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Abstract. We propose a genetic algorithm (GA) to search for plateaued boolean
functions, which represent suitable candidates for the design of stream ciphers
due to their good cryptographic properties. Using the spectral inversion technique
introduced by Clark, Jacob, Maitra and Stanica, our GA encodes the chromosome
of a candidate solution as a permutation of a three-valued Walsh spectrum. Ad-
ditionally, we design specialized crossover and mutation operators so that the
swapped positions in the offspring chromosomes correspond to different values in
the resulting Walsh spectra. Some tests performed on the set of pseudoboolean
functions of n = 6 and n = 7 variables show that in the former case our GA out-
performs Clark et al.’s simulated annealing algorithm with respect to the ratio of
generated plateaued boolean functions per number of optimization runs.
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1 Introduction

The security of a symmetric cryptosystem often depends on the choice of the underlying
boolean functions. For instance, in the combiner model for stream ciphers the boolean
function f : Fn

2→ F2 used to combine the outputs of n Linear Feedback Shift Registers
(LFSRs) should satisfy several cryptographic criteria in order to resist to specific attacks.
These properties include, among others, balancedness, high algebraic degree and non-
linearity, and high order of resiliency. When searching for good cryptographic boolean
functions, a way to overcome the combinatorial explosion resulting from increasing
the number of variables is to use heuristic techniques, such as Genetic Algorithms [7],
Simulated Annealing [2], Genetic Programming (both basic and Cartesian GP [8,9]) and
Particle Swarm Optimization [5]. These methods usually represent a candidate boolean
function by either its truth table or by a tree encoding one of its possible algebraic
expressions.

Clark, Jacob, Maitra and Stanica [3] proposed the spectral inversion technique
for designing good cryptographic boolean functions, in which a candidate solution
is represented as a permutation of a Walsh spectrum that encodes a particular set of
cryptographic properties. In general, by applying the inverse Walsh transform to such
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a spectrum, a pseudoboolean function f : Fn
2 → R is obtained. Thus, the objective

function becomes the deviation of f from being a boolean function, and in [3] Simulated
Annealing (SA) was adopted to minimize it.

The goal of this paper is to investigate the application of permutation-based Genetic
Algorithms for evolving cryptographic boolean functions by spectral inversion, a method
which was conjectured to be more efficient than SA in [3].

In particular, we design a GA in which the chromosomes of the evolved solutions
are Walsh spectra of plateaued pseudoboolean functions. The motivation for this choice
is twofold. First, spectra of plateaued pseudoboolean functions are three-valued, hence
they have an easy combinatorial characterization. Second, plateaued boolean functions
are considered suitable candidates for cryptographic applications, since they satisfy with
equality the bounds on maximum achievable algebraic degree and nonlinearity for a
given resiliency order, respectively proved by Siegenthaler [10] and Tarannikov [11].
Since our GA manipulates permutations of repeated values, we propose a crossover and
a mutation operator which ensure that the modified genes in the offspring correspond to
different values in the Walsh spectrum.

Let us note that, as the number of boolean functions of n variables is 22n
, exhaus-

tively searching for plateaued boolean functions (or, more in general, cryptographically
relevant boolean functions) becomes unfeasible for n > 5. For this reason, we assess the
performance of our GA in generating plateaued boolean functions of n = 6 and n = 7
variables. The results show that our GA outperforms Simulated Annealing in finding
plateaued boolean functions of n = 6 variables, while for n = 7 SA still yields better
average fitness values, even if neither technique was able to generate a plateaued boolean
function in this case. This would seem to suggest that combining the global search
capabilities of our GA and the local exploration of SA could lead to better results for
higher numbers of variables.

The remainder of this paper is organised as follows. Section 2 gives a brief intro-
duction about boolean functions and their cryptographic properties. Section 3 describes
our permutation-based Genetic Algorithm, defining the solution encoding, the fitness
function and the adopted genetic operators. Section 4 presents the results obtained by
our GA on the optimization of pseudoboolean plateaued functions for n = 6 and n = 7
variables, and compares them with the results achieved by the SA algorithm described
in [3]. Finally, Section 5 summarises the contributions of this paper and points out some
possible future developments on the subject.

2 Preliminaries on Boolean Functions

In this section, we recall some basic definitions and facts about boolean functions and
their cryptographic properties. For further details on the subject, we refer the reader to
Carlet [1].

