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Abstract

Reversible Cellular Automata (RCA) are a particular kind of shift-invariant
transformations characterized by dynamics composed only of disjoint cycles. They
have many applications in the simulation of physical systems, cryptography, and
reversible computing. In this work, we formulate the search of a specific class of
RCA – namely, those whose local update rules are defined by conserved landscapes –
as an optimization problem to be tackled with Genetic Algorithms (GA) and Genetic
Programming (GP). In particular, our experimental investigation revolves around
three different research questions, which we address through a single-objective, a
multi-objective, and a lexicographic approach. In the single-objective approach,
we observe that GP can already find an optimal solution in the initial population.
This indicates that evolutionary algorithms are not needed when evolving only the
reversibility of such CA, and a more efficient method is to generate at random
syntactic trees that define the local update rule. On the other hand, GA and GP
proved to be quite effective in the multi-objective and lexicographic approach
to 1) discover a trade-off between the reversibility and the Hamming weight of
conserved landscape rules, and 2) observe that conserved landscape CA cannot be
used in symmetric cryptography because their Hamming weight (and thus their
nonlinearity) is too low.

Keywords Shift-invariant transformations, Cellular automata, Reversibility, Genetic
programming, Genetic algorithms
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1 Introduction
The shift-invariance property is important when studying and modeling several types
of discrete dynamical systems. The property states that any translation of the input
state results in the same translation of the output state in a system governed by a
shift-invariant transformation. When a finite array describes the state of the system,
shift-invariant transformations are cellular automata (CA), i.e., functions defined by a
local update rule uniformly applied at all sites of the array. CA have been thoroughly
studied both as models for simulating discrete dynamical systems in physics [39],
biology [10, 37], ecology [9, 12] and other fields, as well as to design computational
devices, for example in symmetric cryptography [6,24] and fault-tolerant computing [26].
Reversible shift-invariant transformations, particularly Reversible CA (RCA), have the
additional characteristic of preserving information. As such, the dynamics of an RCA
can be reversed backward in time starting from any state, and the inverse mapping
is itself a CA. This characteristic makes RCA especially interesting for designing
energy-efficient computing devices, as stated by Landauer’s principle [17]. In fact,
any irreversible logical operation implemented in hardware leads to the dissipation of
heat, and this entails a physical lower bound on the miniaturization of devices based on
irreversible gates. One more interesting domain for RCA is cryptography, where they
can be used to design encryption and decryption algorithms [24].

Unfortunately, while RCA are characterized by simple combinatorial rules, design-
ing them is a difficult problem when considering additional properties as required by
specific applications. This is because there are only a few known classes of RCA [14]
and an exhaustive search of all possible RCA is unfeasible for large local rule sizes.
Considering these difficulties and the limited number of available theoretical results,
heuristics – and, more precisely, evolutionary algorithms (EA) – represent an interesting
option for designing RCA.

An interesting class of CA that include reversible ones are marker CA, where
the local update rule flips the state of a cell if its neighbors take on a set of patterns
(also called flipping landscapes) that are conserved by the resulting shift-invariant
transformation [39]. Evolutionary algorithms like genetic algorithms (GA) and genetic
programming (GP) intuitively represent a good fit to evolve the local rules of marker CA
since they have a simple description through their generating functions. In particular,
the output of a marker CA rule corresponds to the XOR of the cell in the origin of
the neighborhood and its generating function evaluated on the neighboring cells. As
such, it becomes rather straightforward to formulate the optimization objective for the
reversibility property by minimizing the number of compatible flipping landscapes
defined by the generating function. An optimal solution, in this context, is a marker CA
rule whose flipping landscapes are mutually incompatible, or equivalently a conserved
landscape rule.

Additionally, the Hamming weight of a generating function in a marker CA repre-
sents a good indicator of its 1) nonlinearity, which is a relevant property in domains
like sequences [27], telecommunication [28], and cryptography [24]. Consequently,
maximizing the Hamming weight of the generating function can be considered as an
additional optimization objective.

Our research investigates how difficult it is for evolutionary algorithms to find
conserved landscape CA rules, considering their small number as compared to the
corresponding search space size. Additionally, we explore the evolution of rules of
larger diameter (i.e., larger neighborhood size), as such rules are relevant from the
practical perspective. Finally, we investigate the trade-offs between the reversibility of a
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marker CA rules and the Hamming weight.
This paper is an extended version of the work “An Evolutionary View on Reversible

Shift-Invariant Transformations” [23] presented at EuroGP 2020. With respect to that
work, here:

1. We consider one additional evolutionary algorithm in our experiments, namely the
lexicographic genetic algorithm. By doing so, we allow a more detailed analysis
of the lexicographic paradigm for the evolution of conserved landscape CA.

2. We conduct an extensive tuning phase for all algorithms on the problem instance
with diameter d equal to 10. This represents a much larger and more difficult
problem than the one considered in [23], where the diameter for tuning was set to
7, thus allowing more meaningful tuning results.

3. We consider more problem instances: while the original paper considered diameter
sizes d from 8 to 13, this work investigates diameter sizes ranging from 7 to 15.

4. While in the original paper we allowed the offset ω to be of size d−1, here we set
ω equal to 3 for all experiments. By doing so, we aim to explore a more difficult
optimization problem, as there will be fewer solutions fulfilling the criteria.

5. Finally, we provide a more detailed experimental analysis by also considering
Hamming weight distributions and algorithms’ convergence.

Besides confirming the observations from [23], the new set of experiments allowed us
to discover two additional findings:
• We show that GP manages to find optimal solutions already in the initial pop-

ulation. This indicates that although decreasing ω limits the total number of
optimal solutions, it still allows GP to “easily” guess some of those solutions.
Thus, having smaller ω makes the problem simpler for GP, but not for GA, where
we observed a trend of increasing difficulty similar to the one reported in [23].
• The Pareto fronts obtained with the multi-objective optimization approach indicate

not only that the Hamming weight of an optimal solution must necessarily be low
concerning the length of its truth table, but also that balanced generating functions
are the farthest possible from giving reversible rules. This, in turn, allows us to
further explain why for GA, it is extremely unlikely to guess an optimal solution
by chance in the initial population, while it is easy for GP.

The rest of this paper is organized as follows. In Section 2, we discuss some types
of cellular automata, and we provide some relevant definitions and notations. Section 3
presents related works. In Section 4, we discuss how to optimize the reversibility of
CA, presenting a first attempt based on the de Bruijn graph representation of a local
rule and then discarding it in favor of the approach based on conserved landscape rules.
Section 5 first presents the result of a preliminary exhaustive search and then provides
details on our experimental setting and parameter tuning phase. In Section 6 we present
the results of our evolutionary experiments, while in Section 7 we discuss them with
respect to the stated research questions. Finally, Section 8 concludes the paper and
offers potential directions for future research.

2 Cellular Automata (CA)
This section covers background definitions and notions on reversible cellular automata,
upon which the rest of the paper is based. We start with some general definitions,
followed by discussions on reversible CA and marker CA.
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1 1 0 0 1 0 . . .00101. . .x
0 1 2 3 4 5 . . .-1-2-3-4-5. . .i

1 0 0 1 0 1 . . .10010. . .σ(x)

Figure 1: Example of application of the shift operator σ over a bi-infinite string x in AZ.
The alphabet in this example is A = {0,1}.

2.1 Basic Definitions
Let A be a finite alphabet, and let us denote by AZ the set of all bi-infinite strings over A.
The shift operator is defined as the function σ : AZ→ AZ that takes as input a bi-infinite
string x ∈ AZ and shifts each component of it one place to the left, as shown in Figure 1.

In the field of symbolic dynamics [19], the set AZ equipped with the shift operator
is also called the full-shift space. This set can be further endowed with the Cantor
distance, under which two configurations x,y ∈ AZ are close to one another if the first
coordinate i where they differ is close to the origin. The topological space resulting
from this distance is compact [16], simplifying the study of mappings F : AZ→ AZ as
dynamical systems. In particular, shift-invariant transformations are those mappings
F : AZ→ AZ that commute with the shift operator, that is, those mappings for which

F(σ(x)) = σ(F(x)) , for all x ∈ {0,1}Z.

Cellular Automata (CA) are a particular class of shift-invariant transformations
whose output is determined by the parallel application of a single local update rule over
all components (or cells) of a bi-infinite string. Such a rule depends only on a finite
number of neighboring cells, also called the diameter. The Curtis-Hedlund-Lyndon
(CHL) Theorem characterizes CA as those mappings F : AZ→ AZ that are both shift-
invariant and uniformly continuous with respect to the Cantor distance [11]. When
restricting the attention only to the subset of spatially periodic configurations, i.e.,
those configurations x ∈ AZ that repeat themselves after a minimum period p ∈ N, any
shift-invariant transformation is described by a CA. Indeed, the continuity requirement
of the CHL theorem can be dropped since the diameter of the CA local rule is upper
bounded by the period p of the configurations. Hence, the next state of each cell cannot
depend on cells that are arbitrarily far apart. In particular, the case of shift-invariant
transformations over finite arrays of length p ∈ N with periodic boundary conditions
(i.e., where the array can be seen as a “ring” in which the first cell follows the last one)
coincides with CA over the set of spatially periodic configurations x ∈ AZ having period
p. Clearly, finite CA (or equivalently, infinite CA over periodic configurations) represent
the most interesting case for practical applications, and we focus exclusively on them in
the rest of this paper. Therefore, in what follows, we use the term CA and shift-invariant
transformation interchangeably.

Various CA models can be defined depending on the dimension of the cellular
array, the alphabet of the cells, and the boundary conditions. In this work, we focus on
one-dimensional periodic Boolean CA, defined as follows:

Definition 1 A one-dimensional periodic Boolean CA (PBCA) of length n, diameter
d, offset ω, and local rule f : {0,1}d → {0,1}, is defined as a vectorial function
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f (1,1,0) = 1⊕1⊕0

1

Local view

10· · · 0 0 · · ·

(a) Local application of the local rule on
the blue cell.

1 0 0 1 0 0

⇓Parallel update Global rule F

10 0 1

Global view

1 1 0 1

(b) Global application of the rule with peri-
odic boundary conditions.

