follow the approach laid out by Stinson [9].

Let S be the space of secrets and B the space of possible shares. We define a dis-
tribution rule as a function ϕ : P → B which assigns to each player in P a share from
B . Given a secret S ∈ S , the set FS denotes the family of all distribution rules induced
by S. The dealer selects both the secret and the corresponding distribution rule accord-
ing to two probability distributions, which we respectively denote by Pr(S) and Pr(ϕ).
These probability distributions and the set F =

⋃
S∈S FS are assumed to be public, hence

known to an attacker. Considering a generic subset of players G ⊆ P , a shares distri-
bution δG is a possible assignment of shares to the members of G. Given a distribution
rule ϕ, the corresponding shares distribution δG is thus the image of the restriction ϕ|G.
By BG(S) = {ϕ|G : ϕ ∈ FS} we denote the set of all possible shares distributions to
G induced by the secret S. The probability distribution on all possible values of δG is
obtained as follows:

Pr(δG) = ∑
S∈S

(
Pr(S) · ∑

ϕ∈BG(S)
Pr(ϕ)

)
. (1)

We can now give the formal definition of perfect secret sharing scheme.

Definition 1. A set of distribution rules F =
⋃

S∈S FS is a perfect secret sharing scheme
having access structure Γ⊆ 2P if for all unauthorized subsets U /∈ Γ and for all shares
distributions δU it results that Pr(S|δU ) = Pr(S).

Assuming that a suitable notion of size is defined on both the secrets and the shares
(for example, the number of bits used to encode them), a perfect secret sharing scheme
is called ideal if for all S ∈ S the sizes of the shares generated by any distribution rule
ϕ ∈ FS equal the size of S.
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3 Building Preimages of Bipermutive CA

In this section we describe a procedure to reconstruct a preimage of a CA configuration
under a bipermutive rule, which is the basic primitive used in our secret sharing scheme.

Let us suppose that f : F2r+1
2 → F2 is bipermutive. Denoting by g the generating

function of f on the central 2r−1 variables and by y the value of f (x1, · · · ,x2r+1), the
following equalities hold:

y = x1⊕g(x2, · · · ,x2r)⊕ x2r+1

x2r+1 = x1⊕g(x2, · · · ,x2r)⊕ y

x2r+1 = f (x1,x2, · · · ,x2r,y) .

Hence, the value of the rightmost input bit can be recovered by computing f on the
vector (x1,x2, · · · ,x2r,y). Clearly, a symmetrical result holds when knowing y and the
rightmost 2r bits of the input, which give the value of x1. This property of bipermutive
rules allows one to determine a preimage p ∈ Fm+2r

2 of a configuration c ∈ Fm
2 using the

following procedure:

PREIMAGE-CONSTRUCTION

1. Set in a random position of p a block of 2r random bits (pi, pi+1, · · · , pi+2r−1).
2. Determine the value of pi+2r by computing f (pi, · · · , pi+2r−1,ci).
3. Shift the window of 2r bits one place to the right, and compute the value of

pi+2r+1 by evaluating f (pi+1, · · · , pi+2r,ci+1). Continue to apply this step until
the rightmost bit pm+2r has been computed.

4. Determine the value of pi−1 by computing f (ci−1, pi, · · · , pi+2r−1).
5. Shift the window of 2r bits one place to the left, and compute the value of pi−2

by evaluating f (ci−2, pi−1, · · · , pi+2r−2). Continue to apply this step until the
leftmost bit p1 has been computed.