2.1 Representations of Boolean Functions

A boolean function of n variables is a mapping f : Fn
2 → F2, where F2 = {0,1} is

the finite field of two elements. Once an ordering of the input variables x1, · · · ,xn has
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been fixed, the truth table representation of f is a vector Ω f ∈ F2n

2 which specifies
for all i ∈ {0, · · · ,2n−1} the value of f (bin(i)), where bin(i) denotes the n-bit binary
expansion of i. The algebraic normal form (ANF) represents a boolean function f as a
sum of products over F2. Specifically, given f : Fn

2→ F2, N = {1, · · · ,n} and P (N) the
power set of N, the ANF of f is defined by the following polynomial:

f (x) =
⊕

I∈P (N)

aI

(
∏
i∈I

xi

)
. (1)

The polar form f̂ : Fn
2→{−1,1} of f is the function defined as f̂ (x) = (−1) f (x) for

all x ∈ Fn
2. Denoting by ω · x = ω1x1⊕·· ·⊕ωnxn the scalar product modulo 2 of the

two vectors ω,x ∈ Fn
2, the Walsh transform of f : Fn

2→ F2 is the function F̂ : Fn
2→ R

defined for all ω ∈ Fn
2 as

F̂(ω) = ∑
x∈Fn

2

f̂ (x) · (−1)ω·x . (2)

The vector of Walsh coefficients S f =
(
F̂(bin(0)), · · · , F̂(bin(2n−1))

)
∈ R2n

of f is
also called the Walsh spectrum of f , while the maximum absolute value among all Walsh
coefficients Wmax( f ) is called the spectral radius of f . One important property of the
Walsh spectrum is Parseval’s identity, which states that the sum of all squared Walsh
coefficients is constant for every boolean function f : Fn

2→ F2:

∑
ω∈Fn

2

F̂(ω)2 = 22n . (3)

Given a spectrum S f of a boolean function f , it is possible to recover the original
(polar) function by applying the inverse Walsh transform:

f̂ (x) = 2−n
∑

ω∈Fn
2

F̂(ω) · (−1)ω·x . (4)

Notice that not all possible real-valued Walsh spectra correspond to boolean functions:
in general, by applying the inverse Walsh transform to a random spectrum S ∈ R2n

the
outcome will be the polar truth table of a pseudoboolean function f : Fn

2→ R.

2.2 Cryptographic Properties of Boolean Functions

The Walsh spectrum is used to characterize several cryptographic properties of boolean
functions. In particular, given f : Fn

2→ F2 along with is Walsh spectrum S f and spectral
radius Wmax( f ), we considered the following cryptographic properties for our optimiza-
tion problem:

– Balancedness: f is balanced if its truth table Ω f is composed of an equal number of
0s and 1s. Equivalently, f is balanced if and only if F̂(0) = 0, where 0 denotes the
null vector of Fn

2.
– Algebraic degree: the algebraic degree d of f is defined as the degree of its ANF.

Functions of degree 1 are also called affine functions.
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– Nonlinearity: the nonlinearity nl of f is the Hamming distance of f from the set
of all affine functions. Equivalently, the nonlinearity of f can also be computed as
nl = 1

2 (2
n−Wmax( f )).

– Resiliency: function f is said to be m-resilient if, by fixing at most m input variables,
the resulting restrictions of f are all balanced. Equivalently, f is m-resilient if and
only if F̂(ω) = 0 for all ω∈ Fn

2 having Hamming weight at most m, that is, the Walsh
transform vanishes for all vectors ω ∈ Fn

2 which have at most m nonzero coordinates.
Notice that 0-resiliency corresponds to balancedness.

In order to be suitable for cryptographic purposes (for instance, to be used in the
combiner model), a boolean function f should be balanced, have high algebraic degree
and nonlinearity, and be resilient of high order. However, functions which fully satisfy all
these four criteria simultaneously do not exist. In particular, Siegenthaler’s bound [10]
and Tarannikov’s bound [11] respectively limit the reachable values of algebraic degree
and nonlinearity for a given order of resiliency:

– Siegenthaler’s bound: d ≤ n−m−1
– Tarannikov’s bound: nl ≤ 2n−1−2m+1

In what follows, by (n,m,d,nl) we denote the profile of a balanced boolean function
of n variables having resiliency order m, algebraic degree d and nonlinearity nl.

