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Abstract

A Particle Swarm Optimizer for the search of balanced Boolean
functions with good cryptographic properties is proposed in this paper.
The algorithm is a modified version of the permutation PSO by Hu,
Eberhart and Shi which preserves the Hamming weight of the particles
positions, coupled with the Hill Climbing method devised by Millan,
Clark and Dawson to improve the nonlinearity and deviation from
correlation immunity of Boolean functions. The parameters for the
PSO velocity equation are tuned by means of two meta-optimization
techniques, namely Local Unimodal Sampling (LUS) and Continuous
Genetic Algorithms (CGA), finding that CGA produces better results.
Using the CGA-evolved parameters, the PSO algorithm is then run on
the spaces of Boolean functions from n = 7 to n = 12 variables. The
results of the experiments are reported, observing that this new PSO
algorithm generates Boolean functions featuring similar or better combi-
nations of nonlinearity, correlation immunity and propagation criterion
with respect to the ones obtained by other optimization methods.

Keywords Particle Swarm Optimization, Boolean Functions, Cryptog-
raphy, Hill Climbing, Meta-optimization, Local Unimodal Sampling, Contin-
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1 Introduction

Boolean functions are fundamental in several symmetric cryptography appli-
cations. They are widely used to design Substitution Boxes (S-Boxes) for
block ciphers, and in certain types of stream ciphers such as the combiner
model and the filter model [2]. In order to withstand specific cryptanalytic
attacks, the Boolean functions adopted in these ciphers must meet several
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cryptographic properties, some of which include balancedness, high nonlin-
earity and algebraic degree, low absolute indicator, correlation immunity and
propagation criterion.

Most of these properties cannot be satisfied simultaneously, since they
induce several theoretical bounds and constraints among them. On the other
hand, an exhaustive exploration to find the Boolean functions of n variables
achieving the best trade-off with respect to a specific set of properties is not
feasible in general, since the cardinality of the corresponding search space is
22n . As a consequence, the optimization of the cryptographic properties of
Boolean functions is an important open problem in the design of symmetric
ciphers.

Several heuristic techniques have been developed in the literature to
discover Boolean functions satisfying good combinations of cryptographic
properties. Millan, Clark and Dawson [9] proposed a Genetic Algorithm
(GA) coupled with Hill Climbing (HC) to evolve the truth tables of highly
nonlinear balanced Boolean functions having low deviations from correlation
immunity and propagation criterion. Later, Clark, Jacob, Maitra, Stepney
and Millan [3] devised a Simulated Annealing (SA) procedure to optimize
the nonlinearity and the absolute indicator of Boolean functions as well as
their correlation immunity and propagation criteria, which achieved better
performances than GA. Aguirre, Okazaki and Fuwa designed in [1] a multi-
objective Random Bit Climber which was able to generate more efficiently
Boolean functions having good nonlinearity and absolute indicator. Recently,
Genetic Programming (GP) has also been used by Picek, Jacobovic and
Golub [13] to evolve strong cryptographic Boolean functions of 8 variables.

The aim of this paper is to investigate the application of Particle Swarm
Optimization (PSO) to the search of balanced Boolean functions with good
cryptographic properties. In particular, we propose a modified version of the
discrete PSO algorithm for permutation problems designed by Hu, Eberhart
and Shi [4] by adapting it to the case of

(
2n

2n−1

)
combinations, thus limiting

the search space to balanced Boolean functions. This modification is imple-
mented by a new update method for the positions of the particles, which
preserves the Hamming weights of the truth tables. To further improve the
nonlinearity and the deviation from correlation immunity of the candidate
solutions, the modified PSO algorithm is also integrated with the Hill Climb-
ing procedure by Millan, Clark and Dawson [9]. We address the problem
of finding optimal values for the social and cognitive constants, inertia and
maximum velocity parameters in the PSO velocity equation by using two
meta-optimization techniques: Local Unimodal Sampling (LUS) and Contin-
uous Genetic Algorithms (CGA). While the former has already been adopted
in the literature to tune the parameters of PSO [12], to our knowledge CGA
have never been applied to this meta-optimization task. We compare the
performances of LUS and CGA in tuning the PSO parameters for the case of
Boolean functions of n = 7 variables with three underlying fitness functions
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(each targeting a different set of cryptographic properties), and observe that
CGA achieve better results. We finally employ the parameters optimised
through CGA to run the PSO algorithm on the spaces of Boolean functions
of up to n = 12 variables. The results of the experiments are reported
and compared with those achieved by other heuristic methods published in
the literature, focusing only on the best solutions found. We observe that
our PSO algorithm is able to find Boolean functions with similar or better
combinations of nonlinearity, correlation immunity and propagation criterion
than the ones produced by other methods, especially when the number of
variables is less than 10. It is also found that the properties (especially the
nonlinearity) get worse as the number of variables increases, suggesting that
further parameters tuning is required in this case.