Thus, the preimage is uniquely determined by the value of configuration c and by
the initial 2r-bit random block. This implies that every CA configuration has exactly 22r

preimages under a bipermutive rule; the fact that the initial block can be placed in any
position does not influence the total number of preimages. Figure 1 reports an example
of preimage computation using the elementary (i.e. with radius r = 1) rule 150.

c = 1 0 0 1 1 0

??p = ? ? 0 1 ? ?

f (1,0,1) f (0,1,1)

(a) Initialization

c = 1 0 0 1 1 0

01p = 0 0 0 1 0 1

(b) Complete preimage

Fig. 1: Example of preimage computation for c = (1,0,0,1,1,0)∈ F6
2 using the elemen-

tary bipermutive rule 150, defined as f (xi−1,xi,xi+1) = xi−1⊕ xi⊕ xi+1.
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Gutowitz [5] originally proposed to use the algorithm PREIMAGE-CONSTRUCTION
to implement a CA-based symmetric cryptosystem, using local rules which are either
leftmost or rightmost permutive, so that the initial block can be placed only to the left-
most and rightmost position of the preimage, respectively. The secret key is the permu-
tive rule employed to build the preimages of the CA. Oliveira, Coelho and Monteiro [7]
refined Gutowitz’s cryptosystem by using bipermutive rules, since in this case the dif-
ferences in the ciphertexts obtained starting from slightly different plaintexts propagate
in both directions, and thus make differential cryptanalysis more difficult.

4 A (k,k) Secret Sharing Scheme

We now describe the basic version of our secret sharing scheme, in which all partic-
ipants must pool their shares in order to recover the secret by using the properties of
bipermutive rules explained in Section 3.

First, we observe that by iterating the procedure PREIMAGE-CONSTRUCTION, at
each time step the size of the preimage grows by 2r bits. Hence, starting from a configu-
ration c having length m, after t iterations we obtain a preimage of length L(t)= 2rt+m.
Thus, given k∈N, the number of iterations necessary to obtain a preimage of size k ·m is
t =m(k−1)/2r. Since t has to be an integer number, 2r must divide m(k−1). However,
in order to prove the security properties of our scheme in the next section, we assume
the additional constraint that 2r divides m. Denoting by P = {P1,P2, · · · ,Pk} the set of
k players, we also assume that an order on P has already been mutually established by
the dealer and the players, and that each player knows its index i ∈ {1, · · · ,k}.

Our secret sharing scheme can be described as follows.

Setup Phase
1. The dealer D sets the secret S to be shared (having length |S| = m bits) as a

configuration of a cellular automaton, and it chooses at random a bipermutive
local rule of radius r, where r is such that 2r|m.

2. D applies PREIMAGE-CONSTRUCTION for T = m(k− 1)/2r iterations, ran-
domly choosing at each step the value and the position of the initial 2r-bit
block to start the construction of the preimage.

3. After T iterations, D obtains a preimage having length k ·m which contains a
sequence of 2r random adjacent bits starting at a random position. The preim-
age depends in general on 2rT = m(k− 1) random bits. The dealer splits the
preimage in k blocks of m bits, and securely sends one block to each player
according to the order defined on P (hence block B1 goes to P1, B2 to P2,
etc. up to Pk). Finally, D publishes the bipermutive rule used to evolve the CA
backwards.

Recovery Phase
1. All the k players pool their shares in the correct order to get the complete

preimage of the CA.
2. After having determined the preimage, the players evolve the CA forward for

T = m(k−1)/2r iterations, using the local rule published by the dealer. Notice
that the players can compute by themselves T , since they know m, k and r.

3. The configuration obtained after T iterations is the original secret S.

Figure 2 depicts the setup phase.
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S t = 0

w1 t = 1
← →

w2
← →

t = 2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · ·B1 Bk t = m(k−1)
2r

↑ ↑
P1 Pk

Fig. 2: Setup phase of the (k,k) secret sharing scheme. The randomly placed blocks wi
represent the initial 2r random adjacent bits used to reconstruct each preimage.

5 Security Properties of the Basic Scheme

The access structure of the basic scheme shown in Section 4 is trivially composed by
one set, which is the set of all players P . In order to investigate the security properties
of the scheme, we thus have to analyse the information an attacker can gain about
the secret by knowing a subset of k− 1 or fewer shares. We begin with the following
preliminary results.

Lemma 1. Let F : Fm+2r
2 → Fm

2 be the global rule of a CA defined by a bipermutive
local rule f : F2r+1

2 → F2. Then, by fixing a block x̃ ∈ F2r
2 of 2r adjacent coordinates in

x ∈ Fm+2r
2 , the resulting restriction F |x̃ : Fm

2 → Fm
2 is a permutation on Fm

2 .