Among the various classes of boolean functions which can be characterized in terms
of cryptographic properties, bent functions are the ones reaching the highest possible
values of nonlinearity. Specifically, f : Fn

2→ F2 is bent if F̂(ω) =±2
n
2 for all ω ∈ Fn

2.
However, these functions exist only for even values of n, and moreover they are not
balanced since F̂(0) =±2

n
2 . Hence, bent functions are not suitable for cryptographic

applications.
A broader class which includes bent functions is the set of plateaued functions,

originally introduced by Zhang and Zheng [13]. Formally, a boolean function f :Fn
2→F2

is plateaued if F̂(ω) ∈ {−Wmax( f ), 0, +Wmax( f )} for all ω ∈ Fn
2. Thus, Walsh spectra

of plateaued functions take at most three values. Plateaued functions are especially
interesting for cryptography, since they satisfy with equality both Siegenthaler’s and
Tarannikov’s bounds, a feature which makes them optimal with respect to all four
properties mentioned above. The profile of a plateaued boolean function is of the form
(n,r−2,n− r−3,2n−1−2r−1), where r ≥ n

2 , from which it follows that Wmax( f ) = 2r.
Notice that if n is even and r = n

2 , then a plateaued function is bent. In what follows, we
will apply our GA for evolving plateaued boolean functions.

3 Our Genetic Algorithm

3.1 Chromosomes Encoding

The main idea underlying the chromosome encoding of our GA is to represent a candidate
solution as a permutation of a Walsh spectrum S ∈R2n

. This spectral inversion approach
to heuristic design of cryptographic boolean functions was originally introduced by
Clark, Jacob, Maitra and Stanica in [3].
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As a first observation, notice that representing the chromosome as a permutation of
the spectrum positions would allow us to employ classic permutation-based GA, such as
those designed for the Traveling Salesman Problem [4]. However, the Walsh spectrum
is generally composed of repeated values. This means that a position-based encoding
would make the GA search into a space which is bigger than what is actually needed,
since several swaps performed by permutation-based genetic operators would map to the
same values in the Walsh spectrum. Hence, we represent our candidate solution directly
by its Walsh spectrum values. From the combinatorial point of view, this representation
is equivalent to performing permutations over a multiset M .

Recall from the previous section that, by Parseval’s identity, the sum of the squared
Walsh coefficients of any n-variable boolean function equals 22n. Moreover, the values
summed in the Walsh transform defined in Equation (2) are all integers, hence we
can start to model a candidate solution as a vector of 2n integers which sum to 22n.
Additionally, we are interested only in plateaued boolean functions, so that each Walsh
coefficient can only take its value in the set V = {−2r,0,+2r}. We thus need to determine
the multiplicities of the elements of V in order to characterise the multiset M required
to build the spectrum. Using the approach sketched in [3], these multiplicities can be
derived from the following observations:

(1) Since a plateaued boolean function is m-resilient with m = r−2, all positions which
correspond to input vectors having at most m nonzero coordinates must be set to
zero. Therefore, in order to meet the resiliency constraint there must be at least
#0res = ∑

m
i=0
(n

i

)
zero-valued positions in the spectrum.

(2) Each nonzero position in the spectrum contributes by a term of (±2r)2 = 22r in
Parseval’s identity. Thus, the total number of nonzero positions in the spectrum is
given by #±2r = 22n

22r .
(3) From (1) and (2) we deduce that there are #0add = 2n−((#±2r)+(#0res)) additional

positions set to zero other than the ones used to satisfy m-resiliency.
(4) By setting f̂ (0) = 1, it follows that ∑ω∈Fn

2
F̂(ω) = 2n. Notice that this is an arbitrary

assumption, since we are considering only those functions mapping the null vector
to 0. However, this does not bias the final search space, since by setting f̂ (0) =−1
we would always get plateaued functions having the same profile.

(5) By combining observations (2) and (4), we finally obtain the number of positions to
be set to −2r and +2r by solving the following system:{

(#+2r)+(#−2r) = 22n

22r

(#+2r)− (#−2r) = 2n

which gives {
#+2r = 2n−1(2n−2r +1)
#−2r = 2n−1(2n−2r−1)