The remainder of this paper is structured as follows. Section 2 gives some
basic definitions and facts about Boolean functions and their cryptographic
properties. Section 3 describes the modified PSO algorithm, focusing on the
update method for the particle positions which preserves their Hamming
weights, and defines the fitness functions employed in the experiments.
Section 4 deals with the parameter tuning problem, briefly introducing the two
meta-optimization techniques used (LUS and CGA) and then reporting their
results. Section 5 describes the experiments performed on the PSO algorithm
with the CGA-evolved parameters and reports the results, comparing them
with those obtained by other optimization methods. Section 6 concludes the
paper, and gives some directions for further research on the subject.

2 Basics of Boolean Functions

In this section we recall the basic notions about Boolean functions and their
cryptographic properties which will be used throughout the paper. Where not
otherwise specified, the reader may refer to [2] for a more detailed discussion
of this topic.

Let F2 be the finite field with two elements, and Fn
2 the F2-vector space

of binary n-tuples. In what follows, given a binary vector x, by wH(x) we
denote the Hamming weight of x, that is, the number of nonzero coordinates
in x. A Boolean function of n variables is a mapping f : Fn

2 → F2. The
truth table of f is the binary string Ωf of length 2n which specifies, for all
inputs x = (x1, · · · , xn) ∈ Fn

2 , the corresponding output value f(x). The first
fundamental cryptographic property which can be defined using the truth
table representation is balancedness:

Definition 1. A Boolean function f : Fn
2 → F2 is balanced if wH(Ωf ) =

2n−1, i.e. the truth table of f is composed of an equal number of zeros and
ones.

Balancedness is a fundamental cryptographic property, since biases in the
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distribution of zeros and ones can be exploited for linear and differential
cryptanalysis.

Another common representation of Boolean functions is the Algebraic
Normal Form (ANF). Given f : Fn

2 → F2 and x ∈ Fn
2 , the ANF associated

to f is a multivariate polynomial Pf (x) of the following form:

Pf (x) =
⊕
I⊆[n]

aI ·

(∏
i∈I

xi

)
,

where ⊕ and · respectively denote sum and product over F2, and [n] =
{1, · · · , n}. For all I ⊆ [n], the coefficient aI is uniquely determined as
follows:

aI =
⊕

x∈Fn
2 :S(x)⊆I

f(x) ,

where S(x) = {i ∈ [n] : xi 6= 0} is the support of x. The ANF is useful to
define the algebraic degree of a Boolean function:

Definition 2. The algebraic degree of a Boolean function f : Fn
2 → F2 is

the degree of the largest nonzero monomial in its ANF Pf (x). Formally,
deg(f) is defined as

deg(f) = max{|I| : I ⊆ [n], aI 6= 0} .

Boolean functions having degree 1 are called affine functions. The algebraic
degree of Boolean functions employed in stream and block ciphers should be
as high as possible, in order to resist attacks based on the Berlekamp-Massey
algorithm in the former case and higher order differential attacks in the
latter.

Several cryptographic properties of Boolean functions can be characterised
by means of the Walsh transform. Given f : Fn

2 → F2, the Walsh transform
F̂ : Fn

2 → R of f is defined for all ω ∈ Fn
2 as

F̂ (ω) =
∑
x∈Fn

2

f̂(x) · (−1)x·ω ,

where f̂(x) = (−1)f(x) and x ·ω = x1 ·ω1⊕ · · · ⊕xn ·ωn is the scalar product
between x and ω. A Boolean function is balanced if and only if F̂ (0) = 0,
where 0 is the null vector of Fn

2 . We denote by Wmax(f) the spectral radius
of f , which is the maximum absolute value of F̂ (ω) for ω ∈ Fn

2 . The spectral
radius can be used to characterise the nonlinearity of a Boolean function:

Definition 3. The nonlinearity Nl(f) of a Boolean function f : Fn
2 → F2

with spectral radius Wmax(f) is the minimum Hamming distance of f from
the set of affine functions, and it is computed as follows:

Nl(f) = 2n−1 − 1

2
Wmax(f) .
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Boolean functions having high nonlinearity provide better confusion in both
stream and block ciphers, making linear cryptanalysis harder. It is known
that, if the number of variables n is even, the class of bent functions reaches

the maximum value of nonlinearity 2n−1 − 2
n−2
2 . However, such functions

are not balanced, thus they cannot be used in the design of symmetric
cryptosystems. Determining the maximum nonlinearity for non-bent Boolean
functions when n is even, or for generic Boolean functions when n is odd, is
still an open problem for all n > 7.

A second important cryptographic criterion which can be defined using
the Walsh transform is correlation immunity :

Definition 4. Given k ∈ {1, · · · , n}, a Boolean function f : Fn
2 → F2 is k-th

order correlation immune (denoted by CI(k)) if by fixing at most k input
coordinates the truth tables of the corresponding restrictions of f all have the
same Hamming weight. This condition is verified if and only if F̂ (ω) = 0 for
all ω ∈ Fn

2 such that 1 ≤ wH(ω) ≤ k.

