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Abstract. Cellular Automata (CA) have widely been studied to design crypto-
graphic primitives such as stream ciphers and pseudorandom number generators,
focusing in particular on the properties of the underlying local rules. On the other
hand, there have been comparatively fewer works concerning the applications of
CA to the design of S-boxes and block ciphers, a task that calls for a study of CA
global rules in terms of vectorial boolean functions. The aim of this paper is to
analyze some of the most basic cryptographic criteria of the global rules of CA.
We start by observing that the algebraic degree of a CA global rule equals the
degree of its local rule. Then, we characterize the Walsh spectrum of CA induced
by permutive local rules, from which we derive a formula for the nonlinearity of
such CA. Additionally, we prove that the 1-resiliency property of bipermutive local
rules transfers to the corresponding global rules. This result leads us to consider
CA global rules from a coding-theoretic point of view: in particular, we show
that linear CA are equivalent to linear cyclic codes, observing that the syndrome
computation process corresponds to the application of the CA global rule, while
the error-correction capability of the code is related to the resiliency order of the
global rule.

Keywords: cellular automata, boolean functions, S-boxes, nonlinearity, resiliency,
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1 Introduction

Block ciphers constitute one of the most fundamental building blocks in the design of
several cryptographic protocols. The security of block ciphers frequently depends on
the involved Substitution boxes (S-boxes), which can be considered as vectorial boolean
functions. As a matter of fact, S-boxes are usually the only nonlinear component in
a block cipher. Thus, particular care must be taken in choosing S-boxes with good
cryptographic properties, so that the overall block cipher design can withstand particular
attacks like linear and differential cryptanalysis.

Cellular Automata (CA) are a nature-inspired parallel computational model initially
introduced by [21] and [22] to study self-reproduction phenomena. CA represent an
interesting computational model for developing S-boxes, for a twofold reason: first,
depending on the local rule, CA can exhibit chaotic and unpredictable dynamic behaviors,
a characteristic which is useful to achieve the confusion principle set forth by [17] that
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every secure symmetric cryptosystem should satisfy. Second, being a massively parallel
model, CA can be efficiently realized in hardware, and thus they are interesting for
implementing S-boxes on devices with limited computational resources.

However, one can observe that most of the literature pertaining cryptographic appli-
cations of CA is centered on the design of stream ciphers and pseudorandom number
generators. In fact, it was [24] who pioneered the use of CA for keystream generation,
using the elementary rule 30. However, the design was discovered to be insecure first
by [14], and then by [8]. In particular, Meier and Staffelbach showed a correlation attack
on the sequences produced by Wolfram’s generator which exploited the fact that rule
30 is not 1-resilient, while Koc and Apohan described an inversion attack based on the
low nonlinearity of such rule. Since then, some researchers (see [12,9,6]) focused on
the search of CA local rules having good cryptographic profiles in order to thwart these
kinds of attacks, but retaining Wolfram’s overall design of CA pseudorandom generator.

On the other hand, the design of S-boxes based on CA is a research topic which
has received relatively little attention in the literature. This could be the reason why, at
least as far as our knowledge goes, there is almost no work concerning the cryptographic
properties of CA global rules. One remarkable exception in this regard is [4], where
the authors analyzed the propagation and correlation characteristics of a CA equipped
with rule χ , which corresponds to the elementary rule 210 in Wolfram’s numbering
convention (see [23]). Interestingly, χ is an example of a CA-based S-box employed
in real-world applications, since it is the only nonlinear component of the KECCAK
sponge construction, selected by the NIST as the SHA-3 standard for cryptographic hash
functions (see [1]).

The aim of this paper, which is an extended version of [11], is to undertake an
investigation of the cryptographic properties of CA global rules by considering them
as a particular kind of vectorial boolean functions, and to relate them to the properties
of the underlying local rules. To this end, we consider criteria that are relevant both
for the design of S-boxes in block ciphers, like nonlinearity, and for stream ciphers,
like resiliency. In addition, we also exploit the connection between resiliency and
minimum distance of linear codes to analyze CA from the standpoint of coding theory.
Nevertheless, the motivation for this coding theoretic aspect of our work is again related
to cryptography, since certain classes of linear codes (especially MDS codes) can be
used to implement the diffusion layer of block ciphers.

To begin with, we first observe that the algebraic degree of the global rule of a CA
equals the algebraic degree of its local rule, leveraging on the fact that the coordinate
functions of a CA correspond to its local rule applied to different neighborhoods. Next,
we narrow our attention to the class of CA equipped with permutive rules, a property
which allows us to characterize the Walsh spectrum of the CA global rule. In particular,
we show how the Walsh spectrum in a left or right permutive CA changes by adding a
new cell. From this result, we then prove that the nonlinearity of a left or right permutive
CA with m output cells is 2m−1 times the nonlinearity of the local rule. Subsequently,
we show that the global rules of bipermutive CA are always at least 1-resilient, thus
generalizing the result in [9] about bipermutive local rules. We then prove an equivalence
between linear CA and linear cyclic codes. In particular, we show how the systematic
encoding of cyclic codes actually corresponds to the preimage computation process of
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the all-zeros configuration in linear CA, while syndrome computation is equivalent to
the application of the CA global rule. Leveraging on the theory of resilient vectorial
functions, we remark that the resiliency order of a linear CA can be used to determine
the minimum distance of its associated cyclic code, and we show as an example how
encoding and decoding of the (7,4,3) cyclic Hamming code can be realized using the
dynamics of a CA with radius r = 2 and length n = 7.

The rest of the paper is organized as follows. Section 2 collects some basic facts
about vectorial boolean functions and their cryptographic criteria, and introduces the
model of cellular automaton we adopt throughout the paper. Section 3 is devoted to the
analysis of the global rules of CA, focusing on their algebraic degree, nonlinearity and
resiliency order. Section 4 recalls some key concepts about the theory of error-correcting
codes, presents the connection between linear cyclic codes and linear CA and shows
how to simulate the (7,4,3) cyclic Hamming codes using linear CA. Finally, Section 5
summarizes the main contributions of the paper and discusses some directions for future
research on the topic.

2 Preliminary Definitions

In this section, we outline the basic concepts concerning vectorial boolean functions and
cellular automata which we use in the remainder of the paper.

2.1 Vectorial Boolean Functions

We cover only the fundamental definitions and results related to the theory of crypto-
graphic boolean functions, referring the reader to [2,3] for a more thorough treatment of
the subject.