Figure 2: An example of CA with n = 6 cells, diameter d = 3, offset ω = 1, and local
rule defined as f (xi−1,xi,xi+1) = xi−1⊕ xi⊕ xi+1, corresponding to Wolfram code 150.

F : {0,1}n→{0,1}n where for every vector x ∈ {0,1}n and all 0≤ i≤ n−1, the i-th
component of the output vector is given by:

F(x)i = f (x[i−ω,i−ω+d−1]) = f (xi−ω,xi−ω+1, · · · ,xi, · · · ,xi−ω+d−1) (1)

with all indices being computed modulo n. Function F is also called the global rule of
the CA.

Thus, a PBCA is composed of a one-dimensional vector of n cells that can be either in
state 0 or 1, where each cell simultaneously updates its state by applying the local rule
f on the neighborhood formed by itself, the ω cells on its left and the d−1−ω cells
on its right. Here, “periodic” refers to the fact that all indices are computed modulo
n: in this way, the leftmost ω cells and the rightmost d−1−ω ones respectively have
enough left and right neighboring cells to apply the local rule. Unless ambiguities arise,
in what follows we refer to PBCA simply as CA, as the former is the main CA model
considered in this work. The orbit of a PBCA starting from x is the sequence of vectors
{x(t)}t∈N where x(0) = x ∈ Fn

2 and x(t) = F t(x) for all t > 0 (remark that F t denotes
the iteration of the CA global rule F for t times).

Since the cells of a CA take binary values, the local rule can be seen as a Boolean
function f : Fd

2→ F2 of d variables where F2 = {0,1} is the finite field of two elements,
and thus it can be represented by its truth table, which specifies for each of the possible
2d input vectors x ∈ Fd

2 the corresponding output value f (x) ∈ F2. Assuming that the
input vectors of Fd

2 are sorted lexicographically (i.e., x≤ y if and only if xi ≤ yi where i
is the first index such that xi and yi differ), one can encode the truth table as a single
binary string Ω f ∈ F2d

2 , which is the output column of the table. In the CA literature,
the decimal encoding of Ω f is also called the Wolfram code of the local rule f [40].
Figure 2 reports an example of CA with n = 6 cells, diameter d = 3, offset ω = 1, and
local rule defined as f (xi−1,xi,xi+1) = xi−1⊕ xi⊕ xi+1, corresponding to Wolfram code
150. Hence, each cell looks at itself and at its left and right neighbors to compute its next
state through rule 150. The two shaded cells in Figure 2b represent “copies” respectively
of the first and of the last cell, to help visualizing the neighborhoods of the cells at the
boundaries. As mentioned above, one can effectively think of the CA array as a ring,
bending it so that the leftmost and rightmost cells come close to each other.

Besides the truth table, another useful way to represent the local rule of a CA is
by means of a de Bruijn graph, as shown originally by Sutner [38]. Such a repre-
sentation is based on the overlap operator � that, given two vectors x,y ∈ Fd−1

2 with
x = (x1,x2, · · · ,xd−1) and y = (y1,y2, · · · ,yd−1) such that xi = yi−1 for all 2≤ i≤ d−1,
outputs the vector x� y = z ∈ Fd

2 defined as z = (x1,x2, · · · ,xd−1,yd−1). In other words,
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x1 x2 x3 f (x1,x2,x3)
0 0 0 0
1 0 0 1
0 1 0 1
1 1 0 0
0 0 1 1
1 0 1 0
0 1 1 0
1 1 1 1

(a) Truth table.

00

0110

11

1

00

1

0

1

0

1

(b) De Bruijn Graph.

Figure 3: Truth table and de Bruijn graph representations for local rule 150.

z is obtained by overlapping the rightmost d−2 components of x with the leftmost d−2
ones of y, thereby obtaining a vector of length d. Formally, the de Bruijn graph of a CA
with local rule f : Fd

2 → F2 is defined as:

Definition 2 Let F : Fn
2 → Fn

2 be a CA equipped with a local rule f : Fd
2 → F2 of

diameter d ≤ n. Then, the de Bruijn graph associated to F is the directed labeled
graph GDB( f ) = (V,E, l) where V = Fd−1

2 . Further, given v1,v2 ∈ V , it holds that
(v1,v2) ∈ E if and only if there exists z ∈ Fd

2 such that z = v1� v2, i.e., if v1 and v2 can
be overlapped. Finally, for all (v1,v2) ∈ E, the label function l : E→ F2 is defined as
l(v1,v2) = f (v1� v2).

As an example, Figure 3 reports the truth table and the de Bruijn graph represen-
tations associated to the CA F with local rule 150. In particular, the input of a CA
F : Fn

2 → Fn
2 is a path of length n− d + 1 on the vertices of its de Bruijn graph, ob-

tained by overlapping all vertices in the path to get a vector x ∈ Fn
2, while F(x) is the

corresponding path on the edges, obtained by concatenating the labels.

2.2 Reversible CA
The property of reversibility is of particular importance in the field of dynamical systems.
Stated informally, the orbits of the states of a reversible system are disjoint cycles without
transient parts or pre-periods. Consequently, the dynamics of such systems can also be
run backward in the time since each state has exactly one predecessor, and the inverse
system is analogous to the original one. In the context of infinite cellular automata, this
property translates to the fact that the global rule F must be bijective to ensure that each
global state of the cellular array has exactly one predecessor, and the inverse global
mapping must also be a CA, that is, F−1 has to be defined by a local rule. If these two
requirements are fulfilled, then the corresponding infinite CA is called reversible.

Hedlund [11] and Richardson [35] independently proved that an infinite CA is
reversible if and only if its global rule is bijective. In other words, bijectivity in a CA is
sufficient to grant the property that the inverse global rule F−1 is both shift-invariant and
continuous. However, this result does not give a constructive proof to find the inverse
global rule F . Indeed, even characterizing the diameter of the inverse local rule in a
reversible CA is still an open problem, as shown by Czeizler and Kari [5].
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The relationship between bijectivity and reversibility is less straightforward in the
case of finite CA. If we start from a local rule f that generates a reversible infinite
CA, then we can conclude that the same rule will give rise to a reversible PBCA for
any length n ∈ N of the cellular array. This is because the set of spatially periodic
configurations is a proper subset of the full-shift space AZ, and it is exactly the subset
where PBCA act upon. Conversely, if we know that a local rule f induces a bijective
global rule on a PBCA of a certain length n ∈ N, then the inverse global rule is not
necessarily defined by a local rule, nor is it the case that the global rule stays bijective
for different lengths of the PBCA under the same local rule.

Local rules that generate bijective global rules only for certain lengths n ∈ N of the
CA array and whose inverses cannot be described by local rules are also called globally
invertible. An example is the χ transformation used in the KECCAK sponge construction
for hash functions [2], which corresponds to a CA of length n = 5 and is defined by the
local rule of diameter d = 3 with the Wolfram code 210. The offset of this CA is ω = 0,
meaning that each cell applies rule 210 over itself and the two cells to its right to update
its state. The algebraic expression of χ is:

χ(x1,x2,x3) = x1⊕ (x2(1⊕ x3)) . (2)

In other words, the cell in position 1 flips its state if and only if the logical AND of
x2 and the complement of x3 is true. Daemen [6] showed that the rule 210 is globally
invertible since it induces a bijective global rule only for odd lengths of the cellular array.
In particular, the inverse mapping can be specified by a sequential algorithm that takes
as input a vector of odd length and a “seed” value, which is basically a single component
of the preimage. Then, the other components of the preimage are determined by “leaps”
of length two by going leftwards with respect to the seed. Since the vector has an odd
length and periodic boundary conditions, each of the remaining components can be
determined using a single seed. The fact that a preimage seed can always be found for
any configuration of odd length shows why the resulting CA is indeed reversible. More
details about the inversion procedure with seeds and leaps for rule χ can be found in [6].

On the other hand, a local rule that induces a bijective global function for all finite
lengths n ∈ N of the cellular array is called locally invertible. Using a topological
argument that relies on the compactness of the full shift space [14], it can be shown that
locally invertible rules induce bijective global functions also on infinite CA. Hence, from
the discussion above, it follows that locally invertible rules are exactly those defining
reversible CA, where the inverse global rule F−1 is determined by a local rule for all
lengths n ∈ N of the cellular array. In what follows, we consider searching for locally
invertible rules as an optimization problem, focusing on the class of marker CA.

We conclude this section by mentioning that de Bruijn graphs can be used to study
the reversibility of CA. Sutner [38] devised an algorithm to decide whether any CA rule
induces a reversible infinite CA F by using its de Bruijn graph representation GDB(F).
The algorithm starts by first computing the Cartesian product G2

DB(F) of the graph by
itself; then, the CA is reversible if and only if the only non-trivial strongly connected
components of the product G2

DB(F) coincides with its diagonal.

2.3 Marker CA
Even though reversibility in one-dimensional CA can be decided by utilizing Sutner’s
algorithm mentioned in the previous section, up to now, only a few classes of reversible
CA are known in the literature (see, e.g., [14]). These classes are usually defined in
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terms of particular properties of the local rule so that a subset of the rules satisfying
them can generate a reversible CA. In this section, we describe the class of marker CA
that are the focus of the main contributions of this paper in later sections.

A marker CA (also known as a complementing landscape CA [39]) can be defined
as a CA having a local rule that always flips the bit of the cell in position ω (i.e., the
one whose state is being updated) whenever the cells in its neighborhood take on a
particular pattern, or marker. Otherwise, the cell stays in its current state. The set of
patterns defining a local rule of a marker CA can be formalized through the concept of a
landscape:

Definition 3 Let d,ω ∈ N with ω < d. A landscape of width d and center ω is a string
L = l0l1 · · · lω−1 ? lω+1 · · · ld−1 where li ∈ {0,1,−} for all i 6= ω.

The ? symbol in a landscape L indicates the origin of the neighborhood in the local
rule (i.e., the cell whose state is being updated), and consequently, occurring at position
ω. The − symbol represents a “don’t care”, meaning that the corresponding cell can
be either in the state 0 or 1. Thus, landscapes can be considered as a restricted form
of regular expressions over the binary alphabet {0,1}, where the “don’t care” symbol
stands for the regular expression (0+1) (i.e., both 0 and 1 match).

