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Abstract

We investigate the design of Orthogonal Latin Squares (OLS) by
means of Genetic Algorithms (GA) and Genetic Programming (GP).
Since we focus on Latin squares generated by Cellular Automata (CA),
the problem can be reduced to the search of pairs of Boolean functions
that give rise to OLS when used as CA local rules. As it is already known
how to design CA-based OLS with linear Boolean functions, we adopt
the evolutionary approach to address the nonlinear case, experimenting
with different encodings for the candidate solutions. In particular, for
GA we consider single bitstring, double bitstring and quaternary string
encodings, while for GP we adopt a double tree representation. We
test the two metaheuristics on the spaces of local rules pairs with n = 7
and n = 8 variables, using two fitness functions. The results show that
GP is always able to generate OLS, even if the optimal solutions found
with the first fitness function are mostly linear. On the other hand, GA
achieves a remarkably lower success rate than GP in evolving OLS, but
the corresponding Boolean functions are always nonlinear.
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1 Introduction

Orthogonal Latin Squares (OLS) are one the most studied research topics in
the field of combinatorial design theory, and have also several applications
in cryptography, coding theory and statistics. The description of OLS is
deceptively simple: namely, a Latin square of order N is a square matrix of
size N ×N where each row and each column is a permutation of the first N
positive integers, while two Latin squares are orthogonal if by superimposing
them one gets all the ordered pairs of the first N positive integers. Yet,
this simple definition contrasts with the complexity of constructing OLS for
any given order, or even to count them. As a matter of fact there exists a
rich body of literature concerning algebraic constructions of OLS, based on
Abelian groups, finite fields and other types of combinatorial designs [5, 8, 20].

As far as the authors are aware, there have been no attempts in the
literature to apply evolutionary algorithms (EA) for the design of OLS. The
closest example one can find is a work by Safadi et al. [18] where genetic
algorithms were used to evolve orthogonal arrays, a kind of combinatorial
designs related to OLS. Ashlock [1] also used genetic algorithms to generate
other kinds of combinatorial designs, but not OLS. The reason for this gap
in the literature could lie in the difficulty of designing a suitable encoding
for the feasible solutions handled by EA. Indeed, it is not simple to optimize
the orthogonality of two Latin squares while simultaneously preserving their
row-column permutation property using stochastic operators like crossover
and mutation.

The goal of this paper is to investigate the use of Genetic Algorithms
(GA) and Genetic Programming (GP) to evolve orthogonal Latin squares
engendered by Cellular Automata (CA). As shown in [10], every CA with a
bipermutive local rule induces a Latin square. Hence, we cast our optimization
problem as the search of suitable pairs of bipermutive Boolean functions that
generate OLS when used as local rules of CA. Moreover, since the authors
of [10] already settled the construction problem when the CA rules are
linear, we consider the general case of OLS based on nonlinear bipermutive
rules. The motivation for this approach is twofold. The first is to search for
regularities and patterns in the solutions found by GA and GP in order to
inform the theoretical investigation of OLS generated by nonlinear CA. The
second is of cryptographic interest, since orthogonal Latin squares arising
from nonlinear constructions can be used to define cheater immune secret
sharing schemes [21].

To tackle the optimization problem of evolving CA-based OLS, we leverage
on the fact that bipermutive rules of n variables are defined by generating
functions of n− 2 variables. Hence, the genotype of each individual in the
population represents a pair of generating functions, thus ensuring that the
corresponding phenotype of the candidate solution is a pair of bipermutive CA
producing two Latin squares. Consequently, we can focus the optimization
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effort of GA and GP on the orthogonality and nonlinearity properties of the
solutions, without checking the row-column permutation constraint.

In the case of GA, we adopt three different encodings for the chromosomes
of the candidate solutions. The first one concatenates the truth tables of
the two generating functions in a single bitstring, upon which the standard
crossover and mutation operators are applied. In the second encoding we
consider the two generating functions separately, and apply the genetic
operators independently on both of them. Finally, we exploit two facts
that we empirically observed in our exhaustive search experiments. First,
bipermutive rules of CA producing OLS must be pairwise balanced, meaning
that each of the four pairs of bits must occur an equal number of times in
the superposition of their truth tables. Second, if two generating functions
are pairwise balanced then the corresponding bipermutive rules are pairwise
balanced as well. We use these observations for the third encoding, where the
genotype is represented as a balanced quaternary string. For this reason, we
also design specific crossover and mutation operators for GA that preserve
the balancedness property in quaternary strings. On the other hand, with
GP we only use an encoding analogous to the GA double bitstring, where
the generating functions are represented by two independent Boolean trees.

We test our GA and GP on the smallest problem instances that are not
amenable to exhaustive search, namely the spaces of generating functions
pairs of 5 and 6 variables. These instances correspond, respectively, to the
sets of bipermutive CA pairs with local rules of n = 7 and n = 8 variables,
or equivalently to the sets of CA-based Latin squares pairs of size 64× 64
and 128× 128. In the experiments, we adopt two fitness functions, both of
which are minimized: the first only counts the number of repeated pairs in
the superposition of two Latin squares, while the second also adds a penalty
if either or both generating functions are linear.