In what follows, we denote by x[i] the element at position i of vector x. Since there
are #0res positions in the spectrum which are set to zero for the resiliency constraint,
we can restrict our representation only to those positions whose binary expansions have
more than m nonzero coordinates. Let us thus consider the restricted ordered spectrum
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Sro = (w1, · · · ,wl) having length l = 2n−#0res and whose first #0add positions are set
to zero, the next #−2r are set to −2r and the final #+2r are set to +2r. Additionally,
let us denote by Pr = ( j1, · · · , jl) the vector of positions ji such that hwt(bin( ji))> m,
where hwt(·) denotes the Hamming weight of the binary string passed as argument.
Clearly, by permuting the components in Sro the resulting spectrum maintains the desired
cryptographic properties, since the multiplicities #0add , #−2r and #+2r are permutation
invariant. However, we are interested only in those permutations which swap different
values in the restricted spectrum. To address this problem, we employ the following
equivalence relation ∼p on the symmetric group Sl : given two permutations π1,π2 ∈ Sl ,
define π1 ∼p π2 if and only if wπ1(i) = wπ2(i) for all i ∈ {1, · · · , l}, where wπ1(i),wπ2(i)
are components of Sro. We can thus characterize the permutations which map different
values in the restricted spectrum as the representatives of the equivalence classes in the
quotient set Sl/∼p. With a little abuse of notation, in what follows we write π ∈ Sl/∼p
to directly denote the representative permutation π instead of the equivalence class [π]∼p .

The chromosome which encodes a candidate solution evolved by our GA is a per-
mutation c = (wπ(1), · · · ,wπ(l)) of the restricted ordered spectrum Sro, where π ∈ Sl/∼p.
The decoding of chromosome c which yields the corresponding pseudoboolean function
f : Fn

2→ R, denoted by dec(c), is carried out using the following procedure:

1. Initialize the Walsh spectrum S f to the null vector (0, · · · ,0) ∈ R2n
.

2. For all i ∈ {1, · · · , l} set S f [ ji] = c[i], where ji = Pr[i].
3. Perform spectral inversion: apply to S f the inverse Walsh transform defined in

Equation (4) in order to obtain the polar form f̂ of function f .

3.2 Objective and Fitness Functions

In order to measure how good a pseudoboolean function is, the authors of [3] proposed
an objective function based on the distance from the nearest boolean function. Formally,
given the polar form f̂ of f : Fn

2→R, the polar truth table of the nearest boolean function
b̂ : Fn

2→{−1,+1} is obtained for all x ∈ Fn
2 as follows:

b̂(x) =


+1 , if f̂ (x)> 0
−1 , if f̂ (x)< 0
+1 or −1 (chosen randomly) , if f̂ (x) = 0

(5)

Given a chromosome c and the corresponding pseudoboolean function f = dec(c),
the objective function to be minimized proposed in [3] is defined as:

ob j( f ) = ∑
x∈Fn

2

( f̂ (x)− b̂(x))2 . (6)

This objective function measures the deviation of f from being a true boolean func-
tion. Hence, an optimal solution to our problem is encoded by a chromosome c such
that ob j(dec(c)) = 0. Given how we designed the Walsh spectrum, such a solution
corresponds to a plateaued boolean function.

The fitness function f it(·) maximised by our GA is simply defined as the opposite of
the objective function (6), that is, f it( f ) =−ob j( f ).
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3.3 Genetic Operators

Considering the chromosome encoding adopted for the candidate solutions, an appro-
priate crossover operator for our GA has to preserve the multiplicities #0add , #−2r and
#+ 2r of the restricted spectrum, so that Parseval’s identity and the other properties
of plateaued functions are maintained. To this end, we designed a crossover operator
loosely inspired by the one proposed in [7].

The main idea is to work at the loci level, and to use counters in order to keep track of
the multiplicities of the three values 0, −2r and +2r inserted in the offspring during the
crossover phase. More precisely, given two parent chromosomes c1 and c2, our crossover
operator builds an offspring chromosome o as follows:

1. Initialize to zero the three counters cnt_z, cnt_n and cnt_p respectively associated
to the spectral values 0, −2r and +2r.

2. For all i∈{1, · · · , l} such that c1[i] = c2[i], copy either c1[i] or c2[i] in o[i]. Depending
on the copied value, update the relevant counter.

3. For all i ∈ {1, · · · , l} such that c1[i] 6= c2[i], determine the value to be copied in o[i]
as follows:
(a) If all three counters are below their maximum values (that is, cnt_z < #0add ,

cnt_n < #−2r and cnt_p < #+2r), randomly select c1[i] or c2[i] with probabil-
ity 1/2, and copy it in o[i]. Depending on the copied value, update the relevant
counter.