A boolean function is a mapping f : Fn
2→ F2 where F2 denotes the finite field with

two elements. The basic way to represent a boolean function f : Fn
2→ F2 is by means

of its truth table, which specifies for each of the possible 2n input vectors of Fn
2 the

corresponding output value of f . Hence, for any n ∈ N the set of boolean functions of n
variables is composed of 22n

functions. Once an ordering of the input variables x1, · · · ,xn
has been established, a truth table can be compactly described just by the 2n-bit string
representing the output values of the corresponding function.

Another common representation of boolean functions is the Algebraic Normal Form
(ANF). In particular, the ANF of a function f : Fn

2 → F2 is defined by the following
multivariate polynomial:

Pf (x) =
⊕

I∈P(N)

aI

(
∏
i∈I

xi

)
, (1)

where N = {1, · · · ,n} and P(N) denotes the power set of N, and aI ∈ F2 for all I ∈
P(N). Hence, the ANF represents a boolean function as a sum of products over F2. The
relationship between the ANF coefficients and the truth table of f is given by the Möbius
transform, defined for all x ∈ Fn

2 as:

f (x) =
⊕

I⊆supp(x)

aI , (2)
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where supp(x) = {i : xi 6= 0} is the support of x.
A third representation which is useful to characterize several cryptographic properties

of boolean functions is the Walsh transform. Given f : Fn
2→ F2, the Walsh transform of

f is the function Wf : Fn
2→ R defined for all ω ∈ Fn

2 as

Wf (ω) = ∑
x∈Fn

2

(−1) f (x)⊕ω·x , (3)

where ω · x = ω1x1⊕·· ·ωnxn is the scalar product of ω and x. The value Wf (ω) is also
called the Walsh coefficient of f with respect to ω ∈ Fn

2. The set of all Walsh coefficients
of f is the Walsh spectrum of f , while the maximum coefficient in absolute value is
called the spectral radius of f .

The boolean functions adopted in cryptography must satisfy several criteria in order
to resist various types of attacks. In this paper we consider four cryptographic properties,
namely balancedness, algebraic degree, nonlinearity and resiliency, which we briefly
define below along with a description of the corresponding design criterion.

A boolean function f : Fn
2→ F2 is balanced if its truth table is composed of an equal

number of 0s and 1s, or equivalently if its Walsh transform vanishes on the null vector,
i.e. Wf (0) = 0. As a general criterion, all boolean functions used in the design of both
stream and block ciphers should be balanced.

The algebraic degree of a boolean function f is the degree of its ANF. Considering
Equation (1), the degree of f can formally defined as:

deg( f ) = maxI∈P(N){|I| : aI 6= 0} . (4)

Functions having degree 1 are also called affine functions. As a cryptographic criterion,
the algebraic degree of boolean functions used in both stream and block ciphers should
be as high as possible.

The nonlinearity of f : Fn
2→ F2 is the minimum Hamming distance of f from the

set of affine functions, and it is defined through the Walsh transform by the following
formula:

Nl( f ) = 2n−1− 1
2

max
ω∈Fn

2

{|Wf (ω)|} . (5)

Similarly to the algebraic degree criterion, the nonlinearity of boolean functions involved
in stream and block ciphers should be as high as possible.

Finally, a boolean function f : Fn
2→ F2 is said to be t-resilient if, by fixing at most t

input coordinates, the resulting restriction of f is balanced. This is equivalent to say that
the Walsh transform of f vanishes for all those input vectors ω having Hamming weight
at most t. As a cryptographic criterion, the resiliency of boolean functions of stream
ciphers should be as high as possible, to avoid correlation attacks. Notice that the case
t = 0 corresponds to balancedness.

We now turn our attention to vectorial boolean functions. Let n ≥ m. A vecto-
rial boolean function (also called a S-box in the cryptographic context) is a mapping
F : Fn

2→ Fm
2 with n input variables and m outputs. By f1, · · · , fm : Fn

2→ F2 we denote
the coordinate functions of F , that is, the m boolean functions which specify the value
of each output bit of F :

F(x1, · · · ,xn) = ( f1(x1, · · · ,xn), · · · , fm(x1, · · · ,xn)) .

4

http://dx.doi.org/10.1007/s11047-017-9635-0


The final publication is available at Springer via http://dx.doi.org/10.1007/s11047-017-9635-0

The component functions of F are defined as v ·F for all v ∈ (Fm
2 )
∗ = Fm

2 \{0}. Since

v ·F = v1 f1(x1, · · · ,xn)⊕·· ·⊕ vm fm(x1, · · · ,xn) ,

it follows that the component functions are the (non-trivial) linear combinations of the
coordinate functions of F .

In the remainder of this section, we show how the vectorial counterparts of the
cryptographic properties of boolean functions are characterized in terms of either the
coordinates or the component functions of S-boxes.

A vectorial boolean function F : Fn
2→ Fm

2 is balanced if for all output vectors y ∈ Fm
2

the cardinality of the fiber F−1(y) is 2n−m. Equivalently, F is balanced if and only if all
its component functions are balanced.

The algebraic degree of a vectorial function F : Fn
2→ Fm

2 is defined as the maximal
degree of its coordinate functions. On the other hand, the nonlinearity of F is the minimal
nonlinearity of all its component functions, i.e.

Nl(F) = minv∈(Fn
2)
∗

{
2n−1− 1

2
max
ω∈Fn

2

{|Wv·F(ω)|}
}

. (6)

Resiliency for vectorial functions is defined analogously to the single-output case.
In particular, F : Fn

2 → Fm
2 is t-resilient if, by fixing any t input variables xi1 , · · · ,xit ,

the resulting restriction F̃ : Fn−t
2 → Fm

2 is balanced, i.e. for all y ∈ Fm
2 it follows that

|F̃−1(y)|= 2n−t−m. Note that the definition of vectorial t-resiliency is actually equivalent
to t-resiliency for boolean functions. Similarly to nonlinearity and balancedness, the
resiliency of a vectorial function can also be characterized by the resiliency of its
component functions, as the next result reported in [3] shows:

Proposition 1. Let F : Fn
2→ Fm

2 be a vectorial boolean function in n variables and m
outputs. Then, F is t-resilient if and only if for all v ∈ (Fm

2 )
∗ the component function v ·F

is t-resilient.

2.2 Cellular Automata

In what follows, we consider exclusively one-dimensional boolean cellular automata,
formally defined below.

Definition 1. A one-dimensional boolean cellular automaton (CA) is a triple 〈C,δ , f 〉,
where C is a finite one-dimensional array of binary cells, δ ∈ N is the diameter and
f : Fδ

2 → F2 is the local rule.