The results show that GP outperforms GA under all combinations of
experiments. As a matter of fact, we observe that GP always converges to
an optimal solution, but most of the solutions found under the first fitness
function are linear. On the other hand, GA manages to evolve OLS with
a much lower success rate, but in this case the solutions found are always
nonlinear.

The rest of this paper is organized as follows. Section 2 presents the
basic definitions pertaining to Latin squares, Boolean functions and cel-
lular automata, and discusses the construction of Latin squares through
bipermutive CA and their exhaustive enumeration for local rules with up
to n = 6 variables. Section 3 presents the four encodings for the genotype
of the candidate solutions used in GA and GP, and describes the ad-hoc
genetic operators for balanced quaternary strings. Section 4 describes the
experimental setting adopted and discusses the obtained results. Section 5
concludes the paper and points out possible directions for future research.
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Figure 1: Orthogonal Latin squares of order N = 4, and their superposition.

2 Preliminaries

In this section we cover the basic definitions about Latin squares, Boo-
lean functions and cellular automata used in the paper. We also discuss
the construction of Latin squares through bipermutive CA, and perform
an exhaustive search of orthogonal Latin squares generated by CA with
bipermutive local rules of at most n = 6 variables.

2.1 Basic Definitions

We start by defining the basic objects of our interest, namely orthogonal
Latin squares, referring the reader to [8] for a complete coverage of the
subject. In what follows, let [N ] denote the set {1, · · · , N} for all N ∈ N.

Definition 1 Let N ∈ N. A Latin square of order N is a N ×N matrix L
with entries from [N ] such that every row and every column are permutations
of [N ]. Two Latin squares L1 and L2 of order N are called orthogonal if
(L1(i1, j1), L2(i1, j1)) 6= (L1(i2, j2), L2(i2, j2)) for all (i1, j1), (i2, j2) ∈ [N ]×
[N ], such that (i1, j1) 6= (i2, j2).

In other words, two Latin squares are orthogonal if by superposing them one
obtains all the pairs of the Cartesian product [N ]× [N ]. Figure 1 depicts an
example of OLS of order N = 4.

In this work, we consider cellular automata (CA) as a particular kind of
vectorial Boolean functions. We thus introduce the basic concepts related to
the theory of cryptographic Boolean functions, about which the reader can
find further information in Carlet [2, 3].

A Boolean function of n variables is a mapping f : Fn
2 → F2, where

F2 = {0, 1} is the finite field with two elements. Once an ordering of
the input variables has been fixed, the basic representation of a Boolean
function f : Fn

2 → F2 is its truth table, which is the 2n-bit vector Ω(f) that
specifies the output value of f for each of the possible 2n values of the input
variables x1, · · · , xn. As a consequence, the size of the space of Boolean
functions of n variables is 22n . An affine Boolean function is defined as
f(x1, · · · , xn) = a⊕ a1 · x1⊕ · · · ⊕ an · xn, where a, a1, · · · , an ∈ F2 and with
⊕ and · respectively denoting the XOR and AND operations. If a = 0, then
the function is called linear.
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The nonlinearity of a Boolean function f : Fn
2 → F2 is defined as the

minimum Hamming distance of its truth table Ω(f) from the set of all affine
functions of n variables. This property can be expressed using the Walsh
transform of f , defined as

Wf (ω) =
∑
x∈Fn

2

(−1)f(x)⊕ω·x (1)

for all ω ∈ Fn
2 , where ω · x = ω1x1 ⊕ · · ·ωnxn is the scalar product between

ω and x. Then, the nonlinearity of f is defined as

Nl(f) = 2n−1 − 1

2
max
ω∈Fn

2

{|Wf (ω)|} . (2)

In what follows, we will focus on bipermutive Boolean functions. Formally,
function f : Fn

2 → F2 is called bipermutive if there exists a generating function
ϕ : Fn−2

2 → F2 of n− 2 variables such that

f(x1, x2, · · · , xn−1, xn) = x1 ⊕ ϕ(x2, · · · , xn−1)⊕ xn (3)

for all x = (x1, x2, · · · , xn−1, xn) ∈ Fn
2 . In [9] it has been shown that the

nonlinearity of a bipermutive Boolean function is four times the nonlinearity
of its generating function, i.e. Nl(f) = 4 ·Nl(ϕ).

Vectorial Boolean functions generalize the concept of Boolean functions
to multiple outputs. Given n,m ∈ N, a vectorial Boolean function (or (n,m)-
function) is a mapping F : Fn

2 → Fm
2 . For all i ∈ [m], the i-th coordinate

function of F is the Boolean function fi : Fn
2 → F2 that specifies the i-th

output bit of F , i.e. fi(x) = F (x)i for all x ∈ Fn
2 .

Using the notions above on Boolean functions, we can now give a formal
definition of cellular automaton.

Definition 2 Let m,n ∈ N with m ≥ n, and let f : Fn
2 → F2 be a Boolean

function. A cellular automaton (CA) of length m with local rule f is a
vectorial Boolean function F : Fm

2 → Fm−n+1
2 defined as

F (x1, · · · , xm) = (f(x1, · · · , xn), · · · , f(xm−n+1, · · · , xm)) (4)

for all x = (x1, · · · , xm) ∈ Fm
2 .