(b) If one of the three counters reached its maximum value, check if either c1[i] or
c2[i] is equal to the value associated to that counter. If so, copy the gene of the
other parent in o[i]. Otherwise, randomly select c1[i] or c2[i] with probability
1/2, and copy it in o[i]. In both cases, depending on the copied value, update
the relevant counter.

(c) If two out of three counters reached their respective maximum values, copy the
value associated to the remaining counter in o[i].

4. Return the offspring chromosome o.

Concerning the mutation operator, we adopted a simple swap procedure which checks
that the swapped values are different. In particular, let us assume that c is a chromosome
of length l and that pos0, pos−2r and pos+2r are the vectors specifying the positions of
the 0s, −2rs and +2rs in c, respectively. Then, our mutation operator is applied to each
locus i ∈ {1, · · · , l} of c with probability pµ ∈ [0,1], and it performs the following steps:

1. Setting v = c[i], randomly select with probability 1/2 one of the two positions vectors
post or posu, where t 6= v and u 6= v.

2. Denoting by poss the selected positions vector, randomly draw with uniform proba-
bility an index j of poss.

3. Swap the values c[i] and c[poss[ j]].
4. Swap the occurrence of i in posv with poss[ j].

Finally, for the selection operators we tested both roulette wheel selection and
deterministic tournament selection.
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3.4 Overall GA Procedure

We can now summarise the overall procedure of our GA. The input parameters for the
algorithm are the number of variables n and the index r ≥ n

2 of the target plateaued
functions, the size of the population N (where N is even), the number of generations G
to be performed, the crossover and mutation probabilities pχ and pµ, and the selection
operator S.

1. Initialization: Compute the profile (n,r− 2,n− r− 3,2n−1− 2r−1) of the target
functions and the multiplicities #0res, #0add , #−2r and #+2r of the Walsh spectrum.

2. Create Population: For i ∈ {1, · · · ,N}, create a chromosome c = (wπ(1), · · · ,wπ(l))
of length l = 2n−#0res, where π is a random permutation of Sl/∼p, and add it to
the current population P .

3. Initial Fitness Evaluation: For each chromosome c ∈ P , decode its respective pseu-
doboolean function f = dec(c) and compute the fitness value f it( f ) = −ob j( f ),
where ob j(·) is defined as in Equation (6). Set the best solution B as the individual
scoring the highest fitness value.

4. Selection Phase: Apply N times the selection operator S on the current population
P , thus creating a candidate population C of (eventually repeated) N chromosomes
which will produce the next generation.

5. Crossover Phase: For all i ∈ {1,3, · · · ,N−1}, sample a random number r ∈ [0,1]. If
r < pχ, apply the crossover operator twice to the pair ci,ci+1 ∈ C , and copy the two
offspring chromosomes (oi,oi+1) in the new population N . Otherwise, set oi = ci
and oi+1 = ci+1, and copy them in N .

6. Mutation Phase: For each chromosome o ∈N and for all j ∈ {1, · · · , l}, sample a
random number r ∈ [0,1]. If r < pµ, apply the mutation operator to o[ j].

7. Fitness Evaluation: For each chromosome o ∈ N , compute the fitness value of
f = dec(o), and find the current best individual Bc having the highest fitness value
in N .

8. Elitism: If f it(Bc)≤ f it(B), replace a random individual in N with B. Otherwise,
update the best solution found so far by setting B = Bc.

9. Population Update: Set the current population P equal to N .
10. Termination Condition: If the best solution found is optimal (ob j(B) = 0) or the

maximum number of generations G has been reached, output the best solution B
found by the GA. Otherwise, return to Step 4.

4 Experiments and Results

We tested our GA on the spaces of pseudoboolean functions of n = 6 and n = 7 variables,
adopting in both cases index r = 4. This is the smallest integer value, yielding maximum
nonlinearity, such that the resulting functions are not bent for n = 6. Table 1 reports the
profiles and the multiplicities of the spectrum values for the corresponding plateaued
boolean functions. We limited our experimentation to these two problem instances in
order to compare our GA with Simulated Annealing. As a matter of fact, the basic
SA algorithm described in [3] was able to find only 5 plateaued functions with profile
(7,2,4,56) out of 500 optimization runs, and a change of basis procedure [2] had to be
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Table 1. Cryptographic profiles and spectral multiplicities for plateaued functions of n = 6 and
n = 7 variables

(n,m,d,nl) #0res #0add #−2r #+2r

(6,2,3,24) 22 26 6 10
(7,2,4,56) 29 35 28 36

applied in order to convert some generated sub-optimal solutions into actual boolean
functions. Further, for n = 6 only bent functions were considered, but not generic
plateaued functions. On the other hand, for higher number of variables the basic version
of SA always failed to generate boolean functions, hence the authors of [3] restricted
their search space to the family of rotation symmetric boolean functions, which we did
not consider in this work.