A balanced Boolean function which is also k-th order correlation immune
is called k-resilient. Boolean functions used in stream ciphers based on the
combiner model should be resilient of high order to resist correlation attacks.
In order to define suitable fitness functions in the next section, we also adopt
the following deviation from correlation immunity, originally introduced
in [9]:

Definition 5. The deviation from k-th order correlation immunity of a
Boolean function f : Fn

2 → F2 is defined as

cidevk(f) = max{|F̂ (ω)| : ω ∈ Fn
2 , 1 ≤ wh(ω) ≤ k} .

The autocorrelation function r̂ : Fn
2 → R of a Boolean function f : Fn

2 →
F2 is defined for all s ∈ Fn

2 as:

r̂(s) =
∑
x∈Fn

2

f̂(x) · f̂(x⊕ s)

The maximum absolute value ACmax for s ∈ Fn
2 \ {0} of the autocorrelation

function is called the absolute indicator of f . This quantity should be low in
order to ensure good diffusion both in stream and block ciphers. Another
cryptographic property related to the diffusion of cryptosystems which can
be characterised by the autocorrelation function is the propagation criterion:

Definition 6. Given l ∈ {1, · · · , n}, a Boolean function f : Fn
2 → F2 satisfies

the propagation criterion PC(l) if, for all nonzero vectors s ∈ Fn
2 such that

wH(s) ≤ l, the function f(x) · f(x⊕ s) is balanced. This condition is met if
and only if r̂(s) = 0 for all s ∈ Fn

2 such that 1 ≤ wH(s) ≤ l.
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The propagation criterion PC(1) corresponds to the Strict Avalanche Crite-
rion (SAC), which states that by complementing a single input coordinate
xi the probability that the output of f will change is 1/2. Similarly to
correlation immunity, we adopt the following deviation from propagation
criterion:

Definition 7. Given f : Fn
2 → F2, the deviation from propagation criterion

PC(l) of f is defined as

pcdevl(f) = max{|r̂(s)| : s ∈ Fn
2 , 1 ≤ wh(s) ≤ l} .

Most of the cryptographic criteria described above are not simultaneously
satisfiable. In particular, given a k-resilient Boolean function of n variables
f : Fn

2 → F2 having algebraic degree deg(f) and nonlinearity Nl(f), the
following two bounds hold:

• Siegenthaler’s bound : deg(f) ≤ n− 1− k

• Tarannikov’s bound : Nl(f) ≤ 2n−1 − 2k+1.

3 PSO Algorithm

3.1 Overview of Discrete PSO

Particle Swarm Optimization (PSO) is a stochastic optimization heuristic
originally introduced by Kennedy and Eberhart [5]. PSO basically works by
representing a set of candidate solutions of an optimization problem as a
swarm of particles which move in a coordinated manner through the search
space, usually a subset of Rm. At each time step t ∈ N, the current position

of the i-th particle x
(t)
i ∈ Rm is updated using the recurrence equation

x
(t+1)
i = x

(t)
i + v

(t)
i ,

where v
(t)
i ∈ Rm denotes the velocity vector of the i-th particle at time t.

The candidate solution represented by the new position is then evaluated
by a fitness function, which is usually the function to be optimized. Each
coordinate j ∈ {1, · · · ,m} of the i-th particle velocity is in turn stochastically
updated as follows:

v
(t+1)
ij = w · v(t)

ij +Rij · ϕ · (gj − x(t)
ij ) +Rij · ψ · (bij − x(t)

ij ) ,

where the current velocity of the particle v
(t)
ij is weighted by the inertia

parameter w ∈ R, the value Rij ∈ [0, 1] is a random number sampled
with uniform probability, and ϕ and ψ are constants which respectively
determine the influence of the global best solution g ∈ Rm found so far
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by the neighborhood of the i-th particle and the influence of the local best
solution bi ∈ Rm found so far by the i-th particle. In order to control the

velocity of the particle, each component v
(t+1)
ij is also limited in absolute

value by a global parameter vmax. Various topologies can be used to define a
neighborhood for the particles, such as the Von Neumann topology and the
ring topology. In this work, however, we focus only on the fully informed
particle paradigm [7], in which the global best solution g is simply the best
solution discovered so far by the whole swarm.

The PSO heuristic has been successfully applied to several continuous
optimization problems (see for example [14] for a detailed survey). However,
there are no obvious ways to apply it to discrete search spaces.

Kennedy and Eberhart proposed in [6] a variant of their original PSO
algorithm in order to solve binary optimization problems. The solutions
are represented as vectors of m bits, and the search space is geometrically
interpreted as the m-dimensional hypercube Fm

2 . Consequently, the particles
move through the vertices of this hypercube. The velocity vector becomes a
probability vector : given the i-th particle in the swarm, for each coordinate
j ∈ {1, · · · ,m} the position xi with respect to dimension j is updated by
sampling a Bernoullian random variable with parameter pij . In particular,
if a sampled random number r ∈ [0, 1] is less than pij then the value of the
j-th coordinate of xi is updated to 1, otherwise it is updated to 0.

