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Abstract. Mutually Orthogonal Cellular Automata (MOCA) are sets of biper-
mutive CA which can be used to construct pairwise orthogonal Latin squares. In
this work, we consider the inversion problem of pairs of configurations in MOCA.
In particular, we design an algorithm based on coupled de Bruijn graphs which
solves this problem for generic MOCA, without assuming any linearity on the
underlying bipermutive rules. Next, we analyze the computational complexity of
this algorithm, remarking that it runs in exponential time with respect to the di-
ameter of the CA rule, but that it can be straightforwardly parallelized to yield
a linear time complexity. As a cryptographic application of this algorithm, we
finally show how to design a (2,n) threshold Secret Sharing Scheme (SSS) based
on MOCA where any combination of two players can reconstruct the secret by
applying our inversion algorithm.
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1 Introduction

The inversion problem is one of the oldest research questions investigated in the field of
Cellular Automata (CA). Indeed, the first results in this aspect of CA theory dates back
at least to Hedlund [4] and Richardson [14]. Stated informally, the inversion problem
consists in determining a preimage of a given configuration under the action of a surjec-
tive CA. When dealing with the specific class of reversible CA, one can compute such
unique preimage in parallel by applying an inverse CA to the desired configuration.

However, the general case of surjective CA usually requires the specification of
an inversion algorithm which computes a preimage in a sequential way, starting from
the knowledge of the states of some of its cells. Sutner [17] was among the first to
describe this inversion algorithm using the de Bruijn graph representation of CA. More
specifically, he showed that a preimage of a configuration corresponds to a path on
the vertices of the de Bruijn graph associated to the CA, where the edges are labeled
by the cells of the configuration. The existence of such a path is guaranteed under the
assumption that the CA global rule is surjective.

De Bruijn graphs turned out to be a very useful tool to address several interest-
ing questions related to the inversion problem, such as studying the spatial periods of
surjective CA preimages [10] and solving the parity problem through CA [2].

A recent research thread involving the inversion problem concerns Mutually Or-
thogonal Latin Squares (MOLS) generated by CA. In particular, it has been shown
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in [7] that CA with bipermutive local rules can be used to define Latin squares, and
pairs of linear bipermutive rules whose associated polynomials are coprime generate
orthogonal Latin squares. The idea of the construction is to split the CA initial config-
uration in two parts, in order to index the rows and the columns of the squares. Then,
the final configurations obtained by applying two linear bipermutive rules with coprime
polynomials are used to fill the two entries in the square at the coordinates specified by
the initial configuration. In what follows we refer to a pair of bipermutive CA generat-
ing orthogonal Latin squares as Orthogonal Cellular Automata (OCA), and to a set of
pairwise OCA as Mutually Orthogonal Cellular Automata (MOCA).

It can be remarked that any pair of OLS defines a permutation between the Cartesian
product of the rows/columns sets and the overlapped entries. Hence, starting from a pair
of final configurations generated by two OCA, an interesting problem is to reconstruct
the unique preimage (i.e. the row and column coordinates) which generated them.

The aim of this paper is to investigate the inversion problem in MOCA, without
assuming any linearity of the underlying local rules. As a matter of fact, the inversion
of OCA defined by linear rules has already been settled in [7], and it basically amounts
to inverting a Sylvester matrix. Consequently, in this work we focus on pairs of OCA
defined by general bipermutive rules, whose exhaustive and heuristic constructions have
already been addressed in [8,11].

We leverage on the de Bruijn graph representation to solve the inversion problem.
In particular, we design an algorithm which, given as inputs the coupled de Bruijn
graph of two nonlinear OCA and a pair of final configurations, computes their unique
preimage by using a variant of Depth-First Search (DFS). We remark in particular that
the computational complexity of this algorithm is exponential in the diameter of the
OCA rules. Nonetheless, we also show that this algorithm can be straightforwardly
parallelized with respect to the initial DFS calls, thus yielding an overall linear time
complexity.