Given an array C of length n≥ δ , the update of a CA is done as follows. If the diameter
δ is odd with δ = 2r+1 for r ∈ N, then each cell i in the range {r+1, · · · ,n− r} syn-
chronously updates its state by applying rule f to the neighborhood {i−r, · · · , i, · · · , i+r}.
Otherwise, if δ is even and r = δ/2, then each cell i in the range {r, · · · ,n− r} syn-
chronously updates its state by applying rule f to the neighborhood {i− r+1, · · · , i+ r}.
In both cases, the parameter r is called the radius of the CA.

From the discussion above, one can observe that we do not consider any bound-
ary condition in our definition of CA, since only the central cells having sufficiently
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enough left and right neighbors are allowed to update their states. This contrasts with the
approach usually adopted in the CA literature, in which null or periodic boundary condi-
tions are considered (see for example [7]), which makes the CA having the same number
of input and output cells. In particular, periodic boundary conditions are commonly used
in the design of CA-based S-boxes, as in the case of the CA χ employed in KECCAK.
This is because several block ciphers are based on the Substitution-Permutation Network
paradigm, where decryption depends on the fact that the involved S-boxes are invertible
(thus implying an equal number of input and output bits). However, our CA model
without boundary conditions does not limit the cryptographic applicability of the results
presented in this paper, since there are also block ciphers models where decryption does
not rely on the invertibility of the underlying S-boxes (such as for example in Feistel
ciphers, see [19]).

We now define the global rule of a CA:

Definition 2. The global rule of a CA 〈C,δ , f 〉 of length n = m+δ −1 is the vectorial
function F : Fn

2→ Fm
2 defined for all possible states x = (x1, · · · ,xn) ∈ Fn

2 of array C as
follows:

F(x) = ( f (x1, · · · ,xδ ), · · · , f (xn−δ+1, · · · ,xn)) . (7)

In what follows, we identify a CA 〈C,δ , f 〉 with its global rule F : Fn
2→ Fm

2 .
Since the local rule of a CA is a boolean function of δ variables, the most common

way to represent it is by means of its truth table. Another convenient way of representing
a CA rule f is through its Wolfram code (see [23]), which is the decimal encoding of the
truth table of f .

3 Cryptographic Properties of CA Global Rules

In this section we investigate the cryptographic properties of CA global rules, starting
from their algebraic degree. We then introduce the class of permutive CA, and use this
additional property to characterize the Walsh spectra of the component functions of such
CA. As a consequence, this result allows us to determine a formula for the nonlinearity
of the global rules of permutive CA. Finally, we employ the quasi-linearity of permutive
local rules to prove that bipermutive CA are always at least 1-resilient. This last result
generalizes the work of [9] that was carried out on bipermutive local rules to the case of
global rules.

3.1 Algebraic Degree

We begin with the following remark:

Remark 1. Let F : Fn
2→ Fm

2 be a one-dimensional boolean cellular automaton of length
n = m+δ −1 defined by a local rule f : Fδ

2 → F2 of diameter δ . Since each output cell
yi depends only on the input cells xi, · · · ,xi+δ−1 under application of the local rule, the
coordinate functions of F are fi(x1, · · · ,xn) = f (xi, · · · ,xi+δ−1) for i ∈ {1, · · · ,m}.

Since the algebraic degree of a vectorial boolean function equals the maximal degree
of its coordinate functions, we obtain the following result:
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Proposition 2. Let F : Fn
2 → Fm

2 be a CA with n = m+ δ − 1 defined by a local rule
f : Fδ

2 → F2. Then, the algebraic degree of F equals the degree of f .

Proof. For k ∈ {1, · · · ,m}, define Nk = {k, · · · ,k+δ −1} and let us denote by P(Nk)
the power set of Nk. Notice that N1 = N, where N is the index set for the ANF of the
local rule f . For all I = {I1, · · · , I j} ∈P(N), let us define the shifted subset of I as
σk(I) = {I1 + k−1, · · · , I j + k−1}, which ranges in the power set P(Nk). On the other
hand, given L ∈P(Nk) one can recover the original subset I ∈P(N) by computing
I = σ−k(L) = {L1− k+1, · · · ,L j− k+1}. Then, by Equation (1) we have that

Pfk(x) =
⊕

L∈P(Nk)

aL

(
∏
l∈L

xl

)
. (8)

Since for every L ∈P(Nk) there exists I ∈P(N) such that I = σ−k(L), by Remark 1 it
also follows that aL = aI , so we can rewrite (8) as:

Pfk(x) =
⊕

L∈P(Nk)

aI

(
∏
l∈L

xl

)
, where I = σ−k(L). (9)

Since the shifting operation does not change the cardinality of subsets, we have

maxI∈P(N){|I| : aI 6= 0}= maxL∈P(Nk){|L| : aI 6= 0} , (10)

from which one obtains that deg( fk) = deg( f1) = deg( f ). ut

3.2 Walsh Spectra and Nonlinearity of Permutive CA

The result about the algebraic degree laid out in the previous section holds for CA
with generic local rules. In what follows, we narrow our analysis to CA equipped with
permutive local rules, showing that in this case further information can be obtained on the
Walsh spectra of the associated global rules. This allows us to express the nonlinearity
of permutive global rules in terms of the nonlinearity of their local rules.

We first recall the notion of permutive boolean function. To this end, let us denote by
(x, x̃),(x̃,x) ∈ Fn

2 the two vectors of length n obtained by appending x ∈ F2 respectively
to the left and to the right of x̃ ∈ Fn−1

2 . Then, permutive functions are formally defined
as follows:

Definition 3. A boolean function f : Fn
2 → F2 is called left permutive (respectively,

right permutive) if, for all x̃ ∈ Fn−1
2 and x,x′ ∈ F2 such that x 6= x′, it results that

f (x, x̃) 6= f (x′, x̃) (respectively, f (x̃,x) 6= f (x̃,x′)). A function which is both left and right
permutive is called bipermutive.

As shown in [9], permutive functions have a simple characterization in terms of gen-
erating functions. In particular, f : Fn

2→ F2 is left permutive if there exists a function
g : Fn−1

2 → F2 of n−1 variables (called the generating function of f ) such that

f (x1,x2, · · · ,xn) = x1⊕g(x2, · · · ,xn) , (11)
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for all x = (x1,x2, · · · ,xn). Right permutive functions are characterized symmetrically
by XORing xn with the value of the generating function computed on the leftmost n−1
variables. Hence, a bipermutive function f : Fn

2→ F2 can be equivalently defined by a
generating function g : Fn−2

2 → F2 of n−2 variables such that

f (x1,x2, · · · ,xn−1,xn) = x1⊕g(x2, · · · ,xn−1)⊕ xn . (12)

The next result shows how the Walsh coefficients of the component functions in a
permutive CA are affected by adding a new cell. We state and prove the theorem just
for the right permutive case, since the left permutive one can be obtained by a simple
symmetrical argument.