Proof. Let us denote by x ∈ Fm+2r
2 the CA configuration and by y ∈ Fm

2 the image of F.
Assuming that the first component of the block x̃ ∈ F2r

2 is placed at position i of x, with
1 ≤ i ≤ m− 2r+ 1, we have to prove that the function F |x̃ which maps the remaining
vector x̂=(x1, · · · ,xi−1,xi+2r, · · · ,xm)∈Fm

2 to y is bijective. Given y∈Fm
2 and a block of

2r consecutive bits in the preimage, the remaining ones are uniquely determined by the
application of the algorithm PREIMAGE-CONSTRUCTION. Consequently, each output
y ∈ Fm

2 has a unique preimage under F |x̃, and thus F |x̃ is bijective. ut

In the next Lemma we denote by x(t) the configuration obtained by evolving the CA
forward for t steps, with x(0) being the first preimage resulting from the juxtaposition
of the k shares in the correct order. We also use the notation (xu, · · · ,xv)(t) to represent
the subvector of the configuration x(t) included between the indices u < v.

Lemma 2. Let Bl , with 1≤ l ≤ k, be the only unknown share among B1, · · · ,Bk. Then,
there exists a permutation Π : Fm

2 → Fm
2 between Bl and the secret S.

Proof. We first consider the case where l = 1, in which the unknown block of m bits
is B1 = (x1, · · · ,xm)(0). By evolving the CA forward, at each time step t the block
(x1, · · · ,xm)(t) remains unknown. Indeed, since the application of the global rule shrinks
the configuration by 2r bits, after t iterations only the rightmost m(k− 1)− 2rt bits of
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x(t) are determined. In particular, the block (xm+1, · · · ,xm+1+2r)(t) of 2r bits is known.
Hence, for all t ∈{1, · · · ,T}where T =m(k−1)/2r, by Lemma 1 there is a permutation
π1(t) : Fm

2 → Fm
2 which maps the block (x1, · · · ,xm)(t− 1) in the block (x1, · · · ,xm)(t).

By observing that (x1, · · · ,xm)(T ) = S, the permutation Π between B1 and S can thus
be defined as Π = π1(T )◦π1(T −1)◦ · · · ◦π1(1).

If the missing share is Bk, a symmetric reasoning stands by considering for all t the
block (xm(k−1)+1, · · · ,xmk)(t) containing the rightmost m unknown bits.

We now prove the generic case where 1 < l < k. This means that the unknown m-bit
block is (x(l−1)m+1, · · · ,xlm)(0). Similarly to the case l = 1, by evolving the CA forward
the block (x(l−1)m+1−2rt , · · · ,xlm−2rt)(t) is undetermined, and by Lemma 1 there is a
permutation πl(t) between this block and (x(l−1)m+1−2r(t−1), · · · ,xlm−2r(t−1))(t−1). In
particular, the 2r-bit block which fixes πl(t) is the one placed to the left of the cell
x(l−1)m+1−2r(t−1). Clearly, t does not range in the set {1, · · · ,T}. In fact, at a certain
step t̂ < T the index of the first cell in the unknown m-bit block will be less than 2r.
Recall that in Section 4 we required that 2r|m, i.e. m = 2rb for some b ∈ N. Thus, at
time t̂ = 1+(l−1)b the vector (x1, · · · ,xm)(t̂) is undetermined. But we know from the
case l = 1 that there is a series of permutations π1(t) for t̂ < t ≤ T which maps this
block to the secret S. Hence, the permutation Π between Bl and S can be defined as
Π = π1(T )◦ · · · ◦π1(t̂ +1)◦πl(t̂)◦ · · · ◦πl(1). ut

In what follows, we denote by S = Fm
2 the space of secrets, which coincides with

the space of shares B . Let us assume that the uniform probability distribution is defined
on S , that is Pr(S) = 1/2m for all S ∈ S . Given a secret S, the distribution rule ϕ ∈ FS
assigning to each of the k players a share from B is determined by the 2r-bit blocks used
to build the CA preimages, thus by a total of m(k− 1) bits. Assuming that the dealer
chooses uniformly at random these bits, for all ϕ∈FS it follows that Pr(ϕ)= 1/2m(k−1).