As an application of our inversion algorithm, we design a perfect secret sharing
scheme based on MOCA where every pair of players can reconstruct the secret, while
any single player cannot gain any information about it. More specifically, we show that
the reconstruction phase consists in the application of the inversion algorithm on the
two shares of the players, using the coupled de Bruijn graph of the OCA that the dealer
used to compute such shares.

The rest of this paper is organized as follows. Section 2 covers all basic definitions
and results concerning cellular automata, orthogonal Latin squares and secret sharing
schemes used to prove the results of the paper, addressing the inversion problem in
the case of MOCA defined by nonlinear bipermutive rules. Section 4 describes the
application of our inversion algorithm to the design of a (2,n) threshold secret sharing
scheme. Finally, Section 5 summarizes the key findings of the paper and puts them into
perspective.

2 Preliminary Definitions

In this section, we recall the basic definitions and notions which we will use in the rest
of the paper. In particular, Section 2.1 covers all necessary background about CA and
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their representation based on de Bruijn graphs. Section 2.2 gives the basic definitions
regarding orthogonal Latin squares and how they can be used to construct perfect (2,n)
secret sharing schemes. Section 2.3 briefly reviews the construction of OLS by means
of linear OCA and the exhaustive and heuristic search of OLS by nonlinear OCA.

2.1 Cellular Automata

Throughout this work, we focus on one-dimensional No Boundary Cellular Automata
(NBCA), formally defined as follows:

Definition 1. Let Σ be a finite alphabet and n,d ∈ N with n ≥ d. Additionally, let the
function f :Σd→Σ be a local rule of diameter d. The No Boundary Cellular Automaton
(NBCA) F : Σn→ Σn−d+1 is the vectorial function defined for all x ∈ Σn as

F(x1, · · · , xn) = ( f (x1, · · · , xd), f (x2, · · · , xd+1), · · · , f (xn−d+1, · · · , xn)) . (1)

Function F is also called the CA global rule.

In other words, an NBCA can be viewed as an array of n ≥ d cells, where each of the
leftmost n−d +1 cells computes its next state by evaluating rule f on the neighborhood
formed by itself and the d−1 cells to its right. In particular, the rightmost d−1 cells of
the array are ignored, so that the size of the CA “shrinks” by d−1 cells upon application
of the global rule F.

In the rest of this paper, we assume that the state alphabet Σ is the finite field with
two elements F2 = {0,1}. In this case, a NBCA can be interpreted as a particular kind of
vectorial Boolean function F : Fn

2→ F
n−d+1
2 , where each coordinate function fi : Fn

2→ F2
defining the i-th output value corresponds to the local rule applied to the neighborhood
of the i-th cell. Since in this case the local rule is a single-output d-variable Boolean
function f : Fd

2 → F2, it can be uniquely represented by the 2d-bit output column of its
truth table, which we denote by Ω f . In the CA literature it is customary to identify a
local rule f by its Wolfram code, which is the decimal encoding of its truth table Ω f .

1 0 0 1

f (1,0,0) = 1

01 0 0 0 1

00

0110

11

1

00

1

0

1

0

1

Fig. 1: Example of NBCA defined by rule 150, together with its de Bruijn graph.
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A local rule f : Fd
q → F2 is called right (respectively, left) permutive if, by fixing

the values of the leftmost (respectively, rightmost) d−1 cells to any value x̃ ∈ Σd−1, the
resulting restriction fx̃ : Σ→ Σ is a permutation over Σ. Moreover, f is called bipermu-
tive if it is both left and right permutive. When Σ = F2, a bipermutive rule f : Fd

2 → F2

is defined for all x = (x1, · · · , xd) ∈ Fd
2 as:

f (x1, · · · , xd) = x1⊕g(x2, · · · , xd−1)⊕ xd , (2)

where g : Fd−2
2 → F2 is a (d−2)-variable Boolean function.