For each value of n and selection operator considered, we performed R = 500
independent runs of our GA, using a population of N = 30 chromosomes evolved
for G = 500000 generations. Thus, each GA run consisted of F = 1.5 · 107 fitness
evaluations. The crossover and mutation probabilities were respectively set to pχ = 0.95
and pµ = 0.05, while in the case where tournament selection was used we adopted a
tournament size of k = 3.

Concerning the comparison with Simulated Annealing, we implemented the SA
algorithm described in [3] and we tested it for n = 6 and n = 7 by setting the number of
inner loops MaxIL and moves within an inner loop MIL respectively to MaxIL = 5000
and MIL = 3000, thus yielding the same number F = 1.5 · 107 of fitness evaluations
performed by our GA. Since the authors of [3] did not mention the initial temperature
which they adopted for their experiments, we tested the values T1 = 100 and T2 = 1000
with cooling parameter respectively set to α1 = 0.95 and α2 = 0.99. As for our GA, for
each combination of parameters (n,T0,α) we performed 500 runs of the SA algorithm.

We performed all our experiments on a 64-bit Linux machine with a Core i5 archi-
tecture and a CPU running at 2.8 GHz. For n = 6, a set of 500 runs of GA or SA took
approximately 11.5 hours to complete, while for n = 7 it took about 28.3 hours and 25
hours for GA and SA, respectively. Table 2 reports the results of the experiments. By
GA(RWS) and GA(DT S) we denote our GA respectively with roulette wheel selection
and deterministic tournament selection, while SA(Ti,αi) stands for the SA algorithm run
with initial temperature Ti and cooling parameter αi, for i ∈ {1,2}. For each parameters
combination, Table 2 reports the average (avgo), minimum (mino), maximum (maxo)
and standard deviation (stdo) values of the objective function ob j(·) computed on the
best solutions found, along with the numbers of optimal solutions generated (#opt) and
the average time per run in seconds (avgt ).

For n = 6 it can be observed that both versions of our GA outperformed SA with
respect to the ratio of generated (6,2,3,24) functions versus the total number of opti-
mization runs. In particular, the adoption of tournament selection produced better results
than roulette wheel selection, with 93 plateaued functions achieved using the former
operator against the 60 obtained using the latter one. On the other hand, changing the
initial temperature and the cooling parameter α did not seem to influence the SA per-
formances, with only 11 plateaued functions generated by SA(T1,α1) and 10 functions
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Table 2. Statistics of the best solutions found by our GA and SA over R = 500 runs

n Stat GA(RWS) GA(DT S) SA(T1,α1) SA(T2,α2)

6

avgo 14.08 13.02 19.01 19.03
mino 0 0 0 0
maxo 16 16 28 28
stdo 5.21 6.23 4.89 4.81
#opt 60 93 11 10
avgt 83.3 79.2 79.1 79.4

7

avgo 53.44 52.6 45.09 44.85
mino 47 44 32 27
maxo 58 59 63 57
stdo 2.40 2.77 4.39 4.18
#opt 0 0 0 0
avgt 204.2 204.5 180.3 180.2

generated by SA(T2,α2). Notice also that the computational overhead introduced by our
GA is not very high: for example, using roulette wheel selection the average time per
run of our GA was 83.3 seconds, while with tournament selection a single run took on
average 79.2 seconds, which is in the same range as that employed by SA.

In the case of n = 7 variables, no version of our GA nor SA was able to generate
a plateaued boolean function of profile (7,2,4,56). However, it can be seen that SA
outperformed both versions of our GA. In particular, the GA obtained slightly better
results using tournament selection than roulette wheel selection, but SA scored lower
average objective function values than GA. The same difference can also be observed by
comparing the minimum objective function values.