Let us suppose that U ⊆ P is a subset of participants such that |U |= |P |−1 = k−1.
The probability that a particular share distribution δU occurs given a secret S can be
computed as

Pr(δU |S) = ∑
ϕ∈BU (S)

Pr(ϕ) . (2)

Given S ∈ S , by Lemma 2 we know that for all distributions of k− 1 shares δU there
is only a single additional share Bl that, joined to those of U , uniquely determines the
secret S, since there is a permutation Π between Bl and S. Consequently, |BU (S)| = 1
and Equation (2) becomes

Pr(δU |S) = ∑
ϕ∈BU (S)

Pr(ϕ) =
1

2m(k−1) . (3)

Computing the probability of a particular share distribution δU over all possible secrets
S ∈ S is now straightforward:

Pr(δU ) = ∑
S∈S

(
P(S) · ∑

ϕ∈BU (S)
Pr(ϕ)

)
. (4)

Since Pr(S) = 1/2m for all S ∈ S and |S |= 2m, Equation (4) can be rewritten as
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Pr(δU ) = 2m · 1
2m ·

1
2m(k−1) =

1
2m(k−1) . (5)

We have thus concluded that, for all S ∈ S ,

Pr(δU ) = Pr(δU |S) , (6)

that is, the occurrence of the share distribution δU to the subset U is independent from
the occurrence of the secret S. Clearly, we can make the same reasoning for all subsets
U ⊆ P such that |U | < |P | = k; the only quantity which changes is the cardinality of
the set BU (S), but this is irrelevant in order to get Equation (6).

We can now prove the following result.

Theorem 1. The (k,k) secret sharing scheme described in Section 4 is perfect.

Proof. Let U be a generic unauthourized subset of players having cardinality |U |< k,
and let δU be a share distribution to the members of U. Using Bayes’ theorem, we have

Pr(S|δU ) =
Pr(δU |S) ·Pr(S)

Pr(δU )
. (7)

By Equation (6), we know that Pr(δU ) = Pr(δU |S). Hence, Pr(S|δU ) = Pr(S). ut

Thus, by knowing k−1 or fewer shares the attacker gains no information about the
secret. Finally, it is also easy to see that the scheme is ideal, since the CA is iterated
the number of times necessary to get a preimage having length k ·m. Hence, the size of
each of the k shares equals the size of the secret.

6 An Extension to the Basic Scheme

The secret sharing scheme described in Section 4 can be trivially employed to imple-
ment any access structure Γ ⊆ P : for each authorized subset A ∈ Γ, it simply suffices
to re-run the setup phase and create a new (independent) set of shares to be distributed
to the members of A. However, as the size of P grows, this method quickly becomes
impractical, since each player must hold a different share for every authorized subset he
belongs to. We now introduce an extension to the basic scheme called secret juxtaposi-
tion, which allows one to reuse the same shares thus creating more authorized subsets
with a single setup phase.

Let us assume that a set of k shares has been created by following the basic setup
procedure, and distributed to a set of k participants. In order to add an additional player
without having to recompute all the shares, we can append another copy of the secret
S to the right of the existing one (respectively, to the left). Then, we run the algo-
rithm PREIMAGE-CONSTRUCTION for each preimage towards the right (respectively,
towards the left) to compute the additional share of m = |S| bits. Note that in this case
it is not necessary to pick random bits, since in each preimage more than 2r bits are
already determined.

Thus, by juxtaposing q copies of the secret S and by evolving the CA backwards for
T = m(k−1)/2r steps, we get q+ k−1 shares of m bits, and each of the q subsets of k
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consecutive shares can recover the secret, since the corresponding space-time cone col-
lapses on a copy of S. The resulting access structure is however more flexible than the
sequential threshold induced by del Rey, Mateus and Sánchez’s scheme [2]. In fact, in
our scheme by continuing to append copies of the secret the shares obtained will even-
tually repeat. This happens because after at most 22r juxtapositions of S, the last 2r-bit
block in the first preimage will be already occurred at another index corresponding to
the end of a copy of S and the beginning of the next one (see Figure 3).