Another common way for representing a CA is through its de Bruijn graph. Let us
assume that u,v ∈ Σn are two strings over the alphabet Σ of length n such that u = u1x
and v = xv1, where u1,v1 ∈ Σ and x ∈ Σn−1 is a string of length n− 1. In other words,
u and v overlap respectively on the rightmost and leftmost n− 1 symbols. The fusion
between u and v is the string z = u� v of length n + 1 obtained by adding to u the last
symbol of v [17]. Then, one can formally define the de Bruijn graph associated to a CA
as follows:

Definition 2. Let F : ΣZ→ ΣZ be a CA defined by a local rule f : Σd → Σ of diameter
d. The de Bruijn graph associated to F is the directed labeled graph GDB( f ) = (V,E, l)
where V = Σd−1 and such that for any v1,v2 ∈ V, one has (v1,v2) ∈ E if and only if there
exists z ∈ Σd such that z = v1 � v2. The label function l : E→ Σ on the edges is defined
for all (v1,v2) ∈ E as l(v1,v2) = f (v1� v2).

Stated otherwise, the vertices of the de Bruijn graph correspond to all possible blocks
of d − 1 cells. Two vertices v1 and v2 are connected by an edge if and only if they
overlap respectively on the rightmost and leftmost d−1 cells, and the label on this edge
is obtained by computing the CA local rule on the fusion of v1 and v2. Figure 1 depicts
an example of binary NBCA F : F6

2 → F
4
2 induced by the local rule f (xi, xi+1, xi+2) =

xi⊕ xi+1⊕ xi+2, whose Wolfram code is 150, together with its de Bruijn graph.

2.2 Orthogonal Latin Squares and Secret Sharing Schemes

Given N ∈ N, let us denote by [N] the set {1, · · · ,N}. Then, one can formally define
orthogonal Latin squares as follows:

Definition 3. A Latin square L of order N ∈ N is a N × N matrix whose rows and
columns are permutations of [N], i.e. every element of [N] occurs exactly once in each
row and each column. Two Latin squares L1,L2 of order N are called orthogonal if for
all distinct pairs of coordinates (i1, j1), (i2, j2) ∈ [N]× [N] one has

(L1(i1, j1),L2(i1, j1)) , (L1(i2, j2),L2(i2, j2)) , (3)

that is, the superposition of L1 and L2 yields all possible pairs in the Cartesian product
[N]× [N].

Remark 1. Two orthogonal Latin squares L1,L2 of order N ∈ N induce a permutation
π : [N]× [N]→ [N]× [N] over the Cartesian product [N]× [N], which is defined as

π(i, j) = (L1(i, j),L2(i, j)) (4)

for all (i, j) ∈ [N]× [N].

4

https://doi.org/10.1007/978-3-319-99813-8_33


The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99813-8_33

A set n pairwise orthogonal Latin squares of order [N] is denoted as n−MOLS (Mutually
Orthogonal Latin Squares). Figure 2 reports an example of orthogonal Latin squares of
order N = 4, together with their superposition.

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4

1,1 3,4 4,2 2,3

4,3 2,2 1,4 3,1

2,4 4,1 3,3 1,2

3,2 1,3 2,1 4,4

Fig. 2: Orthogonal Latin squares of order N = 4.

Orthogonal Latin squares turn out to have several applications in cryptography and
coding theory [16,5], one of the most interesting being secret sharing schemes (SSS).
Informally speaking, a SSS is a procedure which enables a trusted party (called the
dealer) to share a secret S among a set of n players. In particular, the players receive
shares of the secret from the dealer, and only certain authorized subsets of players
specified in an access structure can reconstruct the secret by combining together their
shares. A SSS is called perfect if any subset not belonging to the access structure cannot
determine the secret (in an information-theoretic sense).

In this work we focus mainly on perfect (k,n)−threshold SSS, where the authorized
subsets are those having cardinality at least k. Hence, any combination of k shares is
enough to uniquely determine the secret, while knowing k−1 or less shares keeps any
value of the secret equally likely.