The advantage of this discrete version is that it is possible to use the
same velocity equation defined for the basic PSO procedure to update
the probability vectors of the particles, provided that their components are
normalized on the interval [0, 1]. To this end, Kennedy and Eberhart adopted
in [6] the logistic function, defined for all x ∈ R as:

S(x) =
1

1 + exp (−x)
.

3.2 Position Update for Balanced Functions

Using the truth table representation, the discrete PSO heuristic described
in the previous section can be straightforwadly applied to the optimization
problem of finding good cryptographic properties of Boolean functions of
n variables. In this case, the particles would move in the space of m = 2n

binary vectors. However, the method proposed in [6] to update the positions
of the particles does not give any control over their Hamming weights, since
each component in the probability vector is sampled independently from the
others. Hence, there are no guarantees that the generated truth tables will
be balanced, a fundamental property for cryptographic Boolean functions.
A possible solution to this drawback is to add an unbalancedness penalty in
the fitness function, an approach which has been followed in [13] for Genetic
Algorithms and Genetic Programming. Our preliminary experiments however
showed that this method is not satisfactory with PSO, since the proportion
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of generated balanced functions is really low. Thus, it is necessary to use an
update operator which limits the search space to the set of balanced Boolean
functions.

Hu, Eberhart and Shi [4] adapted the discrete PSO algorithm in order to
apply it to permutation problems. Their update method works by stochas-
tically swapping the values in the permutation vector which represents the
position. In particular, the component xij of the i-th particle is changed
with probability pij by swapping it with xik, where k is such that xik = gj .
As a consequence, the permutation represented by vector xi is adjusted by
making it more similar to the global best solution g.

From a combinatorial point of view, the set of balanced Boolean functions
of n variables is isomorphic to the set of

(
2n

2n−1

)
combinations. In fact, a

subset of 2n−1 out of 2n objects can be represented by its characteristic
function, which is basically a balanced binary vector x ∈ Fm

2 , where m = 2n.
Starting from this observation, we generalised the update operator proposed
by Hu, Eberhart and Shi to the case of balanced combinations. Given the
balanced binary vector xi ∈ Fm

2 and the corresponding probability vector
pi ∈ [0, 1]m, for each coordinate j ∈ {1, · · · ,m} a random number r ∈ [0, 1]
is sampled with uniform probability, and if r is less than pij then a swap is
performed as follows. First, the value of xij is compared with that of the
global best in the same index, gj . If the two values are equal, then no action
is taken. Otherwise, the bit in xij is swapped with another bit xik, where
k 6= j is such that xik 6= gk and xik 6= xij . These two conditions ensure that,
while the Hamming weight of the vector is preserved, its Hamming distance
from the global best solution is decreased by 2. In fact, if only xik 6= gk
is verified, swapping the values of xij and xik yields the same Hamming
distance between xi and g. Since there can be more than one index k which
satisfies these two conditions, our update operator randomly selects one of
them.

The whole update process is then repeated using the local best bi of
the i-th particle instead of the global best g. In this way, xi is changed by
considering both the social attraction of the whole swarm and the cognitive
attraction of the particle. Moreover, if the current position of the particle is
equal to g, a random pair of bits in xi is swapped in order to avoid premature
convergence, a solution similar to the one proposed in [4].

Algorithm 1 reports the general pseudocode implementing our position
update operator. The input parameters xi and y are balanced binary vectors
which respectively represent the position of the i-th particle in the swarm and
either the position of the global best g or local best bi. We assume that xi 6= y.
Vector pi is the probability vector associated to the i-th particle and m = 2n

is the length of xi. The procedure Rand-Unif() samples a random number
r ∈ [0, 1] with uniform probability, which is used to determine whether a
swap is required by comparing it to pij . The subroutine Find-Cand-Swap(),
whose details are omitted, performs the search of a suitable index for the
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swap, returning 0 if it cannot find one.

Algorithm 1 Update-Bal-Pos(xi, y, pi, m)

for j := 1 to m do
r := Rand-Unif()
if (r ¡ pij AND xij 6= yj) then
k := Find-Cand-Swap(xi, j)
if (k 6= 0) then

Swap xij with xik
end if

end if
end for

3.3 Fitness Functions

We tested our Particle Swarm Optimizer with three fitness functions, all
of which have to be maximised. The first function fit1 considers the three
properties of nonlinearity, deviation from first order correlation immunity
and deviation from the Strict Avalanche Criterion:

fit1(f) = Nl(f)− cidev1(f)

4
− pcdev1(f)

8
.