A local rule of a marker CA is described by one or more landscapes, all having
the same width d and center ω. In the multiple landscape case, a cell is flipped if
its neighborhood partakes on any of the patterns included in the union

⋃k
i=1 Li of

the landscapes L1, · · · ,Lk defining the local rule. As an example, observe that the
transformation χ used in Keccak, whose definition is recalled in Eq. (2), is a marker
rule. Indeed, it can be seen that the cell x1 flips its state if and only if x2 and x3 are equal
to 1 and 0, respectively. Therefore, rule χ is defined by the single landscape ?10.

It is possible to define a partial order ≤C over the set of landscapes. Namely, given
two landscapes L = l0 · · · ld−1 and M = m0 · · ·md−1 with the same width d and center ω,
we define

L≤C M⇔ li = mi or li ∈ {0,1} and mi =− (3)

for all 0 ≤ i ≤ d − 1. Intuitively, this partial order describes the “generality” of a
landscape: the more “don’t care” symbols it has, the more patterns it contains. The
bottom of this partial order is the trivial landscape ?, which corresponds to the identity
rule (i.e., each cell copies its state without looking at its neighbors). Above this minimal
element are the atomic landscapes, which do not contain any “don’t care” symbols,
describing only single patterns. Finally, the top element is the landscape composed only
of “don’t care” symbols, which includes all possible patterns; the corresponding rule
coincides with the complement of the identity, that is, the rule where each cell flips its
state no matter what pattern its neighbors partake on. In what follows, we refer to ≤C as
the compatibility partial order relation. In particular, we call two landscapes L1,L2 with
the same width d and center ω compatible if L1 ≤C L2 or L2 ≤C L1. Otherwise, if L1
and L2 are not comparable with respect to ≤C, we say that they are incompatible. As
an example, Figure 2.3 reports the diagram of the compatibility relation for d = 3 and
ω = 0.

The compatibility order relation can be used to characterize a subset of reversible
marker CA, namely those of the conserved landscape type. In such CA, a cell that is
in a particular landscape L defined by the local rule will still be in the same landscape
upon application of the global rule. This property can be formalized by requiring that
the cells in the neighborhood are in landscapes that are incompatible with L, as shown
in the following result proved in [39]:
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?−−

?−0 ?0− ?1− ?−1

?00 ?10 ?01 ?11

?

Figure 4: Hasse diagram for the compatibility poset (partially ordered set) with d = 3
and ω = 0. The landscape ?10 defines the rule χ introduced in [6].

Lemma 1 Let f : Fd
2 → F2 be a local rule of a marker CA defined by a set of k

landscapes L1, · · · ,Lk of width d and center ω. Further, for all i ∈ {1, · · · ,k} let
Mi,0, · · · ,Mi,ω−1,Mi,ω+1, · · · ,Mi,d−1 be the set of d− 1 landscapes associated to the
neighborhood of Li. Then, if Mi, j is incompatible with all landscapes L1, · · · ,Lk for all
i∈ {1, · · · ,k} and j ∈ {0, · · · ,ω−1,ω+1, · · · ,d−1}, rule f induces a locally invertible
marker CA.

When the conditions of Lemma 1 are fulfilled, f is named a conserved landscape
rule. Toffoli and Margolus noted that a conserved landscape local rule induces an
involution, i.e., the global rule of the resulting marker CA is its own inverse [39]. This is
because any cell being in one of the marker landscapes will still be in the same landscape
after applying the local rule. Therefore, after a further application of the local rule, the
cell will go back to its initial state.

Conserved landscape rules define a particular type of reversible CA since all cycles
have a length of 2. Daemen argued that such CA could be useful in those cryptographic
applications where both the encryption and decryption functions are implemented in
hardware [6]. It is also possible to relax the conditions of Lemma 1 by allowing the
landscapes of the local rule to partially overlap one another [39]. In this case, a cell
in a landscape defined by the local rule will be in any other landscape defined by the
local rule after applying the global rule. As a consequence, the resulting marker CA can
exhibit more complex behaviors with longer cycle lengths.

To better illustrate the idea, we provide an example of the only single conserved land-
scape rule of diameter d = 4 (up to complement and reflection of the input), originally
discovered by Patt [29]:

Example 1 Let d = 4 and ω = 1, and let f : F4
2→ F2 be the local rule defined by the

single landscape L = 0?10. The tabulation depicted in Figure 5a shows that all three
landscapes of the neighboring cells are incompatible with L. In particular, when xi is in
landscape L, then:

1. Cell xi−1 is in landscape −?−1, which is incompatible with 0?10 as there is a
mismatch in position 3.

2. Cell xi+1 is in landscape −?0−, which is incompatible with 0?10 as there is a
mismatch in position 2.
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?0 1 0
?− − 1

?− 0 −
?1 − −

xi

xi−1

xi+1

xi+2

(a) Landscape tabulation for rule 0?10.

0 1 1 0 0 1

0 0 1 0 1 1
(b) Example of cycle of length 2.

Figure 5: A locally invertible CA defined by the single landscape 0 ? 10. Figure 5b
displays an example of a cycle starting from the initial state 011001. The two cells in
blue are in the landscape 0?10.

3. Cell xi+2 is in landscape 1?−−, which is incompatible with 0?10 as there is a
mismatch in position 0.

3 Related Works
As far as we are aware, our work is the first one exploring the application of evolutionary
algorithms to evolve reversible CA. Therefore, in this section we briefly discuss related
works related to the use of EA to evolve shift-invariant transformations and related
objects for other tasks, such as random number generation. For a somewhat outdated
but very detailed overview of works using GA to evolve CA, we refer interested readers
to [25].

Bäck and Breukelaar used genetic algorithms to evolve behavior in CA and explored
different neighborhood shapes [1]. The authors showed that their approach works for
different topologies and neighborhood shapes. Sipper and Tomassini [36] proposed
a cellular programming algorithm to co-evolve the rule map of non-uniform CA for
designing random number generators. With their approach, the authors managed to
evolve good generators that exhibit behaviors similar to those from the previously
described CAs. Additionally, the authors reported advantages stemming from a “tunable”
algorithm for obtaining random number generators.

Picek et al. demonstrated that GP could be used to evolve CA rules suitable to
produce S-boxes (nonlinear elements used in block ciphers) with good cryptographic
properties [31]. This approach allowed finding optimal S-boxes for several sizes of
practical importance. Interestingly, this is the first time that EA managed to obtain
optimal S-boxes for larger sizes. Next, Picek et al. used genetic programming to demon-
strate that the S-boxes obtained from the CA rules could have good implementation
properties [32]. The authors concentrated on two S-box sizes, 4× 4 and 5× 5, and
managed to find S-boxes with good latency, area, and power consumption. Subsequently,
Mariot et al. conducted a more detailed analysis of the S-boxes based on CA, and they
proved the best possible values for relevant cryptographic properties when CA rules of
a certain size are used [24]. The authors also used GP to experimentally validate their
findings and reverse engineer a CA rule from a given S-box.

Mariot et al. used EA to construct orthogonal Latin squares built from CA [22].
The authors reported that GP could always generate orthogonal Latin squares, where
the optimal solutions were mostly linear. On the other hand, when using GA, the
results were significantly worse than GP in evolving orthogonal Latin squares, but
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the corresponding Boolean functions were always nonlinear. Finally, Mariot et al.
investigated the possibility of evolving Reversible Cellular Automata (RCA). The
authors considered three optimization strategies and obtained good results [23].

We note that the evolution of CA rules for cryptographic purposes is connected with
the evolution of Boolean functions with good cryptographic properties. This direction
is rather well-explored, and there are multiple works considering various evolutionary
approaches, see, e.g., [13, 21, 30].

4 Optimizing the Reversibility of CA
In this section, we propose two different approaches to formulate the search of reversible
CA as an optimization problem that can be tackled with evolutionary algorithms. The
first approach considers the case of generic reversible CA and exploits the de Bruijn
graph representation. However, we argue that such an approach is not suitable to find
CA rules that are locally invertible since it relies on a specific length of the cellular array.
We thus introduce a second approach, where we consider only the class of conserved
landscape rules that do not have this problem. For this reason, we focus on this particular
approach for our experimental evaluation in the next sections.

4.1 Generic Reversible CA
As mentioned in Section 2.2, Sutner’s algorithm shows that the reversibility property
in CA is decidable in the one-dimensional case [38]. Although any decision problem
can be easily turned into an optimization one (e.g., by defining a cost function that
evaluates to 1 if a solution is optimal and 0 otherwise), this usually results in fitness
landscapes that are too hard to be explored by any optimization algorithm. For this
reason, we investigate an optimization approach that departs from Sutner’s product
graph construction, even though it is still based on the de Bruijn graph representation.
In particular, the approach is loosely inspired by a technique used by the authors in [24],
where bijective n×n S-boxes defined by CA of diameter d = n are reverse-engineered
to verify whether they can be expressed by local rules of smaller diameter.

Instead of searching for a local rule and then optimizing its reversibility, this op-
timization approach takes the opposite direction: we start from a bijective mapping
F : Fn

2 → Fn
2 and then tweak it so that it corresponds to the global rule of a finite re-

versible CA. In this way, the genotype representation is quite simple since it suffices
to define a candidate solution as a permutation on a set of 2n elements. Evolutionary
algorithms such as permutation-based GA [18] or modified versions of GP (like the one
proposed in [33]) can then be adopted to variate a population of individuals such that the
permutation constraint is preserved. Thus, the optimization objective becomes to find a
permutation that, when interpreted as a bijective vectorial Boolean function F : Fn

2→ Fn
2,

is defined by the application of a single local rule of diameter d ≤ n. However, this
approach raises the question of defining a proper fitness function to evaluate candidate
permutations.

This is where the de Bruijn graph representation comes into play: as noted in
Section 2.1, a CA local rule corresponds to labeling on the edges of a de Bruijn graph.
Hence, the idea is to start from a blank de Bruijn graph (i.e., without labels on its edges)
and then fill it up by traversing each input c ∈ Fn

2 of the permutation and then labeling
the corresponding edges for each cell in the corresponding output F(c). Here, traversing
an input configuration c ∈ Fn

2 means to sweep a window of width d on it (similarly to
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x1 x2 x3 F(x1,x2,x3)
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 0 1
1 0 1 1 1 0
1 1 0 1 0 0
1 1 1 1 1 1

(a) Permutation truth table.