Theorem 1. Let F : Fn
2 → Fm

2 be a CA of length n = m+ δ − 1 defined by a right
permutive local rule f : Fδ

2 → F2 with diameter δ . Additionally, let F ′ : Fn+1
2 → Fm+1

2
be the corresponding CA of length n+1 obtained by appending an additional cell to
the right, and let v ·F ′ be the component function of F ′ determined by v = (ṽ,vn+1) ∈
(Fm+1

2 )∗, with ṽ ∈ Fn
2 and vn+1 ∈ F2. Then, for all ω̃ ∈ Fn

2 and ωn+1 ∈ F2, the Walsh
coefficient of F ′ over ω = (ω̃,ωn+1) can assume only the following values:

– Wv·F ′(ω) = 0
– Wv·F ′(ω) = 2 ·Wω̃·F(ω).

Proof. We proceed by induction on m ∈ N.
Let m = 1. We have that F = f , i.e. the global rule of the CA corresponds to its local

rule, and by appending a cell to the right we obtain a CA F ′ with δ +1 input cells and
2 output cells. We will show that in this case Wv·F ′(ω) = 0 or Wv·F ′(ω) = 2 ·Wf (ω) for
all ω ∈ Fδ+1

2 and for all component functions v ·F ′. Since m+1 = 2, there is a total of
22− 1 = 3 component functions to consider, namely those determined by the vectors
(1,0), (0,1) and (1,1). Assume that v = (1,0). Then, the component function in this
case coincides with local rule f computed on the input variables x1, · · · ,xδ of F ′. By
Equation (3), this means that for ω̃ ∈ Fδ

2 and ωδ+1 ∈ F2 the Walsh coefficient of v ·F ′
over ω = (ω̃,ωδ+1) is:

Wv·F ′(ω) = ∑
x∈Fδ+1

2

(−1)v·F ′(x)⊕ω·x =

= ∑
x∈Fδ+1

2

(−1) f (x1,··· ,xδ )⊕ω·x . (13)

Since ω · x = ω1x1⊕·· ·⊕ωδ xδ ⊕ωδ+1xδ+1, we can split Equation (13) by grouping
the terms with xδ+1 = 0 in one sum and the terms with xδ+1 = 1 in another sum.

Wv·F ′(ω) = ∑
x∈Fδ+1

2 :
xδ+1=0

(−1) f (x1,··· ,xδ )⊕ω1x1⊕···⊕ωδ xδ

+ ∑
x∈Fδ+1

2 :
xδ+1=1

(−1) f (x1,··· ,xδ )⊕ω1x1⊕···⊕ωδ xδ⊕ωδ+1 . (14)
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Notice that the term ωδ+1 in the exponent of the second sum of (14) corresponds to a
multiplicative constant (−1)ωδ+1 , which can thus be extracted from the sum:

Wv·F ′(ω) = ∑
x∈Fδ+1

2 :
xδ+1=0

(−1) f (x1,··· ,xδ )⊕ω1x1⊕···⊕ωδ xδ

+(−1)ωδ+1 · ∑
x∈Fδ+1

2 :
xδ+1=1

(−1) f (x1,··· ,xδ )⊕ω1x1⊕···⊕ωδ xδ . (15)

Remark now that the two sums in (15) are the same and correspond to the Walsh
coefficient Wf (ω̃) of rule f :

Wv·F ′(ω) =Wf (ω̃)+(−1)ωδ+1 ·Wf (ω̃) . (16)

Therefore, it results that Wv·F ′(ω) = 2 ·Wv·F ′(ω) if ωδ+1 = 0, and Wv·F ′(ω) = 0 when
ωδ+1 = 1, which proves the statement for v = (1,0). An analogous argument holds also
for v = (0,1). Hence, to conclude the base of the induction, it remains to be analyzed the
case v = (1,1), where the Walsh coefficient of v ·F ′ over ω = (ω̃,ωδ+1) ∈ Fδ+1

2 equals:

Wv·F ′(ω) = ∑
x∈Fδ+1

2

(−1)v·F ′(x)⊕ω·x =

= ∑
x∈Fδ+1

2

(−1) f (x1,··· ,xδ )⊕ f (x2,··· ,xδ+1)⊕ω·x . (17)

Like in the previous case, we split the sum of Equation (17) with respect to the value of
xδ+1 and extract the multiplicative constant (−1)ωδ+1 from the second sum. Denoting
by x̃ = (x1, · · · ,xδ ), this yields:

Wv·F ′(ω) = ∑
x∈Fδ+1

2 :
xδ+1=0

(−1) f (x1,··· ,xδ )⊕ f (x2,··· ,0)⊕ω̃·x̃

+(−1)ωδ+1 · ∑
x∈Fδ+1

2 :
xδ+1=1

(−1) f (x1,··· ,xδ )⊕ f (x2,··· ,1)⊕ω̃·x̃ . (18)

By separating the terms f (x2, · · · ,0) and f (x2, · · · ,1) in the exponents of Equation (18),
we obtain:

Wv·F ′(ω) = ∑
x∈Fδ+1

2 :
xδ+1=0

(−1) f (x1,··· ,xδ )⊕ω̃·x̃ · (−1) f (x2,··· ,0)

+(−1)ωδ+1 · ∑
x∈Fδ+1

2 :
xδ+1=1

(−1) f (x1,··· ,xδ )⊕ω̃·x̃ · (−1) f (x2,··· ,1) (19)

Notice that the two sums in Equation (19) correspond to the Walsh coefficient Wf (ω),
with the exception that in the first sum each term is multiplied by (−1) f (x2,··· ,0) and in
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the second by (−1) f (x2,··· ,1). Since f is right permutive, we have that (−1) f (x2,··· ,0) 6=
(−1) f (x2,··· ,1) for all (x2, · · · ,xδ ) ∈ Fδ−1

2 . It follows that for each vector x̃ ∈ Fδ
2 the

corresponding terms in the two sums of (19) always have different signs. Hence, one
has Wv·F ′(ω) = 0 for ωδ+1 = 0, and Wv·F = 2 ·Wf (ω) for ωδ+1 = 1.