Since the values of the Walsh and autocorrelation spectra of a balanced
Boolean function are respectively multiples of 4 and 8, the two deviations
in fit1 are normalized by these two factors. This fitness function closely
resembles those defined in [9] for Genetic Algorithms, where it is proposed
either to minimise the normalised deviation of the Boolean function, defined
as the maximum value between cidevk(f)/4 and pcdevl(f)/8, or to maximise
the difference between nonlinearity and cidevk(f). We adopted the latter as
our second fitness fuction, with k = 2:

fit2(f) = Nl(f)− cidev2(f) .

Finally, our third fitness function targets the nonlinearity and the absolute
indicator of Boolean functions, two criteria which have been optimized
together by several heuristic methods proposed in the literature [3, 1, 13]:

fit3(f) = Nl(f)−ACmax(f) .

It can be observed that none of the above fitness functions takes into account
the algebraic degree, as opposed for example to the ones employed in [13].
The motivation for this choice is twofold. First, algebraic degree is a property
which is easier to optimize than nonlinearity or correlation immunity, the
reason being that as n → ∞, the algebraic degree of a random Boolean
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function of n variables is almost surely n− 1 [2]. Hence, heuristic methods
using algebraic degree in their fitness functions are likely to find Boolean
functions having maximum degree but which do not satisfy CI(k) or PC(l).
Second, as it is shown in Section 5, our PSO algorithm is able to discover
Boolean functions reaching Siegenthaler’s bound, despite the fact that the
algebraic degree is not considered in our fitness functions.

3.4 Overall PSO Algorithm

To further improve the performance of our Particle Swarm Optimizer, we
combined it with the Hill Climbing (HC) algorithm designed by Millan,
Clark and Dawson [9]. This technique works by swapping a pair of bits
in the truth table of a balanced Boolean function in order to increase its
nonlinearity and decrease its deviation from CI(k). In what follows, we
denote by Nl-Ci(k)-Hc the HC procedure which increases nonlinearity
while decreasing cidevk(f), while Nl-Hc stands for the HC targeted only at
increasing nonlinearity. The reader is referred to [9] for further details about
the general HC method.

The type of Hill Climbing performed by our PSO algorithm depends
on the underlying fitness function: in the case of fit1 and fit2 respectively
Nl-Ci(1)-Hc and Nl-Ci(2)-Hc are applied, while for fit3 Nl-Hc is used.

We now summarise the overall procedure of our discrete Particle Swarm
Optimizer:

1. Given a swarm of size N , for all i ∈ {1, · · · , N} initialize the i-th
particle by randomly creating a balanced binary vector xi ∈ Fm

2 and a
probability vector pi ∈ [0, 1]m, where m = 2n and n is the number of
variables of the Boolean functions.

2. Given k ∈ {1, 2, 3}, for all i ∈ N compute the fitness value fitk of
solution xi found by particle i.

3. Update the global best solution g and the local best solutions bi, for
all i ∈ {1, · · · , N}.

4. For all i ∈ {1, · · · , N}, update the probability vector vi using the PSO
velocity recurrence, and then normalize each coordinate through the
logistic function.

5. For all i ∈ {1, · · · , N}, update the position vector xi. If xi = g
or xi = bi then swap a random pair of bits in xi, otherwise invoke
Update-Bal-Pos(xi, g, pi, m) and then Update-Bal-Pos(xi, bi, pi,
m).

6. Depending on the fitness function, apply to all the particles in the
swarm the hill climbing optimization step Nl-Ci(k)-Hc or Nl-Hc
described in [9].
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7. If the maximum number of iterations has been reached then output
the global best solution g, otherwise return to step 2.

4 Parameters Tuning

4.1 Problem Statement

It has been widely shown in the literature that the choice of the velocity
parameters greatly influences the performance of PSO [16, 17]. Instead
of searching by trial-and-error a good combination of parameters for our
PSO algorithm, we tackled the problem in a systematic way using a meta-
optimization approach.

The main idea behind meta-optimization is to consider the selection of
the parameters governing an optimizer O as an optimization problem itself.
An overlaying meta-optimizer M is then applied to explore the parameters
space, using a meta-fitness function to assess the performance of O under a
given combination of parameters.

A candidate solution for the meta-optimization problem of our discrete
PSO is thus a vector (w,ϕ, ψ, vmax) ∈ R4 which specifies the four parameters
to be used in the velocity equation. Considering the observations reported
in [6], we chose to limit the value of each parameter in the interval [0, 10].
For the choice of the overlaying meta-optimizer, we decided to test Local
Unimodal Sampling (LUS) and Continuous Genetic Algorithms (CGA, also
known as Real-coded Genetic Algorithms).

4.2 Local Unimodal Sampling

LUS is a local search technique which iteratively improves the current solution
x by sampling with uniform probability a point y in its neighborhood N(x).
Considering a maximisation problem, if the fitness value of y is higher than
that of x, the current solution is set to y. Otherwise, the size of N(x) is
decreased by a discount factor β, the rationale being that by sampling with
a constant-size neighborhood the algorithm is not guaranteed to converge to
a local optimum. The sampling process is then repeated until a termination
criterion is met, which is usually a minimum threshold τ for the size of the
neighborhood. Pedersen and Chipperfield [12] employed LUS to tune the
velocity parameters of a Particle Swarm Optimizer aimed at training the
weights of artificial neural networks.