00

0110

11

0,0,1

1,1,01,0,0

1,0,0

1,1,0

1,1,0

0,0,0

1,1,1

(b) De Bruijn graph labeling.

Figure 6: Example of inconsistent labeling from a permutation F : F3
2→ F3

2.

a convolution operator), using periodic boundary conditions. For each position i of
the window in c ∈ Fn

2, we will observe a particular neighborhood configuration x ∈ Fd
2 ,

which coincides with an edge on the de Bruijn graph. The value of the cell in position
i of F(c) will be the output f (x) of the local rule reputed to define the permutation F ,
or equivalently the label of the edge corresponding to x. Clearly, by sweeping each
input of a random permutation, it is likely that a neighborhood configuration x ∈ Fd

2
will get distinct outputs, or equivalently that the labeling on the corresponding edge is
inconsistent. Therefore, the permutation F is defined by a reversible CA if and only
if the labeling is consistent after traversing all inputs in Fn

2, i.e., if and only if each
edge has a unique label. On the contrary, if some edge (v1,v2) ∈ E gets more than one
label after traversing all inputs, it means that the input neighborhood v1� v2 ∈ Fd

2 does
not have a single output, or equivalently that the truth table does not correspond to a
Boolean function.

We illustrate the above reasoning with a small example. Let n = d = 3 and ω = 0.
Therefore, we are interested in finding a permutation F : F3

2→ F3
2 such that F is the

global rule of a CA defined by a local update rule f : F3
2→ F2 of diameter 3. Figure 6

reports the truth table of a random permutation F and the corresponding labeling on
the de Bruijn graph. As it can be seen, each edge has three associated labels. This
is because we are considering the case of a finite cellular array of length n = d with
periodic boundary conditions. Each neighborhood configuration is seen exactly n times
while traversing the whole truth table of F . For instance, the loops on 00 and 11 are seen
three times, respectively, by considering all cyclic rotations of the input vectors 000 and
111. Incidentally, these two labelings are the only consistent ones in the whole graph
since we always observe 0 for 000 and 1 for 111. Thus, by narrowing our attention only
on these two input configurations, the permutation could in principle be defined by a
CA, since each cell always gets either a 0 or a 1 when its neighbors are respectively set
either all to 0 or to 1.

However, for all remaining edges, we can see that the labelings are always incon-
sistent since both 0 and 1 occur. For example, the edge (00,01) is labeled with two
0s and a single 1. This means that in two cases, the neighborhood 001 = 00� 01 is
mapped to 0 for the next state of a cell, while it is mapped to 1 in a third case. Thus, the
permutation cannot be defined by a CA local rule.
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The above observations can be generalized to formulate a fitness function that assigns
fitness 0 to every candidate permutation inducing a consistent labeling or equivalently
that defines a reversible CA. For instance, one possibility could be to define the fitness
of a permutation as the sum of the Hamming distances of the labelings on the edges
from the vector (0,0, · · · ,0) or (1,1, · · · ,1), and then minimize such a sum. However,
following this approach to evolve a population of reversible CA with evolutionary
algorithms is not devoid of problems. Indeed, we can remark two main issues arising
from the adoption of such a fitness function:
• The most obvious drawback is that, as discussed in Section 2.2, finding a local

rule that induces a permutation for a fixed length n of the cellular array does not
imply that the same rule will give a reversible CA for other lengths. Indeed, such
a rule will likely be globally but not locally invertible. Globally invertible rules
are also interesting, as exemplified by the χ transformation used in Keccak. Still,
using this optimization approach to find globally invertible rules would not give a
straightforward way to characterize the array lengths for which the corresponding
CA is reversible.

• The fitness function depends both on the length n of the cellular array and the
diameter d of the sought local rule. In the above example, we made the simplifying
assumption that n = d. However, in principle, one could consider if a particular
permutation of length n is defined by a CA local rule for any diameter d ≤ n. This
would significantly increase the number of possible fitness functions to consider
(i.e., one for each possible diameter).

Consequently, the approach based on evolving permutations and optimizing their consis-
tency on the edge labeling of the de Bruijn graph is not very scalable and practical to find
local rules that generate reversible CA for any length of the array. Since we are mostly
interested in locally invertible rules, we will not investigate further this optimization
approach in later sections.

4.2 Conserved Landscape CA
We now focus on a different optimization perspective by considering only the class
of conserved landscape reversible CA. Lemma 1 tells us that to find a marker CA
that is locally invertible, we need to define a set of landscapes L1, · · · ,Lk, in such a
way that their associated neighborhood landscapes are incompatible with them. This
suggests the following idea to turn the search of conserved landscape rules into an
optimization problem: given the landscape specification of a local rule, count the number
of compatible landscape pairs, and minimize it. Using the partial order relationship
that we defined in Section 2.3, this is equivalent to minimize the number of comparable
pairs of landscapes. An optimal solution is a set of landscapes that are all mutually
incompatible (including the neighborhood landscapes), or equivalently an antichain
of elements in the poset induced by ≤C. These observations lead to the following
optimization problem:

Problem 1 Let d,ω ∈ N with 0 < ω < d− 1. Find a set of landscapes L1, · · · ,Lk of
width d and center ω, such that for all i ∈ {1, · · · ,k} and for all j ∈ {0, · · · ,d−1}, the
neighborhood landscape Mi, j associated to Li is incompatible with all other landscapes
L1, · · · ,Lk, that is Mi, j 6≤C Lt and Lt 6≤C Mi, j for all t ∈ {1, · · · ,k}.

In the rest of this section, we will first address how to obtain the landscape representation
of a local rule from its truth table, and then we will define the fitness function to be
minimized for Problem 1.
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4.2.1 Genotype Representation for Marker CA

The first question arising from Problem 1 is how to represent local rules of marker CA
so that they can be evolved by the variation operators of GA and GP. In particular, GA
usually works on a bitstring encoding of the candidate solutions of an optimization
problem, while GP relies on a tree representation. Hence, directly using the landscape
specification of a marker CA rule does not seem a natural choice for encoding the
genotype.

Recall from Eq. (2) that the χ rule was defined as the XOR of the leftmost cell
(which also coincides with the cell being updated) with the AND between the second
cell and the complement of the third cell. This observation can be generalized to any
local rule of marker CA as follows. Let L1, · · · ,Lk be a set of landscapes of diameter
d and center ω defining a local rule f : Fd

2 → F2. Additionally, let L =
⋃k

i=1 Li be the
union of the landscapes. Then, a cell xi in a marker CA equipped with rule f will
flip its state if and only if the neighborhood xi−ω · · ·xi−1?xi+1 · · ·xi+d−1−ω belongs to
L . Excluding the origin ? of the neighborhood, we obtain a vector of d−1 variables
that describes the states of the cells surrounding xi. Consider now all 2d−1 possible
assignments to this vector, and let g : Fd−1

2 → F2 be the Boolean function defined as:

g(xi−ω · · ·xi−1xi+1 · · ·xi+d−1−ω) =

{
1, if xi−ω · · ·xi−1?xi+1 · · ·xi+d−1−ω ∈ L
0, otherwise ,

(4)

for all xi−ω · · ·xi−1xi+1 · · ·xi+d−1−ω ∈ Fd−1
2 . In other words, function g outputs 1 if and

only if the configuration featured by the cells surrounding xi belongs to the union of
landscapes L , when the origin ? is inserted at position ω. Then, it follows that the local
rule f can be expressed as

f (xi−ω · · ·xi−1xixi+1 · · ·xi+d−1−ω) = xi⊕g(xi−ω · · ·xi−1xi+1 · · ·xi+d−1−ω) , (5)

for all configurations of xi−ω · · ·xi−1xixi+1 · · ·xi+d−1−ω ∈ Fd
2 . Hence, the algebraic form

of the local rule of a marker CA can be expressed as the XOR of the cell in the origin
with the generating function g computed on the surrounding cells. Indeed, g evaluates
to 1 if and only if the neighborhood takes on any of the landscapes in L , and in this case
xi will flip its state.

Consequently, we can reduce the representation of the local rule f of a marker CA
to its generating function g, since we can compute f by simply XORing the output of g
with the value of xi. Since g can be any Boolean function of d−1 variables, it follows
that we can represent the genotype of a candidate solution to our optimization problem
with the commonly used Boolean genotype encodings for GA and GP. In particular:
• For GA, the genotype of a candidate solution is a bitstring of length 2d−1, repre-

senting the output of the truth table of g.
• For GP, the genotype is a tree where the terminal nodes represent the input vari-

ables of g (i.e., the state of the cells surrounding the origin of the neighborhood),
while the internal nodes are Boolean operators combining the values received
from their child nodes and propagating their output to their parent node. The
output of the root node will be the output of the whole generating function g.

4.2.2 Fitness Functions

At the beginning of this section, we informally introduced the idea to steer the search of
conserved landscape rules by counting the number of compatible pairs of landscapes.
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However, given that the genotype handled by GA and GP is an encoding of the generating
function g, we first need to translate this representation to the landscape specification.

Suppose that we have the truth table of the generating function g. In the GA case,
this corresponds exactly to the genotype of an individual. For GP, we can easily recover
it by evaluating the Boolean tree of an individual over all possible input vectors x∈ Fd−1

2 .
Let supp(g) = {x ∈ Fd−1

2 : g(x) 6= 0} be the support of g, i.e., the set of input vectors
over which g evaluates to 1. By construction, the elements of supp(g) coincide with
all the patterns that the cells surrounding the origin must feature to flip the state of the
central cell. Thus, to obtain the list of atomic landscapes, it suffices to insert the origin
symbol ? in position ω to each vector of the support. Of course, some of these patterns
could be described in a more “compact” way with more general landscapes that also
use the “don’t care” symbol. For example, if supp(g) = {101,111} and the center is
ω = 1, then the two atomic landscapes 1?01 and 1?11 can be described by the single
landscape 1?−1, where we substituted the central variable with a “don’t care” symbol1.