Hence, a CA can be viewed as a vectorial Boolean function where each coor-
dinate function fi is the local rule f applied to the neighborhood of size n of
the input variable xi. Using a description more common in the CA literature,
one can consider the first m− n+ 1 input variables x1, x2, · · · , xm−n+1 as
cells which simultaneously update their binary states by evaluating rule f
on the neighborhood formed by themselves and the n− 1 cells to their right.
Since we do not update the rightmost n− 1 input cells, we do not have to
put any boundary condition on the CA, as it is done in most of the CA
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literature where the number of input cells equals the number of output cells
(see e.g. [7]).

In the remainder of this paper, we will consider mainly bipermutive CA,
i.e. CA whose local rules are bipermutive Boolean functions.

2.2 CA-based Orthogonal Latin Squares

Consider now a CA F of length m = 2(n− 1) equipped with a local rule f
of n variables. Then, F maps binary vectors of length 2(n − 1) to binary
vectors of length m− n+ 1 = n− 1. We can use this particular CA to build
a corresponding matrix LF as follows:

• For all x ∈ Fm
2 , the decimal encoding of the leftmost n− 1 bits of x is

used to index the row i of LF .

• Analogously, the decimal encoding of the rightmost n− 1 bits of x is
used to index the column j of LF .

• Finally, the decimal encoding of the output F (x) is the entry of LF at
coordinates (i, j).

In this way, one obtains a square matrix of size 2n−1 × 2n−1 whose entries
range in the set {1, · · · , 2n−1}.

In [10], the following result has been proved:

Lemma 1 Let F : F2(n−1)
2 → Fn−1

2 be a CA defined by a bipermutive local
rule f : Fn

2 → F2. Then, the square matrix LF induced by F is a Latin square
of order N = 2n−1.

As an example, Figure 2 reports the Latin square LF induced by the CA
F : F4

2 → F2
2 where the bipermutive local rule is defined as f(x1, x2, x3) =

x1⊕x2⊕x3. The decimal representation of each 2-bit string is summed with 1
so that the result ranges in the set {1, · · · , 2n−1} instead of {0, · · · , 2n−1−1}.
Using least significant bit notation, we thus have 00 → 1, 10 → 2, 01 → 3
and 11→ 4.

A natural problem to investigate is determining when two bipermutive
Boolean functions give rise to orthogonal Latin squares when used as local
rules of two CA, using the construction described above. The authors of [10]
settled the question for linear bipermutive functions, i.e. bipermutive rules
defined by linear generating functions. In particular, let f, g : Fn

2 → F2 be
bipermutive rules defined by linear generating functions ϕ, γ : Fn−2

2 → F2:

ϕ(x2, · · · , xn−1) = a2x2 ⊕ · · · ⊕ an−1xn−1 (5)

γ(x2, · · · , xn−1) = b2x2 ⊕ · · · ⊕ bn−1xn−1 , (6)
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Figure 2: Example of Latin square of order N = 4 induced by the CA
F : F4

2 → F2
2 with bipermutive rule f(x1, x2, x3) = x1 ⊕ x2 ⊕ x3.

where ai, bi ∈ F2 for i ∈ {2, · · · , n − 1}. In this case, we can associate to
f and g two polynomials pf (X), pg(X) ∈ F2[X] of degree n − 1 using the
coefficients of their generating functions as follows:

pf (X) = 1 + a2X ⊕ · · · ⊕ an−1X
n−2 +Xn−1 (7)

pg(X) = 1 + b2X ⊕ · · · ⊕ bn−1X
n−2 +Xn−1 . (8)

Then, in [10] it is shown that the Latin squares generated by the bipermutive
CA with local rules f and g are orthogonal if and only if their associated
polynomials pf (X) and pg(X) are relatively prime.

2.3 Problem Statement and Search Space

Since the problem of designing orthogonal Latin squares has already been
solved in [10] for linear bipermutive CA, a natural question that arises is
whether there exist also pairs of nonlinear bipermutive CA generating OLS,
which we formalize as the following combinatorial optimization problem:

Problem 1 Let n ∈ N. Maximize the nonlinearity Nl(f) and Nl(g) of two
bipermutive Boolean functions f, g : Fn

2 → F2 such that the Latin squares LF

and LG of order 2n−1 generated by the CA F,G : F2(n−1)
2 → Fn−1

2 with local
rules respectively f and g are orthogonal.

We remark that Problem 1 is relevant both in combinatorial design theory and
in cryptography. In particular, most of the constructions known in literature
of combinatorial designs leverage on algebraic methods, based for instance
on group theory or finite fields [8]. Hence, finding examples of OLS deriving
from other methods like nonlinear CA could lead to develop new algebraic
constructions. On the other hand, from a cryptographic perspective OLS
can be used to define threshold secret sharing schemes (SSS) [19]. However,
if one employs OLS coming from linear constructions as in the case of linear
bipermutive CA, then the resulting SSS is vulnerable to the Tompa-Woll
attack, where the players can cheat by submitting fake shares [21]. Therefore,
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the search of OLS generated with nonlinear methods is also motivated by
the design of cheater-immune SSS.