4.3 Continuous Genetic Algorithms

CGA are a generalisation of Genetic Algorithms to continuous optimization
problems, which represent the chromosome of a candidate solution using a
vector of real numbers in place of a binary string. To our knowledge, CGA
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have never been applied to tune PSO parameters. In the context of our
meta-optimization problem, we employed the flat operator introduced by
Radcliffe [15] as the crossover method of our CGA, while for the mutation pro-
cedure we relied on the simple random operator proposed by Michalewicz [8].
The reproduction operator is implemented using the roulette wheel method,
which stochastically selects an individual with a probability proportional
to its fitness. Specifically, given a population of P chromosomes, the next
generation is created as follows. Using the roulette wheel method, P/2
pairs of chromosomes are formed, and for each pair (x, y) an offspring of
two chromosomes (c1, c2) is created by applying with probability pc the flat
crossover operator (if it is not applied, the chromosome pair (x, y) is simply
reproduced unaltered). The random mutation operator is then employed
with probability pm to each locus of the chromosomes in the offspring. We
also used an elitist strategy to ensure that the best individual is preserved in
the next generation.

4.4 Meta-Fitness Function

The meta-fitness function, used to drive the search for a good combination
of PSO parameters, is clearly the most intensive step from a computational
point of view. In fact, given a vector x ∈ R4 several runs of our discrete
PSO algorithm must be performed, in order to have a statistically significant
measure of its performance under the parameters specified by x. In particular,
we chose to test the case of balanced Boolean functions defined on n = 7
variables, using a swarm of N = 50 particles evolved for I = 100 iterations.
The PSO algorithm is executed for R = 30 independent runs, and at each
run the fitness of the global best solution g at the last iteration is recorded.
According to Pedersen and Chipperfield [12], the average fitness value µg
of the global best over all the R optimization runs should be used as the
meta-fitness function. Since from a cryptographic point of view we are
interested in Boolean functions satisfying the best possible properties, we
also considered the maximum fitness value maxg achieved by the global
best over R runs. It is known that for Boolean functions of 7 variables the
maximum value of nonlinearity is Nlmax = 56 [11]. Hence, the maximum
value achievable by maxg is 56 with respect to fitness functions fit1 and
fit2. No function of 7 variables having absolute indicator ACmax < 16 has
ever been reported in the literature, and it has been conjectured that 16 is
the highest lower bound [18]. As a consequence, under the current state of
knowledge the maximum value reachable by maxg with respect to fitness
function fit3 is 56− 16 = 40.

Given a parameter vector x ∈ R4, our meta-fitness function can thus be
defined as

mfitk(x) = µg +maxg ,

where k ∈ {1, 2, 3} indicates the fitness function fitk which is being optimized

12

http://doi.acm.org/10.1145/2739482.2764674


c©ACM, 2015. This is the author’s preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in Proceedings of the Companion Publication of GECCO 2015,

http://doi.acm.org/10.1145/2739482.2764674

by the PSO algorithm.

4.5 Meta-Optimization Results

Following the methodology described in [12], for each underlying fitness
function fitk we performed M = 6 runs to assess the performances of both
LUS and CGA, thus carring out a total of 36 meta-optimization experiments.
In the case of LUS we adopted the value β = 0.33 for the discount factor
and τ = 0.001 for the minimum threshold of the neighborhood size. On the
other hand, for the CGA meta-optimizer we used a population of P = 20
individuals evolved for G = 100 generations, setting the crossover and
mutation probability respectively to pc = 0.95 and pm = 0.05.

Table 1 compares the best parameters combinations found by LUS and
CGA over the 6 meta-optimization runs, for each fitness function fitk.

Table 1: Comparison of Best PSO Parameters

fitk Method µg maxg mfitk(f)

fit1
LUS 52.7 56 108.7
CGA 53 56 109

fit2
LUS 46 52 98
CGA 46.27 56 102.27

fit3
LUS 30.87 40 70.86
CGA 38.4 40 78.4

It can be observed that CGA outperforms LUS with respect to all
three fitness functions. While in the case of fit1 there is only a slight
difference concerning the average fitness values µg, for fit2 the best parameter
combination found by LUS did not allow the Particle Swarm Optimizer to
reach the maximum fitness value of 56, whereas for fit3 the mean fitness
µg of LUS is remarkably lower than that achieved by CGA. However, the
higher performance of CGA is associated with a higher computational cost,
since Genetic Algorithms are a population-based heuristic. As a matter
of fact, in our experimental setting a single CGA meta-optimization run
required P ·G ·R ·N · I = 3.0 · 108 fitness evaluations, which took almost 17
hours to complete on a 64-bit Linux machine, with a Core i5 architecture
and a CPU running at 2.8 GHz. On the other hand, with the selected β
and τ parameters LUS performed an average of 4971 fitness evaluations
per single meta-optimization run before reaching the minimum threshold,
roughly corresponding to 1.3 hours of CPU time on the same machine.
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5 PSO Experiments

