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Abstract

In this paper, we undertake an investigation on the effect of balanced
and unbalanced crossover operators against the problem of finding non-
linear balanced Boolean functions: we consider three different balanced
crossover operators and compare their performances with classic one-point
crossover. The statistical comparison shows that the use of balanced
crossover operators gives GA a definite advantage over one-point crossover.
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1 Introduction

Crossover operators play a crucial role in Genetic Algorithms (GA). In the case of
binary strings, there exist several classes of combinatorial optimization problems
whose feasible solutions must contain a specified number of ones, which are
difficult to handle for classical crossover operators. A way to address this problem
is to design recombination operators that preserve the Hamming weight of the
bitstrings: the balanced crossover operators. In the literature, the motivation
supporting the use of such operators is the reduction of the search space [5].
However, it is not clear whether balanced crossover operators actually bring any
advantage to GA working with fixed Hamming weight bitstrings. Some works in
the literature [8, 9] performed a comparison with non-parametric test on classic
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crossover operators, but did not consider balanced operators. The aim of this
paper is to begin closing this gap: we consider three balanced crossover operators
in our investigation for finding non-linear balanced Boolean functions.

2 Balanced Crossover Operators

Previous work on the design of balanced crossover operators includes [7, 1, 6].
In the following, F2 is {0, 1}, a bitstring of length n ∈ N is a binary vector x of
n components, and we say that x is balanced when it is composed of an equal
number of zeros and ones. We now describe the crossover operators adopted in
our experiments. Each of these operators is based on a different encoding for
the chromosome of a balanced solution.

Counter-Based Crossover. This crossover uses the binary vector coding.
With it, the simplest way to design a balanced operator is to randomly select bit-
by-bit the allele from the first or the second parent to be copied in the offspring
(as in uniform crossover), and use counters to keep track of the multiplicities of
ones and zero in the child. When one of the two counters reaches the prescribed
threshold, the child is filled the complementary value. Millan et al. [7] were the
first who proposed this operator to evolve nonlinear balanced Boolean functions.
Later works [3, 4, 5] adapted this operator to similar optimization problems.

Map of Ones Crossover. The map of ones of x is the vector q =
(q1, · · · , qk) where for all i ∈ {1, · · · , k} it results that qi has value one. One
can notice that the only constraint in the map of ones is that there cannot be
duplicate positions in the vector. Thus, given two bitstrings represented by their
maps of ones, our crossover operator is aware of the common positions between
them, in order to avoid duplications.

Zero Lengths Crossover. Given the bitstring x, the zero lengths coding of
x is the vector r = (r1, · · · , rn−k+1) which lists the distances between consecutive
ones in x. The zero lengths vector of a bitstring of length n and Hamming
weight k is valid if and only if the sum of the components in the vector equals k.
Our crossover operator based on the zero lengths representation thus controls
the sum of the run lengths of zeros in the offspring.

3 Experiments

Nonlinear Balanced Boolean Functions A Boolean function of n ∈ N
variables is a map f : Fn

2 → F2. The truth table is basically a binary vector
of length 2n that specifies for each input vector x ∈ Fn

2 the output value of
f(x). A Boolean function is called balanced if its truth table is composed of an
equal number of ones and zeros. The nonlinearity of Nl a Boolean function
f : Fn

2 → F2 is defined as the minimum Hamming distance of its truth table from
the set of truth tables of all linear functions. We refer the reader to [7] about
the optimization problem of finding highly nonlinear Boolean functions, and its
relevance to cryptography. Given the truth table bitstring of a Boolean function
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Figure 1: The results for the balanced Boolean functions problem for 6 (up), 7
(center), and 8 (bottom) variables.
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f : Fn
2 → F2 of n variables, in our experiments the fitness of f is computed

with the following function: fit1(f) = Nl(f)− UNB(f) where UNB(f) is the
unbalancedness penalty factor which punishes the deviation of f from being a
balanced function. The objective of our GA, in particular, is to maximize fit1(f).

Experimental Settings We use a steady state GA, where a single pair of
parents is drawn from the current population at each iteration. For selection,
we employed a deterministic tournament operator where the best two out of t
randomly sampled individuals are selected for crossover. Our GA generates a
single child for each selected pair of parents. The mutation operator depends on
the type of crossover: when one-point crossover is used, a classic bit-flip mutation
operator is applied on the generated child. With balanced crossover operators
a simple swap-based mutation operator is used. For one-point crossover, the
population is initialized at random, while for balanced crossover operators all
the individuals in the initial population are balanced. The GA uses a worse-
replacement elitist strategy: if the child has a better fitness value than any of its
two parents, then the worse individual in the population is replaced by it. For
each problem instance, we ran our GA with each of the four crossover operators
for R = 50 experimental runs. Hence, we performed a total of 3 · 4 · 50 = 600
experiments. Each of them used a population size of P = 50 individuals,
tournament size t = 3 and mutation probability pm = 0.2, and stopped after
fit = 500000 fitness evaluations. To compare the results we employed the
Mann-Whitney-Wilcoxon test [2] with significance value α set to 0.01.

Results The results of the experiments are summarized in Figure 1. For 6
variables, the map of ones crossover seems to produce the best results, with
all fitness values obtained being equal to 26 (recall that this is a maximization
problem, so higher values are better). This is evident also in the statistical
tests, with a significant difference between the distribution of the “map of
ones” results and all the other methods, with p-values of 1.4 · 10−5, 0.0018, and
9.5 · 10−9 when compared to the one point, counter-based, and zero-lengths
crossover, respectively. Similar results hold for 7 variables, where the map of
ones and the counter-based operators perform better than one-point crossover
(p-values of 2.6 · 10−6 and 2.3 · 10−8, respectively). The map of ones crossover
also performs better than the zero-lengths crossover (p-value of 0.0002), but
no other comparison of the results gives a statistically significant difference.
The results are different in the case of 8 variables, with one-point crossover
resulting in a statistically significant difference with all other operators (in all
cases the p-values are less than 10−12). Therefore, it appears as if the map of
ones crossover is, on this problem, the best performer, but its advantage when
the problem size increases is not preserved with respect to the others balanced
crossovers. When the problem size increases, the inability for one point crossover
to preserve balancedness is a serious drawback, making it the worst performer
for 8 variables.
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