Next, assume that m > 1 and let F ′ : Fn+1
2 → Fm+1

2 be the global rule of the CA
obtained by appending a cell to the right of F : Fn

2→ Fm
2 . Given a component function of

F selected by v ∈ (Fm
2 )
∗, one can construct two component functions of F ′ respectively

as (v,0) ·F ′ and (v,1) ·F ′.
In order to shorten the notation, let x = (x̃,xn+1) ∈ Fn+1

2 and ω = (ω̃,ωn+1) ∈ Fn+1
2 ,

where x̃ = (x1, · · · ,xn) ∈ Fn
2 and ω̃ = (ω1, · · · ,ωn) ∈ Fn

2, and xn+1,ωn+1 ∈ F2. Let us
now consider all those component functions (v,0) ·F ′, i.e. those that do not select the
last coordinate function f (xm+1, · · · ,xn+1) in the linear combination. Then, the Walsh
coefficient over ω in this case equals:

W(v,0)·F ′(ω) = ∑
x∈Fn+1

2

(−1)v·F(x̃)⊕ω·x =

= ∑
x∈Fn+1

2

(−1)v·F(x̃)⊕ω̃·x̃⊕ωn+1xn+1 . (20)

By splitting the sum with respect to the value of xn+1 Equation (20) can be rewritten as:

W(v,0)·F ′(ω) = ∑
x∈Fn+1

2 :
xn+1=0

(−1)v·F(x̃)⊕ω·x

+(−1)ωn+1 · ∑
x∈Fn+1

2 :
xn+1=1

(−1)v·F(x̃)⊕ω·x . (21)

Similarly to the base case v = (1,0), one can see that for all ω = (ω̃,0) the two sums
in (21) have the same sign, and these sums both correspond to Wv·F(ω̃). Hence, one
obtains that W(v,0)·F ′(ω̃,0) = 2 ·Wv·F(ω̃). On the other hand, for all ω = (ω̃,1) the two
sums have different signs, thus in this case it holds that W(v,0)·F ′(ω̃,1) = 0.

The last case we need to consider includes all those component functions of the form
(v,1) ·F ′, where the last coordinate function appears in the linear combination. The
Walsh coefficient over ω is:

W(v,1)·F ′(ω) = ∑
x∈Fn+1

2

(−1)v·F(x̃)⊕ f (xm+1,··· ,xn+1)⊕ω·x =

= ∑
x∈Fn+1

2

(−1)v·F(x̃)⊕ω̃·x̃ · (−1) f (xm+1,··· ,xn+1)⊕ωn+1·xn+1 . (22)

10

http://dx.doi.org/10.1007/s11047-017-9635-0


The final publication is available at Springer via http://dx.doi.org/10.1007/s11047-017-9635-0

Again, let us split the sum of (22) with respect to the value of xn+1 as follows:

W(v,1)·F ′(ω) = ∑
x∈Fn+1

2 :
xn+1=0

(−1)v·F(x̃)⊕ω·x · (−1) f (xm+1,··· ,0)

+(−1)ωn+1 · ∑
x∈Fn+1

2 :
xn+1=1

(−1)v·F(x̃)⊕ω·x · (−1) f (xm+1,··· ,1) . (23)

Analogously to the case of v = (1,1) for m = 2 discussed above, for each x ∈ Fn+1
2

the terms in the two sums of Equation (23) always have different signs. Since the first
part of the two sums coincides with the Walsh coefficient of ṽ ·F over ω̃ , it results that
W(v,1)·F ′(ω) = 0 for ωn+1 = 0 and W(v,1)·F ′(ω) = 2 ·Wv·F(ω̃) for ωn+1 = 1. ut

From Theorem 1, we can now determine the nonlinearity of the global rule of a
permutive CA in terms of the nonlinearity of its local rule:

Corollary 1. Let F : Fn
2→ Fm

2 a CA of length n = m+δ −1 with left or right permutive
local rule f : Fδ

2 → F2. Then, the nonlinearity of F equals

Nl(F) = 2m−1 ·Nl( f ) . (24)

Proof. We proceed by induction on m. For m = 1, the global rule coincides with the
local rule and Equation (24) is trivially true. Let us now consider the case m > 1 and
assume that the statement is true up to m− 1. Then, by Theorem 1 we know that the
Walsh coefficients of the component functions of F ′ : Fn

2 → Fm
2 can only be zero or

twice the coefficients of the corresponding components of F : Fn−1
2 → Fm−1

2 obtained
by removing the last coordinate from the linear combination. This means that for each
v = (ṽ,vm) ∈ (Fm

2 )
∗ the spectral radius of the component v ·F ′ is twice the spectral

radius of ṽ ·F. Hence, the nonlinearity of v ·F ′ is given by

Nl(v ·F ′) = 2n−1− 1
2

maxω∈Fn
2
{|Wv·F ′(ω)|}=

= 2n−1− 1
2
·
(

2 ·max
ω̃∈Fn−1

2
{|Wṽ·F(ω̃)|}

)
=

= 2 ·2n−2−max
ω̃∈Fn−1

2
{|Wṽ·F(ω̃|)}= 2 ·Nl(ṽ ·F) (25)

By induction hypothesis, we know that Nl(F) = 2m−2 ·Nl( f ), and this is the minimal
nonlinearity among the component functions of F. Thus, by Equation (25) it means that
the minimal nonlinearity among the components of F ′ is

2 ·Nl(F) = 2 ·2m−2 ·Nl( f ) = 2m−1 ·Nl( f ) , (26)

which is by definition the nonlinearity of F ′. ut

3.3 Resiliency of Bipermutive CA

We now show that bipermutive cellular automata are always at least 1-resilient when
considered as vectorial boolean functions. To this end, we first recall a secondary
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construction to obtain a (t + 1)-resilient boolean function of n+ 1 variables from a
t-resilient function of n variables, originally proved in [18]. This method is formalized
in the following result:

Proposition 3. Let I = {i1, · · · , it+1}⊆{1, · · · ,n} and J = { j1, · · · , jn−t−1}= {1, · · · ,n}\
I be complementary sets of indices. Additionally, let f : Fn

2→ F2 be a boolean function
of n variables defined as

f (x1, · · · ,xn) = g(x j1 , · · · ,x jn−t−1)⊕ xi1 ⊕·· ·⊕ xit+1 ,

where g : Fn−t−1
2 → F2 is a boolean function of n− t−1 variables. Then, f is t-resilient.