The connection between perfect threshold SSS and orthogonal Latin squares is es-
tablished by the following result [16]:

Theorem 1. A perfect (2,n)− threshold SSS exists if and only if there exists a set of n
MOLS of order N.

The setup phase of a (2,n)− threshold SSS from a set of n MOLS L1, · · · ,Ln goes as
follows. First, the secret S is represented as a row i ∈ [N] of the squares, and the dealer
randomly chooses a column j ∈ [N]. Then, for each m ∈ {1, · · · ,n}, the dealer secretly
sends to the m-th player the share Bm = Lm(i, j), i.e. the entry of the m-th Latin square
at row i and column j. Finally, the dealer publishes the Latin squares L1, · · · ,Ln.

In the recovery phase, any pair of players p,q respectively holding shares Bp,Bq can
recover the secret simply by overlaying the two public Latin squares Lp,Lq. Since Lp
and Lq are orthogonal, the pair of shares (Bp,Bq) occurs at a single pair of coordinates
(i, j), the row of which is the secret S . Conversely, if p tries to determine the secret on
her own without knowing the share Bq, there will be exactly N pairs (Bp, ·) in the overlay
of the two Latin squares, due to the fact that Lp and Lq are orthogonal. A symmetric
argument holds when q tries to determine S by herself without knowing Bp. Hence, the
knowledge of a single share leaves the value of the secret completely undetermined,
which makes the scheme perfect.
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2.3 Construction of OLS by CA

We now describe how CA can be employed to obtain orthogonal Latin squares, briefly
recalling the construction reported in [7]. In what follows, given a binary vector x ∈ Fn

2,
we will denote by φ(x) ∈ {1, · · · ,2n} the integer number corresponding to the decimal
representation of x + 1. On the contrary, for any integer number i ∈ {1, · · · ,2n}, ψ(i) ∈ Fn

2
will stand for the n-bit binary representation of i−1. Notice that φ = ψ−1 and ψ = φ−1.

Let F : F2(d−1)
2 → Fd−1

2 be a CA based on a local rule f : Fd
2→ F2 of d variables. This

means that F is a vectorial Boolean function mapping binary strings of length 2(d−1)
to strings of length d−1. Setting N = 2d−1, one can associate a N×N square matrix S F
to F as follows: for each (i, j) ∈ [N]× [N], the entry of S F at row i and column j equals

S F(i, j) = φ(F(ψ(i)||ψ( j))) , (5)

where || denotes the concatenation operator. Thus, the entry S F(i, j) is determined by
computing the CA on the input vector where the first d−1 bits corresponds to the binary
representation of row i, while the last d−1 are the binary representation of column j.

One may wonder under which conditions the matrix associated to a CA is a Latin
square. As shown in the next result [7], this situation happens when the underlying local
rule is bipermutive:

Lemma 1. Let F : F2(d−1)
2 → Fd−1

2 be a CA with bipermutive local rule f : Fd
2 → F2.

Then, the square S F induced by F is a Latin square of order N = 2d−1.

As an example, Figure 3 depicts the Latin square of order N = 4 associated to the CA
F : F4

2→ F
2
2 with bipermutive local rule 150. A natural question immediately following

0 0 0 0
0 0

0 0 1 0
1 1

0 0 0 1
0 1

0 0 1 1
1 0

1 0 0 0
1 0

1 0 1 0
0 1

1 0 0 1
1 1

1 0 1 1
0 0

0 1 0 0
1 1

0 1 1 0
0 0

0 1 0 1
1 0

0 1 1 1
0 1

1 1 0 0
0 1

1 1 1 0
1 0

1 1 0 1
0 0

1 1 1 1
1 1

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

Fig. 3: Example of Latin square to the CA F : F4
2→ F

2
2 with local rule 150.

from Lemma 1 is when the Latin squares associated to two bipermutive CA F,G are
orthogonal. In this case, we call the pair F,G as Orthogonal Cellular Automata (OCA),
and by analogy a family of bipermutive CA whose associated Latin squares are MOLS
is called a set of Mutually Orthogonal Cellular Automata (MOCA).