S S · · · S

w B · · · w B

h≤ 22r

Fig. 3: After at most h ≤ 22r juxtaposed copies of S, the algorithm PREIMAGE-
CONSTRUCTION repeats the 2r-bit block w at the end of the preimage. At this point,
the subsequent m-bit block in the preimage will be a copy of B, since the part of the
image which is relevant for PREIMAGE-CONSTRUCTION is always S.

As a consequence, after a certain number of juxtapositions the access structure of
our scheme becomes cyclic, meaning that the sets of k consecutive shares which can
recover the secret are the ones that can be formed by considering the CA preimage at
time T as a ring. The minimal authorized subsets M ∈Γ0 of a generic (k,n) cyclic access
structure are defined for all i ∈ {1, · · · ,n} as M = {Pj(i),Pj(i+1), · · · ,Pj(i+k−1)}, where
j(z) = 1+[(z−1) mod n] for all z ∈ {i, · · · , i+ k−1}. It is easy to see that in a (k,n)
cyclic access structure there are n minimal authorized subsets, in contrast to the n−k+1
yielded by a sequential threshold scheme. Thus, assuming that the first preimage of the
CA repeats itself after n juxtapositions of the secret S, with n≤ 22r, the extended scheme
can be used to implement a cyclic access structure for a set of n players, by evolving
the CA backwards for T steps starting from a configuration composed by n copies of S.
We note that Theorem 1 still holds for the extended scheme, under the assumption that
the attacker knows fewer than k consecutive shares.

7 Conclusions

We presented a new secret sharing scheme which employs bipermutive cellular au-
tomata as a primitive, differently from the LMCA-based approach schemes usually
proposed in the literature. The main idea of our scheme is to set the secret S as a configu-
ration of a bipermutive CA and to evolve it backwards using the algorithm PREIMAGE-
CONSTRUCTION until a preimage of length k ·m is obtained, which is subsequently
splitted among the k players. We proved that this basic version of the scheme in which
all the k players have to pool their shares to recover the secret is perfect, meaning that
an attacker who knows fewer than k shares gains no information about S. Moreover,
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we showed that the scheme is ideal, since the shares have the same size of the secret.
We finally introduced an extension to the basic scheme which allows one to generate
more authorized subsets. The extension simply consists in juxtaposing q copies of the
secret S and then evolve the CA backwards until a preimage of m(q+ k− 1) bits is
reached. In this way, there are q sets of k consecutive shares which can determine the
secret. The resulting access structure eventually becomes cyclic, since after at most 22r

juxtapositions of the secret the final shares will begin to repeat themselves.
The main advantages of our scheme compared to del Rey, Mateus and Sánchez’s

LMCA-based model [2] can be synthesised as follows. First, bipermutive CAs have a
simpler structure than k-th order linear memory CA, since the next states of the cells
depend only on the current configuration. Hence, our scheme is possibly amenable to
more efficient and cost-effective hardware implementations. Moreover, the cyclic ac-
cess structure induced by our scheme is more flexible, since it eventually generates n
minimal authorized subsets rather than the n−k+1 produced by the scheme of del Rey,
Mateus and Sánchez [2].

There are several possibilities for further research and improvements on this sub-
ject. From a practical point of view, it would be useful to investigate if there exists a
general method to determine exactly after how many juxtapositions of the secret the
shares begin to repeat themselves, without having to simulate the CA backwards. This
is equivalent to the following problem: given a bipermutive rule f and a CA configu-
ration having spatial period m, find the periods of its preimages under the application
of f . Another interesting direction of research would be to generalise the secret sharing
scheme to the case of d-dimensional cellular automata, with d ≥ 2, and to consider the
resulting access structures: clearly, the number of authorized subsets would be greater
than in the one-dimensional case, since each share would be adjacent to more shares.
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