Hence, XORing one variable with g makes the resulting function 0-resilient (or, equiva-
lently, balanced), and then any new XORed variable increases the resiliency order by
1.

Clearly, by Proposition 3 any bipermutive local rule is also a 1-resilient boolean
function. A different proof of this fact based on the zeros of the Walsh transform can be
found in [9].

The following result characterizes the component functions of a bipermutive CA
based on its associated generating function:

Lemma 1. Let F : Fn
2→ Fm

2 be a cellular automaton of length n = m+δ −1 defined
by a bipermutive rule f : Fδ

2 → F2. Then, for all v ∈ (Fm
2 )
∗ the component function v ·F

is bipermutive as well.

Proof. Let f (x1,x2, · · · ,xδ−1,xδ ) = x1⊕g(x2, · · · ,xδ−1)⊕xδ with g : Fδ−2
2 → F2. Given

v ∈ (Fm
2 )
∗, the component function v ·F can be expressed as:

v ·F = xi1 ⊕g(xi1+1, · · · ,xi1+δ−2)⊕ xi1+δ−1⊕
⊕·· ·⊕ xik ⊕g(xik+1, · · · ,xik+δ−2)⊕ xik+δ−1 . (27)

Notice that the leftmost and rightmost variables xi1 and xik+δ−1 appear exactly once in
Equation (27), thus they are never canceled. Let G be the boolean function defined as:

G(xi1+1, · · · ,xik+δ−2) = g(xi1+1, · · · ,xi1+δ−2)⊕ xi1+δ−1⊕
·· ·⊕ xik ⊕g(xik+1, · · · ,xik+δ−2) . (28)

Hence, the component function v ·F has the form:

v ·F = xi1 ⊕G(xi1+1, · · · ,xik+δ−2)⊕ xik+δ−1 , (29)

and thus it is bipermutive. ut

Combining Lemma 1 and Proposition 3, we get the following result:

Theorem 2. Let F : Fn
2→ Fm

2 be a CA of length n = m+δ −1 defined by a bipermutive
rule f : Fδ

2 → F2. Then, F is at least 1-resilient.
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4 Linear CA and Linear Codes

Besides the applications to the design of stream ciphers, the resiliency criterion has also
relevance in coding theory, since it is related to the minimum distance of linear codes.
Motivated by the result on the 1-resiliency of the global rules of bipermutive CA, in
this section we investigate linear CA from the perspective of coding theory. We first
recall some basic concepts about binary linear codes. We then show that linear CA are
equivalent to cyclic linear codes, and observe that the minimum distance of the latter is
related to the resiliency order of the former. To wrap up the discussion, we finally show
how the encoding and decoding process in the cyclic Hamming code (7,4,3) correspond
respectively to preimage computation and forward iteration of a bipermutive linear CA
of radius 2 with a 2-resilient global rule.

4.1 Basics on Linear Codes

We now briefly discuss the basic definitions and results related to linear and cyclic
error-correcting codes. For a thorough treatment of the subject, the reader can refer
to [13].

Definition 4. Let n,m,d ∈ N such that n≥ m, and let q = ρα be the power of a prime
number ρ . A (n,m,d) linear code C is a m-dimensional subspace of the vector space Fn

q,
such that the Hamming distance between any two vectors c1,c2 ∈C (called codewords)
is at least d. The parameters n, m and d are respectively called the length, the dimension
and the minimum distance of C.

In what follows, we focus on the case of binary linear codes, where q = 2.
Since a (n,m,d) linear code C is a subspace of dimension m of Fn

2, it is possible
to specify it using a m×n matrix G whose rows form a set of m linearly independent
codewords of C. Such a matrix G is called a generator matrix for code C. The encoding
process simply amounts to multiplying a message vector µ ∈ Fm

2 by matrix G, thus
obtaining the codeword c = µG. Another matrix associated to a linear code is its parity
check matrix, which is useful for error correction. The parity check matrix for C is a
matrix H of dimensions (n−m)×n such that Hx> = 0 if and only if x ∈C. In general,
the vector s = Hx> is called the syndrome of x ∈ Fn

2.
The dual code of a (n,m,d) linear code C is the set C⊥ = {x ∈ Fn

2 : x ·y = 0,∀y∈C},
that is, the set of all vectors in Fn

2 which are orthogonal to the codewords in C. The
parity check matrix H of C is a generator matrix for C⊥, and vice versa the generator
matrix G of C is a parity check matrix for C⊥. Thus, A (n,m,d) linear code C ⊆ Fn

2 is
called cyclic if it is closed under cyclic shifts, that is, c′ = (c2, · · · ,cn,c1) ∈ C for all
c = (c1,c2 · · · ,cn) ∈C. A cyclic code is described by its generator polynomial:

g(x) = g0 +g1x+ · · ·+gn−mxn−m , (30)

where gi ∈ F2 for all i ∈ {0, · · · ,n−m}. If one represents the m-bit message µ =
(µ0, · · · ,µm−1) by the polynomial µ(x) = µ0 +µ1x+ · · ·+µm−1xm−1, then the polyno-
mial corresponding to the codeword c is c(x) = µ(x)g(x). There exists a one-to-one

13

http://dx.doi.org/10.1007/s11047-017-9635-0


The final publication is available at Springer via http://dx.doi.org/10.1007/s11047-017-9635-0

correspondence between cyclic codes and divisors of xn− 1. In particular, a (n,m,d)
code C is cyclic if and only if its generator polynomial g(x) divides xn−1.

Given a (n,m,d) cyclic code C with generator polynomial g(x) of degree n−m, the
polynomial h(x) = (xn−1)/g(x) of degree m is the parity check polynomial of C. Analo-
gously to the parity check matrix, h(x) satisfies the property that the codeword associated
to a polynomial d(x) belongs to C if and only if d(x)h(x) = 0. The following result
relates the generator/parity check polynomials of a cyclic code C to its generator/parity
check matrices:

Theorem 3. Let C ⊆ Fn
2 be a (n,m,d) cyclic linear code with generator polynomial

g(x) = g0 +g1x+ · · ·+gn−mxn−m and parity check polynomial h(x) = h0 +h1x+ · · ·+
hmxm. Then the following are respectively a generator and a parity check matrix for C:

G =


g0 · · · gn−m 0 · · · · · · · · · · · · 0
0 g0 · · · gn−m 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 g0 · · · gn−m

 (31)

H =


hm · · · h0 0 · · · · · · · · · · · · 0
0 hm · · · h0 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 hm · · · h0

 . (32)

As a consequence of Theorem 3, the dual code C> of a cyclic code is again a cyclic code
of length n and dimension n−m.