In the rest of this section, we investigate the dimension of the search
space containing OLS generated by bipermutive CA with respect to the size
of the local rule. Next, we establish up to which value of n the problem is
amenable to exhaustive search, and report the numbers of linear/nonlinear
pairs of bipermutive CA generating OLS up to that size. Finally, we remark
a balancedness property on the pairs of generating functions that produce
OLS, which we will exploit in the next section to define an encoding for GA.

Let Bn be the set of all Boolean functions of n variables. As mentioned
in Section 2.1, the size of Bn is 22n . However, we are interested only in
pairs of bipermutive Boolean functions, which are completely defined by
the respective generating functions lacking the leftmost and rightmost input
variables. Hence, for all n ≥ 2 we can reduce the search space to the set of
generating functions of n−2 variables, defined as Gn = {(ϕ, γ) ∈ Bn−2×Bn−2}
for n ≥ 2. It follows that the size of Gn is 22n−2 · 22n−2

= 22n−1
, meaning that

Gn is isomorphic to Bn−1, i.e. the set of Boolean functions of n− 1 variables.
As a consequence, one can exhaustively search all OLS generated by pairs of
bipermutive CA with local rules of up to n = 6 variables, since in that case
the resulting search space is composed of 226−1

= 4294967296 possible pairs.
On the other hand, for n > 6 the corresponding search space is too huge to
be explored in an exhaustive way, motivating the use of heuristic techniques
such as GA and GP.

Table 1 reports the distribution of linear and nonlinear pairs of OLS
generated by bipermutive CA with local rules of up to n = 6 variables that
we obtained by exhaustively enumerating the corresponding search spaces.
For each value of n, the corresponding size of the Latin squares is reported,
along with the number of linear and nonlinear pairs of bipermutive functions
generating OLS. Notice that we did not include the trivial case n = 2, since
there exists only one linear bipermutive function of 2 variables. One can
see from Table 1 that the number of nonlinear pairs quickly grows as n
increases, overcoming the number of linear pairs. This can be explained
by considering that the number of linear functions of n variables is just 2n,
which is a negligible fraction of Bn.

Table 1: Distribution of bipermutive CA-based Orthogonal Latin Squares
up to n = 6 variables.

n LS size #total #linear #nonlinear

3 4× 4 8 8 0
4 8× 8 72 40 32
5 16× 16 1704 336 1368
6 32× 32 533480 680 532800
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From the exhaustive enumeration experiments, we empirically observed
the following property: by superimposing the truth tables of two bipermutive
rules which give rise to orthogonal Latin squares, the four pairs (0, 0), (1, 0),
(0, 1) and (1, 1) occur an equal number of times. We call this particular
property pairwise balancedness. Formally, this can be stated as follows:
let f, g : Fn

2 → F2 be two bipermutive rules of n variables. Moreover, let
(f, g) : Fn

2 → F2
2 be the vectorial Boolean function with n inputs and 2 outputs

defined as (f, g)(x) = (f(x), g(x)) for all x ∈ Fn
2 . Then, rules f and g are

called pairwise balanced if for all (y1, y2) ∈ F2
2 it holds |(f, g)−1(y1, y2)| =

2n−2, that is, the number of preimages mapping to (y1, y2) under (ϕ, γ) is
2n−2. As an example, consider the case where the two bipermutive functions
f, g : F3

2 → F2 are respectively defined by the following truth tables:

Ω(f) = 01011010 , (9)

Ω(f) = 01101001 . (10)

It can be seen that each of the four pairs (0, 0), (1, 0) (0, 1) and (1, 1) occurs
exactly 23−2 = 2 times as a column in the superposition of Equations (9)
and (10). Hence, the bipermutive rules f and g are pairwise balanced.

A second property which we discovered from our experimental observation
is that if two generating functions ϕ, γ : Fn−2

2 → F2 are pairwise balanced,
then the corresponding bipermutive rules f, g : Fn

2 → F2 are pairwise balanced
as well, but the converse does not hold. In other words, pairwise balancedness
of the generating functions is a sufficient but not necessary condition for two
bipermutive rules to be pairwise balanced.

More in general, from our exhaustive search experiments it seems that
pairwise balancedness is a necessary but not sufficient condition for two
bipermutive rules to induce a pair of OLS. That is, not all pairwise balanced
generating functions correspond to pairs of bipermutive CA that generate
OLS. Nonetheless, these properties can be employed to further reduce the
search space of feasible solutions. In particular, we will use these facts in
Section 3.4 to devise an encoding for the chromosomes of GA based on
balanced quaternary strings.

3 GA And GP Details

It has been remarked in Section 2.3 that Problem 1 can be reduced to
the search of pairs of nonlinear generating functions ϕ, γ that induce OLS.
In fact, by Lemma 1 we already know that the bipermutive functions f, g
corresponding to ϕ, γ give rise to a pair of Latin squares when used as local
rules of two CA. Therefore, by representing the genotype of the candidate
solutions as pairs of generating functions, we can focus the optimization
efforts of GA and GP only on the nonlinearity and orthogonality properties,

9

http://dx.doi.org/10.1145/3071178.3071284


c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3071178.3071284

without having to consider the row-column permutation constraints of the
squares generated by the CA.