However, the set of atomic landscapes obtained from the support suffices to check
if a rule is of the conserved landscape type or not. It is not difficult to see that two
landscapes containing “don’t care” symbols are incompatible if and only if all the atomic
landscapes that they describe are incompatible between themselves. This means that we
can directly use the support of the generating function to count the number of pairs of
compatible landscapes. Given that we want to minimize such a number in order to get a
conserved landscape rule, we define the following objective function:

Definition 4 Let g : Fd−1
2 → F2 be a generating function of a marker CA rule f : Fd

2 →
F2 of diameter d and offset ω, and let supp(g) be its support. Further, let L1, · · · ,Lk be
the set of atomic landscapes obtained by adding the origin symbol ? in position ω to each
vector in supp(g), and for each i ∈ {1, · · · ,k} let Mi,0, · · · ,Mi,ω−1,Mi,ω+1, · · · ,Mi,d−1
be the set of neighborhood landscapes associated to Li, obtained through the tabulation
procedure. Then, the fitness function value of g is defined as follows:

ob j1(g) = ∑
i∈[k], j∈[d−1]ω

∑
t∈[k]

comp(Mi, j,Lt) , (6)

where [k] = {1, · · · ,k}, [d− 1]ω = {0, · · · ,ω− 1,ω+ 1, · · · ,d− 1}, and the function
comp(·, ·) returns 1 if the two landscapes passed as arguments are compatible, and 0
otherwise.

Hence, the objective function loops over all neighborhood landscapes Mi, j induced by
each atomic landscape Li, compares each of these neighborhood landscapes with all
atomic landscapes L1, · · · ,Lk through the function comp(·, ·), and adds 1 whenever a
compatible pair is found. Therefore, the function ob j1 measures the degree of compati-
bility of a set of atomic landscapes induced by the support of a generating function g.
The optimization objective is thus to minimize ob j1, with ob j1(g) = 0 corresponding
to an optimal solution where all neighborhood landscapes are incompatible with the
atomic landscapes, and thus the latter define a conserved landscape rule.

Secondly, a good indicator of the complexity of the dynamical behavior of a marker
CA is the Hamming weight of its generating function g, i.e., the cardinality of its support.

1This method can be generalized using the following greedy procedure. Let supp(g) be the support of
the generating function, and remove x,y ∈ supp(g) such that their Hamming distance is 1. Then, insert in
supp(g) the landscape L that has the same symbols as x and y, except for the single position in which they
differ, where L has a “don’t care” symbol −. Repeat this procedure until no further replacements can be
performed (i.e., all pairs of landscapes in supp(g) have the Hamming distance higher than 1).
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This metric can also be used as a proxy for the utility of a marker CA in cryptography
since it is related to the nonlinearity of the resulting vectorial Boolean function [3].
Given a generating function g, we thus define a second optimization objective function
as follows:

ob j2(g) = |supp(g)| . (7)

In the optimization of these objectives, we experimented using three optimization
scenarios. The first one, which we denote as the single-objective scenario, included only
the minimization of the reversibility objective. The fitness function for the first scenario
is then simply defined as:

f it1(g) = ob j1(g) , (8)

where the optimization goal is minimization.
As it became apparent quite early in our experiments that this goal is very easily

attainable with both representations, we modified the fitness function so the evolution
could generate more distinct solutions with different Hamming weights. This is made
possible simply by maximizing the Hamming weight value, but only for solutions that
already obtained a conserved landscape solution, i.e., those for which the first objective
is already minimized. At the same time, whenever an algorithm reaches a solution with
a higher Hamming weight, every such individual is added to a set of distinct solutions
reported at the end of each run.

Therefore, in the second scenario, which is denoted as lexicographic optimization,
we are interested in maximizing the Hamming weight while retaining an optimal value
of ob j1. For this reason, we define a second fitness function for this particular case as
follows:

f it2(g) =

{
ob j1 , if ob j1 > 0 ,

−ob j2 , if ob j1 = 0 .
(9)

Stated otherwise, with the second fitness function, we still minimize ob j1 until we reach
a reversible rule, and after that, we minimize the opposite of the Hamming weight (thus,
equivalently, we are maximizing ob j2).

Finally, we included a multi-objective approach to investigate the interaction be-
tween the reversibility of a marker CA rule and the Hamming weight of its generating
function. In the multi-objective scenario, we minimized the reversibility objective ob j1
and maximized the Hamming weight as defined by ob j2 in Equation (7).

5 Experimental Evaluation
In this section, we present the experimental setting and results obtained by applying
GA and GP on Problem 1. We start by performing an exhaustive exploration of all
conserved landscape rules up to diameter d = 6, which is still computationally feasible.
Next, we use the findings obtained from the exhaustive search to formulate our research
questions and lay down our experimental settings. Finally, we present the results of our
parameter tuning and discuss them in light of our research questions.

5.1 Preliminary Exhaustive Search
As noted in Section 4.2.1, the local rule of a marker CA of diameter d can be identified
with its generating function g of d−1 variables, computed on the neighborhood cells
surrounding the origin since the state of the central cell is XORed with the result of
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g. Given a diameter d ∈ N, this means that we can define the phenotype space as the
set P (d) = {g : Fd−1

2 → F2} of all Boolean functions of d−1 variables. The genotype
space, on the other hand, will correspond to the set of all binary strings of length 2d−1

specifying the truth tables Ωg of the generating functions in P (d). For GP, it will be the
space of all Boolean trees whose terminals represent the d−1 input variables and the
internal nodes represent Boolean operators.

Since the number of Boolean functions of d−1 variables is 22d−1
, the phenotype

space P (d) can be exhaustively searched for reversible marker CA rules up to diameter
d = 6, since there are at most 232 ≈ 4.3 · 109 generating functions to check for the
conserved landscape property. As far as we know, an exhaustive search of reversible
marker CA rules has been carried out only by Patt [29], who considered diameters up
to d = 4. For completeness, Table 1 reports the numbers of conserved-landscape rules
we found by exhaustively searching the sets of generating functions up to d = 6 for
each possible value of ω, along with the length of the truth table (2d−1), the size of the
phenotype space (#P (d)), and the observed Hamming weights. Recall that the Hamming
weight of the generating function corresponds to the number of atomic landscapes over
which a cell flips its state. We excluded from the count the identity rule, which copies
the state of the central cell since it is trivially reversible for any diameter. Further, we
halved the numbers of the remaining rules since, if a rule is of the conserved landscape
type, then its complement is too. As a general remark, one can see from Table 1 that
the number of conserved landscape rules is much smaller than the size of the whole
generating function set for any offset ω. Another interesting observation is that the
highest numbers of conserved landscape rules are always found when ω corresponds to
the center of the neighborhood or to its immediate left or right (if d is even). Indeed,
the extreme cases are ω = 0 and ω = d, where no conserved landscape rules exist. As
noted in [6], if the offset is on either the leftmost or rightmost cell of the neighborhood,
then any landscape is always compatible with at least another one. Also, the fact that
the distributions of conserved landscape rules are symmetrical to the center of the
neighborhood is backed by the results proved in [39], where reversible marker rules
in different offsets are shown to be symmetric under rotations and reflection. Finally,
the number of the observed Hamming weights is quite limited since, for the largest
considered instance of diameter d = 6, we only found reversible rules defined by at
most three landscapes, which are thus not very useful for cryptographic and reversible
computing purposes.

5.2 Research Questions
The empirical observations obtained from the exhaustive search experiments presented
in the previous section prompted us with three research questions:
• RQ1: Does the limited number of conserved landscape rules with respect to the

search space size imply a difficulty for evolutionary algorithms to find them?
• RQ2: Do there exist conserved landscape rules of a larger diameter that are

useful for cryptographic and reversible computing applications, i.e., having larger
Hamming weights with respect to the size of the generating function truth table?

• RQ3: Is there a trade-off between the reversibility of a marker CA rule (as mea-
sured by the objective function ob j1 defined in Section 4.2.2) and its Hamming
weight (as defined by the second objective ob j2)?
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Table 1: Numbers of conserved landscape rules found by exhaustive search, up to
equivalence by complement and excluding the trivial identity rule. Last column reports
the approximate time (in seconds) needed to span the entire search space for each ω.

d 2d−1 #P (d) ω #REV Weights Time

4 8 256

0 0 −

∼0.1s1 1 1
2 1 1
3 0 −

5 16 65536

0 0 −

∼120s
1 2 1
2 5 1,2
3 2 1
4 0 −

6 32 4.3 ·109

0 0 −
1 8 1,2
2 23 1,2,3
3 23 1,2,3
4 8 1,2
5 0 −

Although these research questions are inherited from the conference version of this
work [23], we emphasize that here they are explored from a different perspective,
especially concerning the first two. In particular, in our previous conference paper, the
offset ω was fixed to the neighborhood center, i.e., ω = b(d−1)/2c. The reason for that
choice was that, as shown in Table 1, most of the reversible rules are found when the
offset is closer to the center.

On the other hand, in this work, we consider the situation where the offset is fixed
to ω = 3 for the experiments described in the next sections. The reason is twofold: first,
by keeping the offset to a fixed value, one could reasonably expect that the difficulty
for evolutionary algorithms to converge to an optimal solution increases even more by
considering larger diameters than by placing ω near to the center. Indeed, increasing the
diameter while keeping ω fixed means that the origin of the landscape rules gets farther
from the center. Consequently, as experimentally observed through an exhaustive search,
the number of optimal solutions becomes smaller, and this, in turn, likely affects the
answers to RQ1 and RQ2 as discussed in our conference paper [23]. Further, in principle,
one may assume that the trade-off between the compatibility fitness and the Hamming
weight could change by considering an offset far from the center of the neighborhood,
thereby potentially affecting also the answer to RQ3. Finally, the second reason for
choosing a fixed ω in our investigation is more of a practical nature: in this way, we can
adopt a more uniform experimental setting, especially concerning the parameter tuning
phase described in Section 5.4.