One of the main advantages of cyclic codes is that they can be easily implemented
using Linear Feedback Shift Registers (LFSR). A LFSR of order k is a discrete de-
vice composed of k registers D0, D1, · · · , Dk−1. At each step n ∈ N, the elements
sn, sn+1, · · · , sn+k−1 ∈ F2 in the registers are shifted one place to the left, and Dk−1
is updated with the linear combination a0 · sn + · · ·+ak−1 · sn+k−1 (See Figure 1). The
tap polynomial of the LFSR is the polynomial over F2 of degree k defined by the coef-
ficients a0, · · · ,ak−1 of the LFSR. As shown in [13, pp. 193–195], if the parity check
polynomial h(x) of a (n,m,d) cyclic code is such that h0 6= 0, the codeword of a message
µ ∈ Fm

2 can be generated by a LFSR of length m whose tap polynomial is the reciprocal
h̃(x) = h(1/x) = hm + hm−1x+ · · ·+ xm of h(x), i.e. the multiplicative inverse of h(x)
over the ring F2[x]. The registers are initialized to the values µ0, · · · ,µm−1 of µ , and

D0

Output

a0 a1

+

D1

· · ·

ak−2

+· · ·

Dk−2

ak−1

+

Dk−1

Fig. 1: Example of linear feedback shift register.
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the LFSR is evolved for n steps. The output of length n produced by the LFSR is the
codeword corresponding to µ . Notice that the first m output bits are exactly the original
message µ , while the remaining n−m are the parity check bits. This encoding procedure
is called systematic, since the bits of the message appear unaltered in the corresponding
codeword. If no errors are introduced by the channel, the decoding process is immediate
since it just consists of truncating the codeword to its first m bits.

4.2 Linear CA and Cyclic Codes

A cellular automaton F : Fm+δ−1
2 → Fm

2 is called linear if its local rule is defined as
f (x1, · · ·xδ ) = a1x1⊕·· ·⊕aδ xδ , with ai ∈ F2 for all i ∈ {1, · · · ,δ}. The global rule of
F is described by a m× (m+δ −1) transition matrix MF of the following form:

MF =


a1 · · · aδ 0 · · · · · · · · · · · · 0
0 a1 · · · aδ 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 a1 · · · aδ

 . (33)

In particular, when the CA is bipermutive and linear we have a1 = aδ = 1. The application
of the CA global rule F to a configuration x ∈ Fm+δ−1

2 corresponds to the multiplication
y = MF x>.

One can notice that the generator and parity check matrices of Equation (31) and (32)
in Theorem 3 have the same form of the linear CA matrix in Equation (33). In particular,
the systematic encoding for cyclic codes described above can be simulated through
cellular automata. As observed in [10], computing a preimage of a spatially periodic
configuration in a linear bipermutive CA is equivalent to a concatenation of LFSR,
where the LFSR associated to the local rule is disturbed by the LFSR which generates
the spatially periodic configuration. In our case, we are only interested in a preimage
of a finite configuration. Thus the general scheme consists of the LFSR associated to
the rule where the feedback is additively disturbed by the bits of the configuration. If
one takes the all-zeros configuration 0, it can be observed that the resulting concatenated
LFSR of Figure 2 is equivalent to the LFSR used for the systematic encoding of a cyclic
code. As a matter of fact, adding a sequence of zeros to the feedback of a LFSR does
not change its dynamics. In the context of cellular automata, the system represented in
Figure 2 is equivalent to the computation of a preimage of 0 ∈ Fn−m

2 , in particular the
preimage determined by the m-bit block µ .

To summarize the discussion above, we have thus proved the following result:

Theorem 4. Let F : Fm+ρ

2 → Fm
2 be a linear cellular automaton defined by a local rule

f (x) = a1x1⊕·· ·⊕aδ xδ of diameter δ = ρ +1 with ρ ∈ N, and let g(x) = a1 +a2x+
· · ·+aδ xρ be the polynomial associated with f . If g(x) divides xn−1 where n = m+ρ ,
then F is equivalent to a cyclic code C of length n and dimension m. The generator
matrix of C is the CA matrix MF associated to F, while g(x) is the generator polynomial
of C. Additionally, let h(x) be the reciprocal of the parity check polynomial h(x) = (xn−
1)/g(x), defined as h̃(x) = hm +hm−1x+ · · ·+h0xm and let f̃ (x) = hmx1⊕·· ·⊕h0xm+1
be the corresponding local rule. Then, the matrix MF̃ associated to the linear CA
F̃ : Fm+ρ

2 → Fρ

2 induced by rule f̃ is a parity check matrix for C, and C = F̃−1(0).
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µ0

D0

Output

hm hm−1

+

µ1

D1

· · ·

h2

+· · ·

µm−2

Dm−2

h1

+

µm−1

Dm−1

h0

+

0

E0

0

E1

· · · 0

En−m−2

0

En−m−1

Fig. 2: Concatenation of a LFSR with a sequence of n−m zeros, which computes a
preimage x ∈ F−1(0). Each element µi in the registers correspond to a symbol of the
message µ .

In other words, by Theorem 4 we can employ a linear CA in the encoding and decoding
process of a linear cyclic code of length n and dimension m as follows:

1. Given m and n = m+ρ with ρ ∈ N, determine a local rule f of diameter δ = ρ +1
such that the associated polynomial g(x) divides xn−1.

2. Compute the reciprocal h̃(x) of the parity check polynomial h(x) = (xn−1)/g(x),
and determine the corresponding local rule f̃ of diameter m+1.

3. Systematic encoding: Let F̃ : Fm+ρ

2 → Fρ

2 be the linear CA of length n induced by
f̃ . A message µ ∈ Fm

2 is encoded by computing the preimage x ∈ F̃−1(0) whose
leftmost m-bit block equals µ . This preimage can be computed by the LFSR in
Figure 2.

4. Syndrome computation: given x ∈ Fm+ρ

2 , the syndrome of x is s = F̃(x). If the
syndrome s equals 0 ∈ Fρ

2 then x is a codeword of C. Otherwise, one can apply the
syndrome decoding procedure to retrieve the original codeword.

Notice that up to now we did not consider the minimum distance of the cyclic codes
generated through linear CA, which is necessary in order to assess their error-correction
capability. This is where the resiliency order of the CA comes into play. In particular,
the connection between general linear resilient functions and linear codes is given by the
following theorem reported in [20]:

Theorem 5. A (d−1)-resilient linear function F : Fn
2→ Fm

2 is equivalent to a (n,m,d)
linear code C.