5.1 Experimental Setting

We now describe the experiments performed with our Particle Swarm Opti-
mizer. Regarding the velocity parameters, we adopted the best combination
evolved by the CGA meta-optimizer, since it achieved an higher meta-fitness
value with respect to the ones obtained by LUS. The values of the selected
parameters for each fitness function are reported in Table 2. We applied our

Table 2: CGA-Evolved PSO Parameters

fitk w ϕ ψ vmax

fit1 0.5067 2.8751 1.3587 3.5008
fit2 0.7614 2.0073 2.0273 2.7183
fit3 0.2828 2.1824 0.8951 4.2639

PSO algorithm on the spaces of balanced Boolean functions from n = 7 to
n = 12 variables. The number of particles and iterations were set to P = 200
and I = 400 respectively. Finally, for each value of n and fitness function
fitk, we carried out R = 100 PSO runs.

5.2 Best Solutions Found

Tables 3 to 5 show for each fitness function the cryptographic properties
of the best balanced Boolean functions discovered by PSO, that is, the
properties of the global best solution g which scored the highest fitness value
among all the R = 100 optimization runs. We reported the algebraic degree
as well, even if we did not adopt this criterion in any of the three fitness
functions.

Table 3: Best Boolean Functions Found, fit1

Property 7 8 9 10 11 12

Nl 56 112 236 480 972 1972
deg 5 6 7 8 9 10
cidev1 0 0 0 0 0 0
pcdev1 0 0 8 8 8 8

As a general observation, one can notice in Tables 3 and 4 that the Boolean
functions discovered by PSO satisfying CI(k) always have an algebraic
degree of n− 1− k, which is the maximum allowed by Siegenthaler’s bound.
Hence, these results empirically confirm that it is not necessary to consider
the algebraic degree in the definition of the PSO fitness functions, as we
mentioned in Section 3.4.
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Table 4: Best Boolean Functions Found, fit2

Property 7 8 9 10 11 12

Nl 56 112 232 476 972 1972
deg 4 6 7 8 9 10
cidev1 0 8 8 8 8 16
cidev2 0 8 8 8 8 16

Table 5: Best Boolean Functions Found, fit3

Property 7 8 9 10 11 12

Nl 56 116 236 480 976 1972
deg 5 6 7 9 10 11

ACmax 16 32 48 80 128 208

Looking in particular at Table 3, we can see that our PSO algorithm scales
fairly well to higher numbers of variables with respect to the optimization
of cidev1, even if the CGA parameters were evolved only for the case n = 7.
As a matter of fact, all the best Boolean functions found by PSO with
fit1 are first order correlation immune (and thus 1-resilient, since they are
also balanced). Moreover, for n = 7 and n = 8 they also satisfy the Strict
Avalanche Criterion PC(1), while for higher values of n they reach the
minimum deviation pcdev1 = 8. Nevertheless, our Particle Swarm Optimizer
is able to find Boolean functions of up to n = 11 variables which satisfy
both CI(1) and PC(1), even if their nonlinearity is lower (for a detailed
comparison with other heuristic methods, see Section 5.3).

On the other hand, Table 4 shows that by using fitness function fit2
the Particle Swarm Optimizer does not perform well when the number of
variables is higher than 7. In fact, 2-resilient functions are found only for
n = 7, while in all other cases the deviation from CI(2) is at least 8. However,
it worths noting that the best solution of 7 variables, besides satisfying with
equality Siegenthaler’s bound, achieves Tarannikov’s bound on nonlinearity
as well, since 56 = 27−1 − 22+1.

Finally, another different behaviour of the PSO algorithm can be observed
using fitness function fit3. Indeed, one can see from Table 5 that as the
number of variables grows the absolute indicator of the best solution gets
worse. Nonetheless, for n = 8 and n = 11 the nonlinearity values achieved
with fit3 are greater than those obtained using fit1, while they are equal in
all other cases.
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5.3 Comparison with other Heuristics

We now compare the results of our Particle Swarm Optimizer with those
obtained by other heuristic methods. Due to the great heterogeneity in the
experimental settings and the parameters adopted in the relevant literature,
a comprehensive comparison is not possible. For this reason, in Tables 6
to 9 we summarise the results separately for each class of cryptographically
significant balanced Boolean functions discovered by the PSO algorithm.
A dash symbol in the tables indicates that the corresponding data is not
available, either because the heuristic failed to discover Boolean functions
with those cryptographic properties or because that specific case was not
considered for testing.