In this section, we first describe the two fitness functions that we used
to evaluate the phenotype corresponding to a pair of generating functions
(ϕ, γ), i.e. the Latin squares generated by the CA F,G with bipermutive
local rules f, g defined by (ϕ, γ). Then, we proceed by describing the GA
and GP encodings that we adopted in our experiments.

3.1 Fitness Functions

Since we are interested in obtaining pairs of OLS, the fitness functions used by
GA and GP must in the first place measure the deviation of two Latin squares
generated by a pair of generating functions from being orthogonal. The most
natural approach is to count the number of repeated ordered pairs in the
superposition of two Latin squares. The optimization task is thus to minimize
such quantity, since having zero repeated pairs in the superposition means
that each pair of symbols occurs exactly once (i.e. the two Latin squares
are orthogonal). As the exhaustive search results presented in Section 2.3
showed that most of the OLS are generated by pairs of nonlinear CA for
n > 4, we decided not to check the nonlinearity property in our first fitness
function, which is formally defined below.

Let ϕ, γ : Fn−2
2 → F2 be a pair of generating functions of n− 2 variables,

and let f, g : Fn
2 → F2 be the corresponding bipermutive functions of n

variables. Denote by LF and LG the Latin squares of order [N ] = 2n−1

induced by the CA F,G : F2(n−1)
2 → Fn−1

2 with local rules f and g. Let
SupLF ,LG

: [N ]× [N ]→ [N ]× [N ] be the superposition function of LF and
LG defined as

SupLF ,LG
(i, j) = (LF (i, j), LG(i, j)) (11)

for all (i, j) ∈ [N ]× [N ]. Then, the value of the fitness function fit1 evaluated
on the individual (ϕ, γ) is given by:

fit1(ϕ, γ) = |rep(LF , LG)| , (12)

where rep(LF , LG) is the set defined as:

rep(LF , LG) =
{

(x, y) ∈ [N ]× [N ] :
∣∣∣Sup−1

LF ,LG
(x, y)

∣∣∣ > 1
}

. (13)

Remark that the range of fit1 is {0, · · · , 22(n−1)}, since the two Latin squares
LF and LG have order 2n−1. In particular, an optimal solution has fitness
value 0, hence the optimization objective is to minimize fit1.

In addition to fit1, we tested a second fitness function that also takes
into account the nonlinearity of the generating functions, to ensure that
an optimal solution corresponds to a pair of OLS which is generated by
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nonlinear bipermutive CA. In particular, given ϕ, γ : Fn−2
2 → F2 the value of

the second fitness function fit2 computed over (ϕ, γ) is:

fit2(ϕ, γ) = fit1(ϕ, γ) +NlPen(ϕ, γ) ·N2 (14)

where N = 2n−1 and NlPen(·, ·) is a penalty factor defined as follows:

NlPen(ϕ, γ) =


0 , if Nl(ϕ) > 0 AND Nl(γ) > 0

1 , if Nl(ϕ) = 0 XOR Nl(γ) = 0

2 , if Nl(ϕ) = 0 AND Nl(γ) = 0

(15)

In other words, the penalty factor is 0 if both generating functions are
nonlinear, 1 if only one of them is linear, and 2 if both functions are linear.
Considering what we said about the range of fit1, from (14) and (15) it follows
that the range of fit2 is {0, · · · , 3 · 22(n−1)}. As for fit1, the optimization
objective in this case is to minimize fit2.

3.2 Single Bitstring Encoding

The first representation for the genotype of GA solutions encodes a pair of
generating functions as a single bitstring. Given two generating functions
ϕ, γ : Fn−2

2 → F2 respectively with truth tables Ω(f),Ω(g) ∈ F2n−2

2 , the chro-
mosome which represents the pair (ϕ, γ) is defined as c(ϕ, γ) = Ω(f)||Ω(g),
where || denotes the concatenation of two strings. Hence, the chromosome is
a bitstring of length 2n−1 whose first half corresponds to the truth table of
ϕ, while the second half is the truth table of γ.

Under this encoding, we apply the standard variation operators used in
GA, namely one-point crossover and bit-flip mutation. Remark that one-
point crossover always produces offspring whose left or right half is inherited
from one of the two parents, except when the crossover point happens to be
exactly in the middle of the two parents chromosomes (in which case the first
child inherits the left half from the first parent and the second half from the
second parent, and vice versa for the second child). From the point of view
of the phenotype, this means that both children inherit one of the four Latin
squares from their parents, or two if the crossover point is in the middle of
the parents.

3.3 Double Bitstring and Double Tree Encodings

In the second encoding that we used in our experiments, we considered each
individual as composed of two independent parts that represent a pair of
generating functions. In particular, in the case of GA each chromosome
consists of the two bitstrings representing the truth tables of length 2n−2 of
the generating functions. Formally, given ϕ, γ : Fn−2

2 → F2, the associated

GA chromosome is defined as c(ϕ, γ) = (Ω(ϕ),Ω(γ)) ∈ F2n−2

2 × F2n−2

2 . Then,
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Table 2: Example of balanced quaternary string encoding.

x 000 100 010 110 001 101 011 111

ϕ(x) 0 1 0 1 1 0 1 0
γ(x) 0 1 1 0 1 0 0 1
c(ϕ, γ) 1 4 3 2 4 1 2 3

one-point crossover and bit-flip mutation are applied independently on the
two components of the chromosomes. Notice that in the case of crossover,
contrary to the single bitstring encoding, the Latin squares of the offspring
always differ from those of the parents, since the two generating functions
are recombined independently.