5.3 Experimental Settings
We utilized a genetic algorithm with truth table encoding and genetic programming
with a tree-based representation to investigate the stated research questions. Both
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representations use the same selection scheme, a steady-state elimination tournament;
in each iteration, three individuals are randomly selected from the population. A
new solution is generated by applying crossover to the best two individuals from the
tournament. The new individual undergoes mutation, subject to a predefined individual
mutation rate, which is an algorithm parameter. Finally, the new individual replaces the
worst one from the tournament, and the process is repeated. Each iteration produces
one new individual and performs a single fitness evaluation. Apart from the described
method, we also experimented with an evolutionary strategy-based scheme, in which a
number of offspring is generated using mutation only; however, preliminary experiments
showed that this selection method produced inferior results for both representations. In
the multi-objective approach, we used the well-known NSGA-II algorithm [7].

For the truth table binary representation (GA), we employed one-point, two-point,
and uniform crossover operators selected at random at each iteration. The mutation
operator was a single bit-flip on a randomly selected position. In the tree-based repre-
sentation (GP), five crossover operators are used at random: simple subtree crossover,
uniform crossover, size fair, one-point, and context preserving crossover. As in the
GA case, a single mutation type was used, the subtree mutation, with a fixed mutation
probability of 0.5 [34].

The function set used in the tree-based encoding included the binary operators
AND, OR, XOR, XNOR, AND with the second input complemented, and the unary
operator NOT. Additionally, we included the ternary function IF, which returns the
second argument if the first one is true and the third one otherwise. We performed a
tuning phase to investigate which subset of these functions provides the best results.

For each considered optimization scenario (single-objective where f it1 is minimized,
multi-objective where ob j1 and ob j2 are respectively minimized and maximized, and
lexicographic optimization where f it2 is minimized) we performed our experiments on
the spaces of marker CA rules with diameter 7 ≤ d ≤ 15. Therefore, with respect to
our previous results reported in [23], we extended our investigation with two additional
diameter values. Each experiment was repeated for 50 independent runs to obtain
statistically reliable results, and each run was given a budget of 500000 evaluations,
which is the same as adopted in [23]. Indeed, as it will be clear in the next sections,
such a budget proved to be more than sufficient to investigate our research questions,
and we deemed unnecessary a larger one.

5.4 Parameter Tuning
To set up the different parameters of the evolutionary algorithms employed for our
experiments, we performed a tuning phase on the instance of marker CA rules with
diameter d = 10 and ω = 3. Recall, in our previous experiments presented in [23], we
carried out this phase on d = 7 and ω = 3. While we already elaborated in Section 5.2
why we chose an asymmetric offset for all our experiments, we tuned our evolutionary
algorithms on a larger problem instance mainly for robustness reasons. Indeed, d = 7 is
the smallest instance where it makes sense to tune an evolutionary algorithm for this
problem, since, for smaller values, the search space is limited enough that the problem
can be easily solved by exhaustive search, as discussed in Section 5.1. Moreover, in this
case, ω = 3 corresponds to the center of the neighborhood. Hence, we selected d = 10
as a sufficiently representative instance of our new experimental setting since the offset
is far enough from the peak of the distribution of optimal solutions occurring in the
center.

In the GA case, we tuned the population size p and the mutation probability µ.
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In particular, the population size ranged among the values {100,200,500}, while the
mutation probability was in the range {0.3,0.4,0.5,0.6,0.7,0.8,0.9}.

For GP, besides the population size in the same range as GA, we tuned the maximum
depth of the trees, considering the values in {5,7,9,11}. The motivation is that in our
experiments in [23] we always set the maximum depth equal to d−1, mainly following a
heuristic adopted in previous works on the optimization of Boolean functions [13,21,30].
However, one could argue that by using these methods for large diameters such as
d ≥ 10, one could end up with very large trees, eventually making the investigation of
the evolved solutions for interpretability more difficult. Likewise, one could also argue
that a larger maximum depth could be beneficial to converge more rapidly on an optimal
solution. For this reason, we experimented both with smaller and greater maximum
depth with respect to the initial value d−1.

Finally, the third parameter that we tuned for GP is the set of Boolean operators
used in the internal nodes of the trees. In [23], we used a function set composed of four
binary operators (AND, OR, XOR, and XNOR), one unary operator (NOT), and one
ternary operator (IF). Again, the motivation for this choice was the previous experience
with optimization problems related to Boolean functions solved using GP [13, 21, 30].
However, as correctly remarked by one of the reviewers of [23], such a set could easily
induce the GP trees to bloat since, for example, XNOR is equivalent to the composition
of NOT and XOR. Although bloat was already controlled in our previous experiments
by adopting the maximum depth parameter, we decided to investigate this question
more thoroughly. To this end, we started with a minimal set of operators such that any
Boolean function can be expressed by a combination of them, i.e., AND, OR, and NOT.
Then, we added to this minimal set the combinations of XOR, XNOR, AND with the
second input complemented, and IF, retaining only the combinations that significantly
improved the results.

For both GA and GP tuning, each parameter combination was tuned with a fitness
budget of 100000 evaluations, repeated in 30 independent runs for statistical significance
purposes. After each run, the fitness value of the best individual was recorded, thus
obtaining a sample of 30 observations that approximated the distribution of the best
fitness for a particular parameter combination. Moreover, to select the parameter
combinations to be used in our subsequent experiments, we performed a two-stage
statistical analysis with non-parametric tests. First, we used the Kruskal-Wallis test [15]
to compare a group of parameter combinations all at once, using a significance level
of α = 0.05. If no significant differences were observed, then another criterion for
selecting the parameter combination to be used among those in the group was adopted
(i.e., highest median). On the other hand, if the distributions were detected to be
significantly different, we employed the Mann-Whitney U test [20] to perform pairwise
comparisons and determine the best parameter combination. In particular, the null
hypothesis for the test was that the random variable of the fitness represented by the
first distribution was better than that of the second distribution. Here, the definition
of “better” depends on the context: when we performed the tuning for the single-
objective versions of our algorithms where only the reversibility fitness function is
used, then better corresponds to lower fitness values. For the lexicographic optimization
approach, on the other hand, the objective is to maximize the Hamming weight while
retaining reversibility. Hence, in this case, better corresponds to the higher Hamming
weight values. The significance level was again set to α = 0.05, applying Bonferroni
correction [8] since we performed multiple comparisons.
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Figure 7: Heatmap for the tuning phase of LEXGA. The numbers inside the cells refer
to the median fitness obtained by the best individual across all experimental runs.

5.4.1 GA Tuning

For the GA tuning, we performed a complete sweep across all 3×7= 21 parameter com-
binations for population size and mutation rate, considering both the single-objective
case (SOGA), where only f it1 is minimized, and the lexicographic optimization ap-
proach (LEXGA), where f it2 is minimized. Concerning SOGA, no differences were
detected during the parameter sweep: indeed, for each considered parameter combina-
tion, the best solution always reached an optimal fitness in all 30 experimental runs. For
this reason, we focused only on the lexicographic optimization approach, adopting the
same parameter combination selected for LEXGA also for SOGA.

Figure 7 depicts the heatmap of the median best fitness obtained by LEXGA across
all 21 parameter combinations of population size and mutation probability. Note that
we only show the Hamming weight being maximized as the second objective since
the first objective was optimal in every case. The color gradient already indicates an
advantage in using large populations and high mutation rates. Indeed, after performing
the Kruskal-Wallis test for all 21 distributions, significant differences were detected.
For this reason, we proceeded by performing pairwise comparisons through the Mann-
Whitney U test. As a criterion to select the best parameter combination, we used a
ranked tournament: each distribution was compared against all others, and if the Mann-
Whitney U test rejected the null hypothesis (that is, the obtained p-value was below
the corrected significance level), then a +1 was scored by the distribution, and the
distribution scoring the highest number of points was then selected as a winner. This
resulted in the combination p = 500 and µ = 0.9, since it achieved 20 points (i.e., it
had significant differences against all other combinations), while the second-best ones
reached a consistently lower score of 7. Incidentally, this analysis also confirmed the
result suggested by the heatmap, although only the median best fitness was considered
there. Therefore, both for LEXGA and SOGA, we selected a population size of 500
individuals and a mutation probability of 0.9.

5.4.2 GP Tuning

The number of parameter values to test for GP was 3 for the population size, 4 for
the maximum depth, and 7 for the subsets of operators. Checking all 84 parameters
combinations resulting from a grid search, as in the case of GA, would have implied a
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too large computational effort. Therefore, we decided to opt for a lexicographic tuning
approach: first, we determined the best maximum depth among {5,7,9,11} by keeping
the population size fixed to 100 individuals and using the minimal operators set of AND,
OR, NOT. Then, we used the best maximum depth values and the same set of operators
to tune the population size. Finally, we tuned the operators set by using the selected best
population size and maximum depth.

Similar to the GA tuning, in the single-objective scenario (SOGP), no differences
were observed since, in all the configurations, GP always obtained the optimal solution
in every algorithm run. Therefore, we used the lexicographic scenario (LEXGP) to
estimate the appropriate set of parameters.

Concerning the first phase (maximum depth tuning), significant differences were
detected with the Kruskal-Wallis test on the set {5,7,9,11}. Using the Mann-Whitney U
test with a ranked tournament as in the case of LEXGA, the best values for this parameter
were 7 and 9, with no significant differences between them. For this reason, we kept
them both for the next phase, where we analyzed all combinations of parameters for
maximum depth in {7,9} and population size in {100,200,500}. Once again, significant
differences resulted from applying the Kruskal-Wallis tests on such distributions. Using
the ranked tournament approach for the pairwise comparisons with the Mann-Whitney
U test, we obtained 4 remaining combinations, each achieving the same score. Among
these 4 remaining combinations, we selected the one with the highest median best
fitness, i.e., 500 individuals for the population size and maximum depth of 9. Finally, for
the last phase, where the tuning was performed by adding operators to the minimal set,
no significant differences arose from the Kruskal-Wallis test. Hence, we again selected
the combination with the highest median fitness. The final parameters combination
selected for both LEXGP and SOGP was p = 500, d = 9 and operator set including
AND, OR, NOT, and AND with second input complemented. In particular, since the
selected maximum depth turned out to be equal to 9 while the tuning diameter was 10,
we kept d−1 as a maximum depth for all other instances in the subsequent experiments,
as done in our previous work [23].