Table 6 reports the maximum nonlinearity achieved by CI(1) functions.
In this case, we used Genetic Algorithms (GA) [9], Directed Search Algorithm
(DSA) [10] and Simulated Annealing (SA) [3] for the comparison. It can
be seen that for n = 7 variables our PSO algorithm manages to find 1-
resilient functions having maximum nonlinearity 56, while SA stops at 52.
For 8 ≤ n ≤ 12, the results achieved by PSO are globally similar to those
of the other optimization methods, except in the case of n = 11 variables
where it reaches a maximum nonlinearity of 972 instead of 976. In particular,
our PSO outperforms both Genetic Algorithms and Simulated Annealing for
n = 9 and n = 10 variables.

Table 6: Maximum Nonlinearity Achieved by CI(1) Functions

Method 7 8 9 10 11 12

GA [9] - 112 232 476 976 1972
DSA [10] - 112 236 480 976 -

SA [3] 52 112 232 476 - -

PSO 56 112 236 480 972 1972

In Table 7 the maximum nonlinearity of balanced Boolean functions
which satisfy both CI(1) and PC(1) is considered. By comparing the results
achieved by PSO and SA, we can see that also in this case the former reaches
a higher value of nonlinearity for n = 7 variables, while for n = 8 it is equal to
SA. To our knowledge, no heuristic method has ever been applied to discover
functions satisfying both CI(1) and PC(1) of n > 8 variables. However,
our PSO algorithm managed to find this kind of functions for up to n = 11
variables, even though for n > 8 they were not the best solutions among all
the optimization runs with respect to fitness function fit1. The nonlinearity
of these functions is reported in Table 7 as a reference for future research.

Table 8 reports the maximum nonlinearity achieved by Boolean functions
with minimal deviation from second order correlation immunity. In particular,
the performances of PSO and GA are compared, since in this case we used
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Table 7: Maximum Nonlinearity Achieved by Functions satisfying both CI(1)
and PC(1)

Method 7 8 9 10 11 12

SA [3] 52 112 - - - -

PSO 56 112 232 476 968 -

the same fitness function defined in [9]. As we already discussed in Section
5.2, we can observe that our PSO algorithm does not generalise well to higher
numbers of variables. As a matter of fact, PSO manages to reach the same
results achieved by GA only for n = 8 variables, while in all other cases
either the nonlinearity or the deviation from CI(2) is worse. We remark
however that for n = 7 the 2-resilient functions found by PSO have the same
value of nonlinearity as the ones discovered by SA in [3].

Table 8: Comparison of Nl and cidev2 Values

Method 7 8 9 10 11 12

GA [9]
Nl - 112 232 480 976 1972

cidev2 - 4 8 8 8 8

PSO
Nl 56 112 232 476 972 1972

cidev2 0 8 8 8 8 16

Table 9: Comparison of Nl and ACmax Values

Method 7 8 9 10 11 12

RBC [1]
Nl 56 116 - - - -

ACmax 16 24 - - - -

GP [13]
Nl - 116 - - - -

ACmax - 32 - - - -

SA [3]
Nl 56 116 238 484 982 1986

ACmax 16 24 40 56 88 128

PSO Nl 56 116 236 480 976 1972
ACmax 16 32 48 80 128 208

Similar considerations can be made for the comparisons in Table 9, which
reports the maximum nonlinearity reached by Boolean functions having
minimal absolute indicator. The benchmark heuristics in this case are Multi-
Objective Random Bit Climber (RBC) [1], Genetic Programming (GP) [13]
and again SA. It can be observed that for n = 7 variables PSO obtained
the same results as RBC and SA, while for n = 8 it discovered the same
combination of Nl and ACmax featured by GP. However, for n > 8 our PSO
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scored worse values than SA with respect to both nonlinearity and absolute
indicator.

6 Conclusions

In this work, we applied a new PSO algorithm to search for balanced
Boolean functions from n = 7 to n = 12 variables with good cryptographic
properties. The performed experiments lead us to conclude that our PSO is
able to generate Boolean functions having similar or better combinations of
nonlinearity, first order correlation immunity and Strict Avalanche Criterion
than those obtained by other optimization methods, while it does not perform
well when it minimizes deviation from CI(2) or the absolute indicator. The
reason could lie in the fact that the adopted velocity parameters were evolved
only for the case of n = 7 variables, which suggests that further parameters
tuning is required for n ≥ 8. Considering the high computational cost of our
meta-fitness function, it may be preferable to use the LUS meta-optimizer
for this task instead of CGA.

There are several venues for future developments on the subject. One
possibility is to test our PSO with other fitness functions, such as the
one adopted in [3] for Simulated Annealing which measures how flat the
Walsh spectrum of a Boolean function is. Another interesting direction of
research would be to modify the Update-Bal-Pos() procedure in such a
way that only the swaps which increase nonlinearity or decrease the deviation
from k-th correlation immunity are performed. This could be accomplished,
for instance, by integrating the Hill Climbing algorithm inside the update
procedure.
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