We used a similar double encoding for the candidate solutions evolved
by GP. In particular, each chromosome in this case is represented by two
Boolean trees which encode the algebraic expressions of the generating
functions. Analogously to the GA case, under this encoding we apply the
standard tree crossover and mutation operators of GP independently on the
two Boolean trees of the generating functions.

3.4 Balanced Quaternary String Encoding

We exploited the pairwise balancedness property mentioned in Section 2.3
to devise a third encoding for the candidate solutions of GA. In particular,
given two generating functions ϕ, γ : Fn−2

2 → F2 of n− 2 variables, in this
encoding the chromosome represents the superposition of the truth tables of
ϕ and γ as a quaternary string of length 2n−2 over the set Q = {1, 2, 3, 4},
by associating the four pairs of F2

2 to the elements of Q as follows:

(0, 0)→ 1; (1, 0)→ 2; (0, 1)→ 3; (1, 1)→ 4 .

Under this encoding, the pairwise balancedness constraint is equivalent to
require that each number from 1 to 4 occurs 2n−4 times in the string. Consider
again the example described in Section 2.3 of the two generating functions
ϕ, γ : F3

2 → F2 respectively defined by the truth tables Ω(ϕ) = 01011010 and
Ω(γ) = 01101001. Table 2 reports the superimposed truth tables of ϕ and
γ along with the corresponding quaternary chromosome c(ϕ, γ). From the
example, one can observe that each number from 1 to 4 in the chromosome
column appears 23−1 = 2 times.

Clearly, applying classic one-point crossover and mutation operators to
balanced quaternary chromosomes does not guarantee that the produced
offspring will be balanced as well. Therefore, we designed ad-hoc operators
in order to preserve the pairwise balancedness property so that GA searches
only the constrained space instead of the whole set of pairs of generating
functions.
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Our crossover operator is loosely inspired from the operators proposed
in [13] for balanced Boolean functions and in [11] for the Walsh spectra of
plateaued functions. More precisely, our operator employs four counters to
keep track of the multiplicities of the four values in the child chromosome.
Given two quaternary chromosomes p1, p2 of length N , a child chromosome
c is generated as follows:

1. Set the four counters cnt1, cnt2, cnt3 and cnt4 to 0.

2. If the number of positions where p1 and p2 have equal values is greater
than N/2, then randomly choose p1 or p2 and apply the following
permutation to each of its loci:

1→ 3; 2→ 4; 3→ 1; 4→ 2 .

3. Determine the positions where p1 and p2 have equal values and copy
them in the child c.

4. Pick a random position i ∈ {1, · · · , N} among those which have not
already been selected and such that p1[i] and p2[i] have different values.
Then, the value of c[i] is determined by one of the following cases,
depending on the values of the counters cntp1[i] and cntp2[i]:

(a) If the values of cntp1[i] and cntp2[i] are both below the thresh-
old 2n−4, randomly copy p1[i] or p2[i] in c[i], and increase the
corresponding counter.

(b) If only one of the two counters has reached 2n−4, then copy the
value corresponding to the other counter in c[i], and increase such
counter.

(c) If both counters reached 2n−4, copy one of the two remaining
values v1, v2 in c[i] by applying again cases (a) and (b) to cntv1
and cntv2 .

5. Return to step 4 until all positions in the child have been filled.

It can easily be seen from the above procedure that if both parents are
balanced quaternary strings, then the generated offspring will be balanced
as well. Since this crossover operator produces only one child, we apply it
twice for each pair of parents. Notice also that step (2) is performed in order
to avoid producing offspring which is too similar to the parents (a similar
strategy was also adopted in [13]).

On the other hand, for mutation we adopted a simple operator where
each value in a locus to be mutated is swapped with the value in another
locus, chosen in a random way. Thus, the balancedness property is preserved
since swaps do not change the number of occurrences of the symbols in a
string.
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4 Experimentation

We tested our GA and GP on the sets of bipermutive functions pairs of
n = 7 and n = 8 variables, which are the smallest instances of Problem 1
not amenable to exhaustive search. In fact, the corresponding search spaces
of generating functions pairs of n− 2 = 5 and n− 2 = 6 variables have sizes
264 and 2128, respectively. From the point of view of the phenotype, n = 7
corresponds to Latin squares of size 64× 64, while n = 8 to Latin squares of
size 128× 128.

In the remainder of this section, we describe the experimental settings
adopted for GA and GP, and we discuss the obtained results.