6 Results
In this section, we present the results emerging from our experimental evaluation. First,
we discuss the results for single-objective optimization, followed by those on multi-
objective and lexicographic optimization. Finally, we analyze the diversity of the CA
rules obtained in our experiments by using several metrics related to the number of
unique solutions and the different Hamming weights.

6.1 Single-objective Optimization Results
Figure 8 gives results for the single-objective GA and GP considering the number of
evaluations needed to reach the optimal value. For GP, we reach optimal fitness value
for each dimension already in the initial population, making the results less interesting.
A possible reason why GP shows such a behavior is that it is easier to guess a generating
function that results in a reversible marker CA rule with a random algebraic expression
than with a random string of bits, as in the case of GA. Still, we require somewhat more
evaluations for larger dimensions, indicating that it becomes slightly more difficult to
guess optimal solutions randomly.
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Figure 8: Comparison of fitness evaluations performed by SOGA and SOGP, in loga-
rithmic scale. The error bands represent the standard deviation.

For GA, we observe an exponential increase in the number of required fitness
evaluations concerning the diameter sizes (remark that the fitness evaluations axis
in the plot is in logarithmic scale). This indicates that larger problem instances are
more difficult, but there should be no reason why GA would not work well on even
larger diameters. A similar trend was also observed in our previous investigation [23],
although there, a much smaller population was used. Indeed, the number of fitness
evaluations required with our current setting is consistently smaller than in our previous
one, requiring less than 100 000 fitness evaluations to converge for d = 13. This seems
to indicate that using a larger population is beneficial for GA.

Next, in Figure 9, we display convergence plots for the GA and GP single-objective
optimization algorithms. We plot the median best fitness results, focusing only on
diameter size d from 12 to 15, as smaller sizes show similar trends, but the optimization
process becomes much easier. Notice that for GP, all cases show that the random initial
population contains optimal solutions. On the other hand, GA starts with large fitness
values but continuously improves them and reaches the optimal value after using around
70% of the fitness evaluation budget allowed.

6.2 Multi-objective Optimization Results
Figure 10 depicts the Pareto fronts approximated by MOEA when minimizing the
compatibility score (i.e., ob j1) and maximizing the Hamming weight (i.e., ob j2). For
the sake of readability, we only report the fronts for d = 9,10,11. The scale difference
on the Hamming weight axis between one diameter size d and the next one is so large
that displaying all fronts between d = 7 and d = 15 would only make the larger ones
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Figure 9: Single-objective convergence plots.

visible, rendering indiscernible the smaller ones. However, this is not a serious issue
since all fronts obtained in our experiments follow similar shapes.

The curves in Figure 10 corroborates the previous findings reported in [23]: the
closer a CA marker rule is to be of the conserved landscape type, the lower the Hamming
weight of its generating function must be. The first extreme case occurs when the rule
achieves an optimal compatibility score of 0 (i.e., the rule is reversible), with very
small Hamming weights observed (see also Section 7 for an overview of the possible
Hamming weights when adopting a lexicographic optimization approach). On the
other side, one can see that the compatibility fitness reaches its highest values when
the Hamming weight is maximal, and in particular, it is about half the length of the
generating function truth table. Hence, this indicates that marker CA rules with balanced
generating functions (whose truth tables are composed of an equal number of 0s and 1s)
are the farthest possible from being reversible under the conserved landscape definition.

6.3 Lexicographic Optimization Results
In Figure 11, we depict convergence plots for the lexicographic optimization approach.
As before, we depict the median of the best fitness value obtained over all experimental
runs. Recall that in this case, the optimization objective is the minimization of f it2,
where the compatibility objective is first minimized to get a reversible rule, and then
the opposite of ob j2 is minimized in order to maximize the Hamming weight of the
generating function. Notice also that we cut off the fitness values larger than 100 as
GA starts with very large fitness values while GP starts with values close to 0, making
the final differences between GA and GP not noticeable. Considering GA, we observe
around the same percentage of the evaluation required to reach fitness 0 as for the single-
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Figure 10: Pareto fronts for 9≤ d ≤ 11 approximated by MOEA.

objective case. Afterward, it manages to optimize further the Hamming weight making
the results comparable with GP. On the other hand, GP again starts with solutions around
0 and slowly improves the fitness value by maximizing the Hamming weight. For sizes
up to 14, GA manages to find better final solutions than GP, where the difference is
especially noticeable for d = 14. Interestingly, for d = 15, GP finds better final solutions
but shows no improvement after around 40% of the fitness budget is used. On the other
hand, GA improves the fitness values consistently throughout the evolution process,
indicating that with more evaluations, GA could probably reach the performance level
of GP.

6.4 Diversity Analysis
In Table 2, we provide various diversity metrics for the results obtained for all considered
problem instances and algorithms, excluding MOEA. The reason is that we used the
multi-objective optimization approach to investigate a different research question not
related to the diversity of the solutions. In particular, for each of the four algorithms
(SOGA, SOGP, LEXGA, and LEXGP) and diameter 7≤ d ≤ 15, we report the number
of unique Hamming weights found (UHW), the minimum and maximum Hamming
weights observed (respectively mHW and MHW), and the number of unique solutions
found (USol). The numbers in bold are the highest values across all methods for each
considered diversity metric and diameter.

Considering the single-objective algorithms, notice that GP finds more unique
Hamming weights, where the differences are small for smaller diameter sizes but
become even an order of magnitude larger for greater diameters. The minimal Hamming
weight is equal to 1 for both algorithms and all diameter sizes, which is not surprising as
single-objective algorithms do not aim to maximize the Hamming weight. The maximal
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Figure 11: Lexicographical optimization convergence plots.

Hamming weights are slightly larger for GP, especially for larger sizes. Again, this is
not unexpected as GP finds optimal solutions already in the initial population, while
GA required a significant number of evaluations to reach that performance level. On
the other hand, if we consider the number of unique solutions found, we observe that
GA works better (i.e., it found more diverse solutions). This result is aligned with our
previous discussion as GP finds optimal solutions from the beginning, but then it is
intuitive that some of those solutions could repeat. Indeed, syntactically different GP
trees could map to the same truth table, thus giving rise to the same reversible rule.
Going to larger diameter sizes gives good diversity results for GP too, since then, more
solutions are optimal.

Next, considering the lexicographic optimization, the number of unique Hamming
weights is similar for both GA and GP. The minimal Hamming weight for larger
diameters is smaller for GP than GA and similar for smaller diameters. This indicates
that the evolution process works better on average for GA, as a larger part of the
population exhibits good behavior. For the maximal Hamming weights, we see that
GP reaches better results for large diameters, but this is to be expected. Indeed, as GP
has solutions with fitness equal to 0 already in the initial population, it can “use” the
whole evolution process to optimize the Hamming weights. On the other hand, GA
requires more than half of evaluations to reach a compatibility score of 0, which means
it has much fewer evaluations available to maximize the Hamming weights. Still, the
convergence plots indicate that GA progresses well throughout the evolution process.
Possibly, adding more evaluations would allow GA to (at least) reach the Hamming
weight values obtained with GP.

Finally, Figure 12 presents the Hamming weight distributions for all considered
algorithms and diameter sizes. First, notice that we can recognize two natural groupings
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Table 2: Diversity metrics for the solutions produced by all optimization methods
(excluding MOEA) over all considered diameters.

Algorithm Metric d
7 8 9 10 11 12 13 14 15

SOGA

UHW 5 4 4 6 6 6 6 7 2
mHW 1 1 1 1 1 1 1 1 1
MHW 5 4 4 6 6 6 6 8 3
USol 37 46 50 50 50 50 50 49 39

SOGP

UHW 5 6 9 8 8 7 9 15 13
mHW 1 1 1 1 1 1 1 1 1
MHW 5 8 10 12 16 12 16 19 32
USol 31 34 46 47 49 49 50 50 50

LEXGA

UHW 2 5 10 16 19 26 33 15 21
mHW 6 8 10 15 25 37 65 126 206
MHW 7 12 19 30 45 74 116 191 313
USol 23 34 46 50 50 50 50 50 50

LEXGP

UHW 2 4 5 12 16 19 34 28 27
mHW 6 8 16 16 24 32 32 48 95
MHW 7 12 25 30 48 68 128 170 344
USol 45 50 50 50 50 50 50 50 49

of the distributions, i.e. those related respectively to single-objective optimization and
lexicographic optimization. Since in the single-objective optimization, the goal is to
reach a fitness value of 0 (i.e., we do not try to maximize the Hamming weight), we
can observe that both GA and GP perform similarly and the increase in the Hamming
weight value happens only due to a larger diameter (and thus, problem instance). On
the other hand, GP performs better on smaller sizes for the lexicographic optimization
scenario, which is expected as the initial population already reaches fitness equal to
0, and the obtainable Hamming weight values are relatively close to 0. Considering
larger diameters, GA shows slightly better behavior on average. Still, considering the
extreme values, we can notice that GP performs better for sizes 13 and 15. Again,
this is not surprising as GP has a better “starting position”, so a greater portion of
the evolution process can be used to maximize the Hamming weight. We believe
adding more evaluations would resolve this problem and make GA a better performing
algorithm, considering the best-obtained values.

7 Discussion
We now discuss the results obtained from our experimental evaluation applied on
Problem 1 concerning the three research questions stated in Section 5.2.

Concerning RQ1, our experiments in the single-objective optimization scenario
further confirm the findings we reported in [23]. Indeed, despite the exiguous number of
conserved landscape rules compared to the huge size of the search space, both GA and
GP always converge to an optimal solution. Moreover, notice that we are dealing with
an even smaller optimal set in our current setting than the one adopted in [23], since
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Figure 12: Hamming weight distributions across all compared algorithms and diameters.

we set ω = 3 instead of ω = bd−1c/2. Nevertheless, this does not seem to pose any
significant problem for the considered evolutionary algorithms. There is, however, an
important distinction to observe on this statement: while the difficulty for GA to find a
reversible rule increases as the diameter gets bigger, GP almost always finds an optimal
solution already in the initial population, without even needing to start the evolution
process. As mentioned in Section 6.1, the likely reason for this substantial difference in
performances lies in the underlying genotype representations. Arguably, the chances of
guessing at random a bitstring of length 2d−1 that maps to a conserved landscape rule
of diameter d are quite low due to the very small number of such rules observed in our
exhaustive search experiments. Since the GA population is initialized exactly in this
way, it is thus very unlikely that the initial population will already include an optimal
individual. Moreover, a random bitstring will likely have the Hamming weight close to
half of its length, or equivalently it will be close to being balanced. As we remarked in
Section 6.2, balanced bitstrings occur on the top right limit of the Pareto front. Hence
they always have the highest possible value concerning the compatibility fitness that
one seeks to minimize.