The question has been settled in [7] for linear rules. A local rule f : Fd
2→ F2 is linear

if there exists a vector a = (a1, · · · ,ad) ∈ Fd
2 such that f (x1, · · · , xd) = a1x1⊕· · ·⊕ad xd for

all x = (x1, · · · , xd) ∈ Fd
2. In this case, rule f is bipermutive if and only if a1 = ad = 1.

Additionally, one can easily associate to f a polynomial p f (X) ∈ F2[X] of degree d−1
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by defining it as p f (X) = a1 + a2X + · · ·+ adXd−1. Using this representation, the authors
of [7] proved the following result:

Theorem 2. Let F,G : F2(d−1)
2 → Fd−1

2 be two CA respectively defined by two linear
bipermutive rules f ,g : Fd

2→ F2. Further, let p f , pg denote the two polynomials respec-
tively associated to f and g. Then, F and G are OCA if and only if gcd(p f , pg) = 1, that
is, if and only if f and g are coprime.

In [8] the authors performed an exhaustive search for finding all OCA pairs equipped
with nonlinear bipermutive rules of diameter up to d = 6. Further, the optimization
problem of determining nonlinear OCA of diameter d = 7,8 has been addressed in [11].
In particular, since exhaustive search is not feasible for any d > 6, the authors resorted
to genetic algorithms (GA) and genetic programming (GP).

3 Computing Preimages of OCA

We can now formally state the inversion problem for OCA which we analyze in the rest
of this paper:

Problem 1. Let F,G : F2(d−1)
2 → Fd−1

2 be a pair of OCA respectively defined by biper-
mutive local rules f ,g : Fd

2 → F2, and let w,z ∈ Fd−1
2 be two (d− 1)−bit vectors. Then,

find the vector c = x || y with x,y ∈ Fd−1
2 such that (F(c),G(c)) = (w,z).

Using the terminology of Latin squares, Problem 1 requires finding a pair of row/column
coordinates (φ(x),φ(y)) such that the corresponding entry in the superposition of Latin
squares S F and S G is the pair (φ(w),φ(z)). Since S F and S G are orthogonal, by Re-
mark 1 such pair of coordinates is unique.

Notice that Problem 1 does not assume any linearity on the bipermutive local rules
underlying the two OCA, so the inversion algorithm which we develop in this section
works both for linear and nonlinear OCA. Before describing it, we first need to intro-
duce some additional data structures and algorithms.

Let GDB( f ) = (V,E, l f ) and GDB(g) = (V,E, lg) be the de Bruijn graphs respectively
associated to two CA F,G : Σ2(d−1) → Σd−1 equipped with local rules f ,g : Σd → Σ of
diameter d. Then, the coupled de Bruijn graph induced by F and G is the de Bruijn
graph GDB( f ,g) = (V,E, l f ,g) whose edge labeling function l : E→ Σ ×Σ is defined for
all (v1,v2) ∈ E as

l(v1,v2) = (l f (v1,v2), lg(v1,v2)) . (6)

Thus, the labeling on the coupled de Bruijn graph is formed setting side by side the
edge labels of the de Bruijn graphs of the single CA.

In what follows, we will make use of the variant of Depth First Search originally
introduced in [10] to compute the unfolding of de Bruijn graphs. Given a configuration
y of length p and a vertex v of a de Bruijn graph GDB( f ) = (V,E, l) associated to a CA,
this algorithm visits GDB( f ) starting from a single vertex v1 and following the path on
the edges labeled by y. In particular, contrary to the plain version of DFS, this variant
does not mark the visited edges, so that in principle they can be visited multiple times.
The fusion of the vertices v1, · · · ,vp visited during this algorithm determines a preimage
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x of configuration y. In our case, we will denote by DFS-Mod(V,E, l,v,w,z) a call to
this DFS variant on the coupled de Bruijn graph GDB( f ,g) = (V,E, l) associated to f
and g, starting from vertex v and reading the edge labels determined by juxtaposing the
configurations w,z ∈ Fd−1

2 . In particular, it is not guaranteed that a preimage of w,z can
be found, since for any i ∈ {1, · · · ,d − 1} there might be no edges labeled with (wi,zi)
that exit from vertex vi visited by the DFS on step i−1. Thus, we will assume that DFS-
Mod(GDB( f ,g), l,v,w,z) either returns a preimage c of w,z or the value NIL when such
preimage cannot be constructed starting from vertex v.