4.1 Experimental Settings

As mentioned in Section 3.3, the GP encoding uses elementary Boolean
functions to build a tree representing each of the two generating functions,
whereas the corresponding Boolean variables are used as terminals. The
function set in our experiments comprise functions AND, OR, XOR, XNOR,
which all take two arguments, and function NOT which takes a single
argument. Additionally, we included the function IF, which takes three
arguments and returns the second one if the first one evaluates to true,
and the third one otherwise. Finally, we set the maximum tree depth to 5.
A lower bound on the size of the tree space with such parameters can be
estimated using the method described in [6]. In particular, considering only
the four binary operators, a tree can be composed of at most 15 internal
nodes and 16 leaves. Since each internal node can take 4 different values
while the terminal on the leaves are Boolean values, Table 1 of [6] reports
a total of 1.82 · 1014 possible trees, a quantity which is not amenable to
exhaustive search. Moreover, as mentioned above, this is a lower bound since
we are ignoring the ternary IF operator.

Regarding the population size, in the case of GP we set it to to 500. On
the other hand, for GA we set the population size to 30 individuals. In fact,
the preliminary experiments that we performed for parameter tuning showed
that bigger populations do not produce better results with GA.

For the selection process, we employ a steady-state selection with a 3-
tournament operator for both GA and GP, that in each iteration randomly
selects three individuals for the tournament and eliminates the worst one. A
new individual is created immediately by crossing over the remaining two
from the tournament, which then in GP undergoes mutation with probability
of 0.5. The variation operators used for GP are simple tree crossover, uniform
crossover, size fair, one-point, and context preserving crossover [17] (selected
at random) and subtree mutation. For GA, the variation operators are
one-point crossover and bit-flip mutation in the case of single and double
bitstring encodings, while we adopt the balanced crossover and swap mutation
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operators described in Section 3.4 for the quaternary string encoding. In the
GA experiments, after an initial phase of parameter tuning we observed that
setting the crossover and mutation probabilities respectively to 0.95 and 0.2
yielded the best results.

Common parameters for all the experiments include the termination
condition of 300 000 fitness evaluations. We chose this particular bound
because our preliminary tests showed that optimal solutions are mostly
found before reaching this amount of evaluations, both for GA and GP.
Finally, each experiment is repeated 50 times.

4.2 Results

For GA, we performed a total of 6 experiments, given by the combinations
of 3 encodings and 2 problem instances. In particular, with GA we used only
the first fitness function fit1 which counts the number of repeated pairs,
since we observed that adding the nonlinearity constraint did not modify
the performances in a significant way. On the other hand, with GP we
performed a total of 4 experiments, given by the combinations of 2 fitness
functions and 2 problem instances. In what follows, we compactly denote a
GA experiment as (GA,n, enci), where n is the number of variables of the
bipermutive functions (which thus can be either 7 or 8), while enci represents
the encoding adopted. In particular, enc1 stands for single bitstring, enc2

for double bitstring and enc3 for balanced quaternary strings. Likewise, we
denote a GP experiment as (GP, n, fiti), where n still stands for the number
of variables, while fiti denotes the fitness function.

Table 3 reports the results obtained in each experiment. In particular,
for each combination we show the average fitness and the standard deviation
computed on the best solutions generated over all 50 runs, along with the
number of optimal solutions found and their distribution as linear/nonlinear
pairs. In general, one can observe that GP has a clear advantage over GA,
since it always converges to an optimal solution in each experimental run
for both n = 7 and n = 8 variables. On the other hand, GA only manages
to generate OLS for n = 7 variables (except for a single optimal solution
of n = 8 variables found under the single bitstring encoding). Moreover,
even in the case of n = 7 variables it can be seen that the success rate
of GA in generating OLS is remarkably lower than that achieved by GP.
One can additionally remark that the balanced quaternary encoding gives a
slight advantage to GA over single and double bitstrings, with respect to the
number of optimal solutions found.

Interestingly, one can notice that the optimal solutions produced by GP
under fitness function fit1 are mostly given by linear pairs. More precisely,
under fit1 GP managed to find only 3 nonlinear pairs of n = 8 variables
which generated OLS. The addition of the nonlinearity penalty factor with
fit2 however solved the issue, since in this case all optimal solutions found
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Table 3: Best solutions found by GA and GP.

Exp. avg std #opt #lin #nlin

(GA, 7, enc1) 520.32 360.16 12/50 0 12
(GA, 7, enc2) 565.44 389.03 15/50 0 15
(GA, 7, enc3) 392.64 328.47 18/50 0 18
(GA, 8, enc1) 4165.44 604 1/50 0 1
(GA, 8, enc2) 4222.16 125.03 0/50 0 0
(GA, 8, enc3) 4696.48 135.51 0/50 0 0

(GP, 7, fit1) 0 0 50/50 50 0
(GP, 7, fit2) 0 0 50/50 0 50
(GP, 8, fit1) 0 0 50/50 47 3
(GP, 8, fit2) 0 0 50/50 0 50

are given by pairs of nonlinear generating functions. On the other hand, it
can be observed that all optimal solutions found by GA with fitness functions
fit1 are nonlinear. This difference could be explained by the fact that the
set of operators used for GP trees include also the XOR, which is a linear
operator. Hence, when the optimization criterion is just the minimization
of the repeated pairs, it could be easier for GP to find pairs of generating
functions whose trees are composed only of XOR, which correspond to linear
solutions. Since the number of linear functions is much smaller than the
total number of Boolean functions, it could be that GP finds very quickly an
orthogonal solution by sticking to linear pairs. On the other hand, there is no
clear relationship between the truth-table based encodings used by GA and
the nonlinearity of the generating functions, which could explain why GA
always find nonlinear optimal solutions, even if with much more difficulty.