5 Conclusions and Directions for Further Research

In this paper, we proposed a genetic algorithm to evolve plateaued boolean functions
which satisfy good cryptographic properties. Instead of searching the space of boolean
functions (as it is usually done in the existing literature), we adopted the spectral inver-
sion approach set forth by Clark, Jacob, Maitra and Stanica in [3], which represents a
candidate solution as a Walsh spectrum already satisfying the desired cryptographic prop-
erties. The search space thus becomes the set of all plateaued pseudoboolean functions,
and the objective function to be minimized is the distance of the candidate solution from
the nearest boolean function. The representation adopted for the chromosomes of our GA
consists in a permutation of a restricted Walsh spectrum, in which the positions related to
m-resiliency are not considered, being constantly set to zero. Since the coefficients in the
spectrum of a plateaued boolean function can take only three values, the chromosome
actually encodes a permutation on a multiset. The decoding process first maps the loci
of the chromosome to the positions in the Walsh spectrum having Hamming weight
higher than m, and then the inverse Walsh transform is applied to obtain the associated
pseudoboolean function. We designed a specialized crossover operator which employs
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counters in order to preserve the multiplicities of the three values characterizing the
spectrum of plateaued functions, while for mutation we adopted a simple swap-based
operator which exchanges only those positions in the chromosome corresponding to
different spectral values.

The performed experiments show that in the case of n = 6 variables our GA achieved
better results than the Simulated Annealing algorithm proposed in [3] with respect to
the ratio of generated (6,2,3,24) boolean functions per number of optimization runs. In
particular, our GA performed better when adopting deterministic tournament selection
instead of basic roulette wheel selection, while modifying the initial temperature and the
cooling parameter did not significantly change the SA performances. On the other hand,
for n = 7 no heuristic technique was able to generate a (7,2,4,56) plateaued boolean
function, but SA scored on average lower objective function values than GA.

Extending the comparison to other direct heuristic methods (that is, heuristics which
directly explore the space of boolean functions) is not a straightforward task. The reason
for this difficulty is twofold. First, there are no obvious ways to compare the sub-optimal
solutions found, due to the different representations adopted. In particular, in our GA
a sub-optimal solution is a pseudoboolean function which already satisfies the desired
cryptographic properties, while in direct methods it is a boolean function which do not
satisfy these criteria. Second, to our knowledge only two direct heuristic methods have
been reported in the literature to generate (6,2,3,24) plateaued functions [2,?], but no
information on the ratio of optimal solutions found per number of optimization runs are
available. Nonetheless, these methods were also able to locate (7,2,4,56) functions.

The results presented in this paper, together with the above considerations on direct
heuristic methods, suggest that our GA does not scale well for n≥ 7, the likely reason
being that it gets stuck in local optima. A possible way to overcome this drawback
is to combine the global search capabilities of GA with a local search technique. A
straightforward method to investigate this idea could be the integration of our GA inside
the SA algorithm of [3], using for example the Genetic Annealing framework [12]. The
obvious downside to this solution, however, would be the significantly higher amount of
computational resources required to carry out a single optimization run.

An alternative solution could be to add a Hill Climbing optimization step in our GA,
similarly to the strategy adopted by Millan, Clark and Dawson in [7]. In the context
of our GA, a Hill Climbing optimization step would require characterising the pairs
of Walsh coefficients which, if swapped, would decrease the deviation of the resulting
pseudoboolean function. Further, one could also consider substituting the classic GA
by more refined evolutionary heuristics, such as the Bacterial Evolutionary Algorithm
(BEA) [?] which could allow achieving better convergence.

An additional direction for further research would be to consider different crypto-
graphic properties other than nonlinearity, algebraic degree and resiliency. The propaga-
tion criterion PC(l), for instance, can be characterized by the zeros of the autocorrelation
function, which is related to the Walsh transform by the Wiener-Khintchine theorem [1].
Heuristic search of boolean functions satisfying only PC(l) could be done using the same
basic spectral inversion method of [3]: in this case, it would suffice to evolve through our
GA or SA autocorrelation spectra instead of Walsh spectra. However, finding boolean
functions satisfying both Walsh-related and autocorrelation-related properties by spectral
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inversion would require modifying the representation of the candidate solutions, since a
valid swap on the Walsh spectrum could induce an invalid swap on the autocorrelation
function (and vice versa), due to the aforementioned Wiener-Khintchine theorem.

Appendix: Source Code and Experiments Data

The Java source code for the GA described in this paper and the SA algorithm proposed
in [3] can be found at http://openit.disco.unimib.it/~mariot/ga_platbf, to-
gether with the data of the experiments discussed in Section 4.
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