We already know from the previous section that all bipermutive CA are always at least
1-resilient, thus a linear and bipermutive CA which satisfies the hypotheses of Theorem 4
is equivalent to a linear cyclic code with minimum distance at least 2. More in general,
we can refine Theorem 4 by using Theorem 5 as follows:

Theorem 6. Let F : Fm+ρ

2 → Fm
2 be a linear CA satisfying the hypotheses of Theorem 4.

If F is (d−1)–resilient, then the cyclic code associated to F has minimum distance d.
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4.3 Cyclic Hamming Codes through Linear CA

To sum up the results presented in the previous section, we show an example of cyclic
code generated by a linear CA. In particular we focus on cyclic Hamming codes, which
are codes with minimum distance d = 3 and thus they can correct up to 1 error. The
main reason for this choice is the simplicity of syndrome decoding in Hamming codes.
As a matter of fact, the position of the column of the parity check matrix H containing
the value of the syndrome is the position where the error occurred.

Example 1. Let F : F7
2 → F4

2 be the linear CA induced by the local rule f : F4
2 → F2

defined as f (x) = x1⊕ x2⊕ x4. The associated polynomial is g(x) = 1+ x+ x3, while
the CA matrix is:

MF =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 . (34)

The polynomial g(x) divides x7−1, and it results that h(x) = (x7−1)/g(x) = 1+ x+
x2 + x4. Further, we can deduce from matrix MF that F is 2-resilient. As a matter of fact,
it is not difficult to see by exhaustive enumeration that each nonzero vector v results
in a sum of rows which always have at least 3 ones. Hence, by Theorem 6 the code C
associated to F is the (7,4,3) cyclic Hamming code. Remark that the reciprocal of the
parity check polynomial h(x) is h̃(x) = 1+ x2 + x3 + x4. The local rule f̃ associated to
the polynomial h̃(x) is f̃ (x) = x1⊕x3⊕x4⊕x5, and thus it has radius r = 2. In particular,
the Wolfram code representing the truth table of f̃ is 1768527510. The transition matrix
of the linear CA F̃ : F7

2→ F3
2 induced by rule f̃ is the following:

MF̃ =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 . (35)

Let µ = (0,1,1,0) ∈ F4
2 be a 4-bit message. The systematic encoding of µ under the

Hamming code (7,4,3) can be accomplished by computing the preimage x of (0,0,0)
under the action of F̃ , with the leftmost 4 bits of x initialized to µ . This process is
depicted in Figure 3. Hence, the codeword corresponding to µ is x = (0,1,1,0,1,0,0).

Let us now assume that x is transmitted through a noisy channel and the fourth bit of
x is flipped, thus yielding the word x̃ = (0,1,1,1,1,0,0). The receiver applies to x̃ the
CA F̃ defined by rule 1768527510, thus obtaining the syndrome s = F(x) = (1,1,0), as
shown in Figure 4(a). To correct the error, the receiver looks at the CA matrix MF̃ and
finds that the syndrome appears in the fourth column. Thus, the receiver knows that a
transmission error has occurred in the fourth position of x̃, and the original codeword
can be recovered as x̃⊕ (0,0,0,1,0,0,0) = x.

5 Conclusions and Future Directions

In this work, we began investigating the cryptographic properties of the global rules
of CA with no boundary conditions, focusing on their algebraic degree, nonlinearity
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0 = 0 0 0

110x = 0 ? ? ?

µ

(a) Initialization

0 = 0 0 0

110x = 0 1 0 0

µ

(b) Complete codeword

Fig. 3: Systematic encoding of µ = (0,1,1,0) ∈ F4
2 using rule 1768527510, defined as

f̃ (x) = x1⊕ x3⊕ x4⊕ x5.

s = 1 1 0

110x = 1 1 0 0

∗

(a) Syndrome computation

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1


↑

(b) Error correction

Fig. 4: Example of error correction using rule 1768527510. The cell marked by ∗ indi-
cates where the error occurred.

and resiliency. As a first result, we proved that the algebraic degree of a CA global rule
coincides with the degree of its local rule. Subsequently, by restricting our analysis to
the class of CA with permutive local rules, we investigated how the addition of a new
cell to the CA affects the Walsh spectrum of its component functions. This allowed
us to determine the nonlinearity of permutive CA in terms of the nonlinearity of their
local rules. Then, we proved that the global rule of a bipermutive CA F is always at
least 1-resilient, since each component of F is still a bipermutive boolean function.
Since the resiliency criterion is also related to the error correction capability of linear
codes, we analyzed CA from the point of view of coding theory, proving an equivalence
between linear cyclic codes and linear CA. In particular, we observed that the syndrome
computation process in the former is equivalent to applying the global rule to the received
word in the latter. Finally, the resiliency order of a linear and bipermutive CA can be used
to determine the minimum distance of the corresponding cyclic code, and we applied
these results by showing how the encoding and decoding process of the (7,4,3) cyclic
Hamming code can be realized using a 2-resilient linear CA of radius r = 2.

There are several directions along which the research discussed in this paper can be
extended. Concerning the cryptographic properties of the global rules, an interesting
direction to develop is the study of the differential uniformity in CA, a criterion related
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to the resistance of S-boxes to differential cryptanalysis (see [15]). Additionally, another
direction to consider is the generalization of the results presented in this paper to the case
of CA with periodic boundary conditions. As a matter of fact, periodic CA whose length
coincides with the diameter of the local rule are known in the cryptographic literature
under the name of rotation-symmetric S-boxes (see [16]). An interesting question to
investigate in this regard would be to show lower and upper bounds on the nonlinearity
of global rules with respect to the length and the diameter of the CA. The trade-off to
consider in this case is the minimization of the diameter of the CA while retaining a
good nonlinearity on the resulting S-boxes, in order to obtain strong S-boxes which can
be efficiently implemented in hardware, like rule χ in the case of KECCAK.

About the coding-theoretic part of our work, cyclic codes form a broad class including
for example BCH and Reed-Solomon codes. Hence, it could be interesting to investigate
how to implement these codes through CA by elaborating on the method presented in
this paper. As we mentioned in the Introduction, MDS codes are also employed to design
the diffusion layers of block ciphers, such as for example the MIXCOLUMNS operation
of Rijndael, the encryption algorithm which constitutes the AES standard (see [5]). Thus,
another direction of research worth exploring is to consider the design of MDS codes by
means of linear CA for lightweight implementations of diffusion linear layers.
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