Considering the nonlinear optimal solutions found by GA and GP, we can
additionally remark an interesting fact. First, all the optimal bipermutive
rules found using the single and double bitstring representations with GA
and the double tree encoding with GP satisfy the pairwise balancedness
property introduced in Section 2.3. Since these encodings do not enforce
pairwise balancedness as a constraint (like with quaternary strings on the
generating functions), this finding seems to support the conjecture that all
bipermutive rules pairs inducing OLS must be pairwise balanced, a fact that
we experimentally assessed by exhaustive search up to n = 6 variables.

5 Conclusion

In this paper, we addressed the problem of designing orthogonal Latin squares
generated by nonlinear bipermutive CA using GA and GP. Specifically, since
bipermutive Boolean functions of n variables are completely defined by their
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generating functions of n − 2 variables, we formulated the optimization
problem as the search of pairs of nonlinear generating functions inducing
OLS. We experimented three different encodings for the candidate solutions
of GA, namely single bitstring, double bitstring and balanced quaternary
string, introducing ad-hoc crossover and mutation operators for the last one.
On the other hand, with GP we adopted a double tree representation. We
tested the two metaheuristics on the sets of pairs of bipermutive functions of
n = 7 and n = 8 variables, remarking that GP is always able to converge
to an optimal solution in both problem instances, while GA manages to
generate OLS with a lower success rate only for n = 7. On the other hand, we
also observed that GP mostly finds linear solutions when the fitness function
counts only the number of repeated pairs, while the solutions found by GA
are always nonlinear.

We emphasize that, as far as we know, there are no other works in
the literature concerning the design of orthogonal Latin squares by means
of evolutionary algorithms to compare our results with. Nonetheless, we
deem that this problem is interesting from the evolutionary computation
perspective, and that our results set a first baseline of comparison for future
works on the subject.

There are several research directions along which the present work can be
extended. From a theoretical side, an interesting problem arising from our
results would be to prove the conjectures about the pairwise balancedness on
the bipermutive rules and their generating functions. In particular, pairwise
balancedness on the generating functions seems to be a sufficient condition
on the respective bipermutive rules to be pairwise balanced as well. Pairwise
balancedness on the bipermutive rules, on the other hand, seems to be a
necessary condition for two CA to generate orthogonal Latin squares. On
the experimental side, it would be interesting to compare the performance of
GA and GP with other optimization algorithms. Since the objects we are
dealing with in this optimization problem are Boolean functions used as CA
rules, one could leverage on the several works which have been published
about the evolution of Boolean functions with good cryptographic properties.
These include both population-based approaches like discrete PSO [12] and
Cartesian GP [15, 16], as well as local search methods such as Simulated
Annealing [4]. A different comparison perspective worth exploring would also
be to adapt algebraic constructions of Boolean functions evolved through
GP [14] in order to generate orthogonal Latin squares.

Another interesting experimental direction to investigate would be to
increase the number of variables of the generating functions, to assess up
to which dimension of the problem GP is able to produce optimal solutions.
Moreover, one could also consider the natural extension of evolving k Mutually
Orthogonal Latin Squares (MOLS) based on CA. In this case, the encoding is
a straightforward extension of the double tree representation, since it suffices
to represent a candidate solution with k independent trees. The fitness
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function can also be easily modified by summing the number of repeated
pairs in each superposition of the k Latin squares.

6 Acknowledgments

This work has been supported in part by Croatian Science Foundation under
the project IP-2014-09-4882.

References

[1] D. Ashlock. Finding designs with genetic algorithms. In Computational
and Constructive Design Theory, pages 49–65. Springer, 1996.

[2] C. Carlet. Boolean Functions for Cryptography and Error Correcting
Codes. In Y. Crama and P. L. Hammer, editors, Boolean Models and
Methods in Mathematics, Computer Science, and Engineering, pages
257–397. Cambridge University Press, New York, NY, USA, 1st edition,
2010.

[3] C. Carlet. Vectorial Boolean Functions for Cryptography. In Y. Crama
and P. L. Hammer, editors, Boolean Models and Methods in Mathe-
matics, Computer Science, and Engineering, pages 398–469. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

[4] J. A. Clark, J. L. Jacob, S. Stepney, S. Maitra, and W. Millan. Evolving
boolean functions satisfying multiple criteria. In Progress in Cryptology
- INDOCRYPT 2002, Third International Conference on Cryptology in
India, Hyderabad, India, December 16-18, 2002, pages 246–259, 2002.

[5] C. J. Colbourn and J. H. Dinitz. Making the mols table. In Com-
putational and Constructive Design Theory, pages 67–134. Springer,
1996.

[6] M. Ebner. On the search space of genetic programming and its relation
to nature’s search space. In Evolutionary Computation, 1999. CEC 99.
Proceedings of the 1999 Congress on, volume 2, pages 1357–1361, 1999.

[7] J. Kari. Basic concepts of cellular automata. In Handbook of Natural
Computing, pages 3–24. 2012.
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