We can now describe the structure of our inversion procedure for OCA, whose
pseudocode is reported in Algorithm 1. The procedure takes as input the coupled de

Algorithm 1 Invert-OCA(GDB( f ,g),w,z)
V := Vertex(GDB( f ,g))
E := Edges(GDB( f ,g))
l := Labels(GDB( f ,g))
c := NIL
while e ∈ {(v1,v2) ∈ E : l(v1,v2) = (w1,z1)} AND c = NIL do

c := DFS-Mod(V,E, l,v1,w,z)
end while
return c

Bruijn graph GDB( f ,g) of two OCA F,G : F2(d−1)
2 → Fd−1

2 defined by bipermutive rules
f ,g : Fd

2 → F2 respectively, and two configurations w,z ∈ Fd−1
2 . The first three steps of

the algorithm simply extract the vertex set, the edge set and the labeling function of the
graph, while the fourth step initializes the configuration to be returned to NIL. Then,
the while loop is performed until there are edges in E labeled with the first symbols of
w and z, and c equals NIL. Inside the loop, the only instruction is the call to DFS-Mod
starting from the first vertex of the edge. If the DFS visit successfully completes, then
a preimage of (w,z) is returned and assigned to c, otherwise c remains NIL. As soon as
a preimage is found or there are no other edges labeled with (w1,z1) in the coupled de
Bruijn graph, the execution exits the while loop and the current value of c is returned.

We now prove the correctness and the time complexity of Algorithm 1, under the
assumption that F and G are OCA.

Theorem 3. Let F,G : F2(d−1)
2 → Fd−1

2 be two OCA with bipermutive local rules f ,g :
Fd

2 → F2 and let GDB( f ,g) be the coupled de Bruijn graph of F and G. Then, for any
pair of final configurations w,z ∈ Fd−1

2 , the procedure Invert-OCA correctly returns the
unique preimage c ∈ F2(d−1)

2 such that (F(c),G(c)) = (w,z) in O(d ·2d) steps.

Proof. Correctness. Let w,z ∈ Fd−1
2 be two configurations of d−1 bits, and let φ(w),φ(z)

be their decimal representations ranging in [N], where N = 2d−1. Since the two Latin
squares S F and S G are orthogonal, the pair (φ(w),φ(z)) appears exactly once in their
superposition. Let i, j ∈ [N] be respectively the row and column coordinates where such
pair occurs. Given the binary representation ψ(i),ψ( j) ∈ Fd−1

2 of i, j and denoting by
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c = ψ(i) || ψ( j) their concatenation, this means that

(F(c),G(c)) = (w,z) (7)

Algorithm 1 invokes DFS-Mod on all vertices v ∈ V which have an outgoing edge la-
beled by (w1,z1). In particular, due to the fact that S F and S G are orthogonal, there will
be exactly one call which returns a value different from NIL, and this value corresponds
to the only preimage c which satisfies Equation (7).

Complexity. To determine the time complexity of Invert-OCA, first remark that a
single call to DFS-Mod requires at most d−1 steps to complete, because the two con-
figurations w,z have length d−1 each, and their symbols are pairwise read during the
DFS visit. In particular, a DFS visit could return before d−1 steps, due to the fact that
there are no outgoing edges labeled with the pairs of symbols of w and z. To conclude,
we need to determine how many times DFS-Mod is invoked. Lemma 3 in [8] shows
that the local rules of OCA are pairwise balanced, meaning that there are exactly 2d−2

edges on the coupled de Bruijn graph labeled with (w1,z1). Consequently, DFS-Mod is
invoked 2d−2 times, thus the overall time complexity of Invert-OCA is O(d ·2d). ut

One may notice that the time complexity of Algorithm 1 is exponential with respect
to the diameter of the CA. However, remark that Algorithm 1 can be straightforwardly
parallelized by assigning a processor to each DFS call inside the while loop. Hence, by
using 2d−2 processors in parallel, the time complexity of Invert-OCA can be reduced
down to O(d), which is the number of steps necessary to complete a DFS visit.

4 Application to Secret Sharing Schemes

On account of Theorem 2, a set {p1, · · · , pn} of n pairwise coprime polynomials of de-
gree d− 1 is equivalent to a family of n linear MOCA of order N = 2d−1, and thus by
Theorem 1 it is also equivalent to a perfect (2,n)-threshold SSS. However, publishing
the whole set of n MOLS is not an efficient way to implement the recovery phase of a
SSS, especially if the size of the squares is huge. Thus, one needs to find a compact way
to describe the recovery phase of the secret starting from the knowledge of two shares.

In this concluding section, we show how our inversion algorithm Invert-OCA can
be used precisely for this purpose. To our knowledge, this is the first time that a full
perfect (2,n)-threshold SSS based on CA is described in the literature. As a matter of
fact, there have been other attempts at designing CA-based secret sharing schemes (such
as [13,9]), but the resulting access structures suffered from an additional adjacency
constraint on the shares, since they actually represent blocks of CA configurations.

Let the secret S be a vector of Fm
2 where m = d − 1, and assume that there are n

players P1, · · · ,Pn. Then, the setup phase of our (2,n)-threshold SSS is as follows:

Setup Phase
Initialization:

1. Find n local rules f1, · · · , fn : Fd
2 → F2 which give rise to a set of n MOCA

of order N = 2d−1. By Theorem 2, this can be done for example by picking n
relatively prime polynomials p f1 (x), · · · , p fn (x) over F2
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2. Concatenate secret S with a random vector R ∈ Fm
2 , thus obtaining a configura-

tion C ∈ F2m
2 of length 2(d−1)

Loop: For all i ∈ {1, · · ·n} do:
1. Given Fi : F2m

q → F
m
2 the NBCA defined by rule fi, compute Bi = Fi(C)

2. Send share Bi to player Pi

Termination: Publish the n local rules f1, · · · , fn defining the MOCA.

For the recovery phase, suppose that two players Pi and P j want to determine the
secret. Let Bi and B j respectively denote the share of Pi and P j. Since the local rules of
the MOCA are public, both Pi and P j know the CA linear rules fi and f j used by the
dealer to compute their shares. Hence, they adopt the following procedure to recover S :

Recovery Phase
Initialization:

1. Find the CA linear rules fi and f j published by the dealer corresponding to
players Pi and P j

2. Compute the coupled de Bruijn graph GDB( fi, f j)
Reconstruction:

1. Compute configuration C by calling Invert-OCA(GDB( fi, f j),Bi,B j)
2. Return the first half of C as the secret S

Hence, the recovery phase of this SSS simply consists in computing the preimage of
the pair of configurations represented by the shares Bi,B j under the action of the two
OCA with local rules fi, f j. In particular, the whole preimage returned by Invert-OCA
contains both secret S in its left half and the random column chosen by the dealer in the
second half.

5 Discussion, Conclusions and Directions for Future Work

In this paper, we described an algorithm to invert a pair of configurations under the
action of two OCA. Specifically, starting from the coupled de Bruijn graph of the two
OCA of diameter d, the algorithm applies a DFS-based search until a valid path labeled
with the two configurations is found. The existence of such unique path is guaranteed by
the fact that the two OCA define a pair of orthogonal Latin squares, and thus a bijection
among pairs of (d−1)-bit vectors. Since there are 2d−1 vertices in the coupled de Bruijn
graph, in the worse case the running time of our algorithm is exponential in the diameter
of the CA. However, this algorithm is easily parallelizable, by assigning a DFS call to a
separate processor. Hence, using O(2d) processors in parallel yields a time complexity
which is linear in the CA diameter. As an application of this algorithm, we showed how
to implement the recovery phase of a (2,n)-threshold secret sharing scheme based on
MOCA.

Taking a closer look at the computational complexity of Algorithm 1, one may no-
tice that we did not consider the size of the input in our analysis. As a matter of fact, the
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de Bruijn graph of a CA is already exponential in the CA diameter, something which
apparently hinders the applicability of our inversion algorithm. However, depending on
the nature of the underlying local rules, one can find more efficient representations of
this algorithm. For instance, if the local rules are linear, then it is possible to adapt the
preimage construction procedure described in [9] as follows: first, the leftmost (d−1)-
cell block of the preimage is randomly guessed. Then, one exploits the right permutivity
property of the two local rules to compute the two values for the d-th cell of the preim-
age. If the two values are equal, then the preimage is consistent up to that point, and the
next cell in position d + 1 can be computed. This process is repeated rightwards, until
either a mismatch is found between the two computed values (meaning that one has
to start over with a new left block of d− 1 cells), or the rightmost block is completed
(i.e. the correct preimage mapping to the pair of configurations has been found). Under
this procedure, one can compute the two values for the current preimage cell using the
Algebraic Normal Form (ANF) [3] of the two CA local rules. If the rules are linear,
then the size of their ANF is linear in the CA diameter d, since it just corresponds to
an XOR of a subset of the input variables. Of course, in the general case of nonlinear
bipermutive rules the size of the ANF can still be exponential in the diameter.

However, we remark that this issue is mainly a matter of trade-off between the re-
quired amount of nonlinearity of the CA local rules and their ANF sizes, which highly
depends on the specific application domain of our inversion algorithm. Returning to our
secret sharing scheme example, most of the existing protocols used in practice are ac-
tually linear. Thus, plugging linear rules into our example described in Section 4 would
yield another linear threshold scheme with a recovery phase that can be performed in
O(d) steps using O(2d) processors in parallel. As a consequence, it would be interest-
ing to compare the complexity of our scheme with those of other well-established linear
SSS, such as Shamir’s scheme [15]. Further, as pointed out in [7], the inversion problem
of two linear OCA actually amounts to the inversion of a Sylvester matrix. Hence, an-
other direction worth exploring for further research is to investigate the computational
complexity of inverting this kind of matrices, in order to verify if a faster inversion
algorithm can be designed.

Under a different perspective, for certain applications there is the need for nonlinear
secret sharing schemes. An example are cheater-immune secret sharing schemes based
on nonlinear constructions, which are robust towards dishonest players who submit fake
shares during the reconstruction phase [18]. In this case, it would be interesting to ana-
lyze the trade-off between the amount of nonlinearity that the local rules must have to
achieve cheater-immunity and the size of their ANF. A possible strategy could be to cast
this question in terms of an optimization problem, and then solve it through heuristic
techniques such as Genetic Programming (GP), which already proved to be successful
in the design of S-boxes with good cryptographic properties and small implementation
costs [12].

As a closing remark, we note that determining how large a family of MOCA can
be is still an open problem, even in the linear case. As shown in [7], verifying whether
a set of linear bipermutive CA of diameter d form a family of MOCA is equivalent to
check that the polynomials associated to the local rules are pairwise coprime. However,
despite the enumeration of coprime polynomials over finite fields is a well-developed
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research topic (see e.g. [1]), as far as we know there are no works in the literature
addressing coprimality of monic polynomials with nonzero constant term, which is ex-
actly the subclass corresponding to linear bipermutive local rules. Very recently, the
first author showed a construction of a family of pairwise coprime polynomials of this
kind in his PhD thesis [6], thus providing a first lower bound on its size. Nonetheless,
optimality of this construction is still open.
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