Contrarily, the maximum depth allowed for the trees evolved by GP is linear in the
diameter of the local rule, so it is much smaller than the length of the corresponding truth
table, which is instead exponential in the diameter. Consequently, it seems reasonable
that a random GP tree will map to a truth table with a small Hamming weight. A further
explanation of this phenomenon is that in our experiments, we did not use the XOR and
XNOR since they were filtered out during the tuning phase. This reduces the probability
that the truth table obtained from the evaluation of a GP tree will be balanced, and thus
that it will have a large Hamming weight.

Regarding RQ2, our results obtained with the lexicographic optimization approach
are also in line with our findings presented in [23]. Regardless of the fact that LEXGA
and LEXGP were able to find higher Hamming weights than in our previous experiments,
they are nonetheless too low to be of any use for cryptographic applications. In particular,
we can say something more precise in this respect: as mentioned in Section 1, the
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Hamming weight is a good proxy for the nonlinearity of a Boolean function, which is
a measure of its distance from the set of affine functions. Ideally, Boolean functions
of d variables used in stream and block ciphers should have a nonlinearity as high as
possible, in the order of 2d−1 (we refer the reader to [3] for the reason why this is
the case). Moreover, Cusick [4] showed that the nonlinearity of a d-variable Boolean
function coincides with its Hamming weight if the latter is sufficiently small, i.e., if it
is less than 2d−2. In our case, all generating functions evolved by GA and GP have a
Hamming weight which is significantly below 2d−2, so their nonlinearity corresponds to
their weight. Therefore, our results rule out the possibility of using conserved landscape
CA in the design of symmetric ciphers components such as filter functions or S-boxes.

Finally, concerning RQ3, the results obtained by our multi-objective optimization
experiments further corroborate our previous findings in [23]. In particular, also in
the case of a fixed offset ω far from the center of the neighborhood, the Pareto fronts
approximated by MOEA show that there is a clear trade-off between the reversibility of
a marker CA rule under the conserved landscape definition and its Hamming weight.
Moreover, the shapes of the fronts are quite similar to those obtained in [23] where the
offset was placed at the center. This further suggests that the relationship between the
compatibility objective function and the Hamming weight is independent of the cell’s
position that gets updated in the neighborhood.

8 Conclusions and Future Works
In this paper, we considered the search of locally invertible cellular automata defined
by conserved landscape rules as a combinatorial optimization problem, using GA
and GP to solve it. We based our experimental investigation around three research
questions stemming from exhaustive search experiments. To investigate them, we
adopted three optimization approaches – a single-objective, a multi-objective, and a
lexicographic optimization approach. After performing a thorough parameter tuning
phase, we evaluated the spaces of marker CA rules with diameters between 7 and 15,
therefore expanding the experiments presented in [23] with three additional problem
instances. In general, the results obtained from this new set of experiments corroborate
the findings of our previous work. In particular, in this new set of experiments, the main
new finding is that we fixed the rule offset ω to 3 for all problem instances instead of
setting it at the center of the neighborhood. Contrary to our initial assumption, where we
hypothesized that this choice would make the optimization problem harder, it turned out
to be simpler, especially in the GP case. On the other hand, similar trends of increasing
difficulty were observed for GA, although with smaller magnitudes than in the results
presented in [23]. As argued in Section 7, this difference is most likely caused by
the different genotype representations used by GA and GP. Further, the Pareto fronts
obtained through our multi-objective optimization experiments not only confirm that
the closer a marker CA rule is to be of the conserved landscape type, the lower its
Hamming weight must be, but also the converse. Balanced generating functions, which
have maximal Hamming weight, are also the farthest possible from inducing a reversible
rule. This gave us an additional insight for the reason that GP finds an optimal solution
already in the initial population, since the maximum depth enforced on the GP trees is
sufficiently small that the resulting truth table will likely have a small Hamming weight.

Several avenues for future research remain to be explored on this subject. Regarding
the first research question, the fact that the number of fitness evaluations required
for GA to find a conserved landscape rule increases exponentially in the diameter
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seems to indicate that the difficulty of Problem 1 can be easily tuned for optimization
algorithms with a bitstring-based representation. This could have in turn potential
interesting applications for benchmark purposes. Further, it would be interesting to
study this problem from the perspective of runtime analysis. Possibly, one could derive
upper bounds on the number of fitness evaluations necessary for a simple evolutionary
algorithm to converge on a conserved landscape rule. Likewise, although optimizing
only the reversibility property is a trivial problem for GP, it could still be interesting to
formally investigate from a theoretical point of view what is the probability of guessing
a tree at random that maps to an optimal solution.

For the second research question, our new findings corroborate that the utility of
conserved landscape CA for cryptography and reversible computing is quite limited since
their Hamming weights are too low concerning the truth table size of their generating
functions. Nonetheless, as remarked in Section 2.3, one can easily relax the definition of
conserved landscape rules by allowing partial overlapping of the landscapes and obtain
a larger class of reversible CA with more complex behaviors. A possible idea worth
exploring in this direction would be to adapt the fitness function f it1 to allow for this
partial overlapping and use GP to investigate the Hamming weights of the resulting
reversible CA, in particular with the lexicographic optimization method that proved to
be the best performing one.

Finally, for the third research question, as discussed above the Pareto fronts approxi-
mated by MOEA showed a clear trade-off between the reversibility of marker CA rules
and the Hamming weights of their generating functions. As far as we know, there are
no results in the CA literature addressing this aspect of conserved landscape CA. It
would thus be interesting to exploit our experimental observation for formally proving
an upper bound on the Hamming weight that a conserved landscape CA can achieve.

Availability of Code and Experimental data
The code and experimental data are available at https://github.com/rymoah/EvoRevCA.

References
[1] T. Bäck and R. Breukelaar. Using Genetic Algorithms to Evolve Behavior in

Cellular Automata. In Unconventional Computation, pages 1–10. Springer Berlin
Heidelberg, 2005.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The KECCAK reference,
2011.

[3] C. Carlet. Boolean functions for cryptography and coding theory. Cambridge
University Press, 2021.

[4] T. W. Cusick. Weight = nonlinearity for all small weight boolean functions. CoRR,
abs/1710.02034, 2017.

[5] E. Czeizler and J. Kari. A tight linear bound on the neighborhood of inverse cellular
automata. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung,
editors, Automata, Languages and Programming, 32nd International Colloquium,
ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, volume 3580 of
Lecture Notes in Computer Science, pages 410–420. Springer, 2005.

30

https://doi.org/10.1007/s10710-021-09415-7
https://github.com/rymoah/EvoRevCA


This is a post-print version of an article published in Genetic Programming and Evolvable Machines. The final publication

is available at Springer via https://doi.org/10.1007/s10710-021-09415-7

[6] J. Daemen. Cipher and hash function design strategies based on linear and
differential cryptanalysis. PhD thesis, Doctoral Dissertation, March 1995, KU
Leuven, 1995.

[7] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 6(2):182–197, 2002.

[8] O. J. Dunn. Multiple comparisons among means. J. Am. Stat. Assoc., 56(293):52–
64, 1961.

[9] J. García-Duro, L. Manzoni, I. Arias, M. Casal, O. Cruz, X. M. Pesqueira,
A. Muñoz, R. Álvarez, L. Mariot, S. Bandini, and O. Reyes. Hidden costs of
modelling post-fire plant community assembly using cellular automata. In Cellular
Automata - 13th International Conference on Cellular Automata for Research and
Industry, ACRI 2018, Como, Italy, September 17-21, 2018, Proceedings, pages
68–79, 2018.

[10] D. Green. Cellular automata models in biology. Mathematical and Computer
Modelling, 13(6):69 – 74, 1990.

[11] G. A. Hedlund. Endomorphisms and Automorphisms of the Shift Dynamical
Systems. Mathematical Systems Theory, 3(4):320–375, 1969.

[12] P. Hogeweg. Cellular automata as a paradigm for ecological modeling. Applied
Mathematics and Computation, 27(1):81–100, 1988.

[13] D. Jakobovic, S. Picek, M. S. R. Martins, and M. Wagner. Toward more efficient
heuristic construction of boolean functions. Appl. Soft Comput., 107:107327,
2021.

[14] J. Kari. Reversible Cellular Automata: From Fundamental Classical Results to
Recent Developments. New Generation Comput., 36(3):145–172, 2018.

[15] W. H. Kruskal and W. A. Wallis. Use of ranks in one-criterion variance analysis.
Journal of the American Statistical Association, 47(260):583–621, 1952.

[16] P. Kurka. Topological dynamics of cellular automata. In Encyclopedia of Com-
plexity and Systems Science, pages 9246–9268. 2009.

[17] R. Landauer. Irreversibility and Heat Generation in the Computing Process. IBM
Journal of Research and Development, 5(3):183–191, 1961.

[18] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic. Genetic
algorithms for the travelling salesman problem: A review of representations and
operators. Artif. Intell. Rev., 13(2):129–170, 1999.

[19] D. Lind and B. Marcus. An introduction to symbolic dynamics and coding. Cam-
bridge University Press, 2021.

[20] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics, 18(1):50 – 60, 1947.

[21] L. Mariot, D. Jakobovic, A. Leporati, and S. Picek. Hyper-bent Boolean Functions
and Evolutionary Algorithms. In Genetic Programming, pages 262–277, 2019.

31

https://doi.org/10.1007/s10710-021-09415-7


This is a post-print version of an article published in Genetic Programming and Evolvable Machines. The final publication

is available at Springer via https://doi.org/10.1007/s10710-021-09415-7

[22] L. Mariot, S. Picek, D. Jakobovic, and A. Leporati. Evolutionary Algorithms
for the Design of Orthogonal Latin Squares Based on Cellular Automata. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
’17, pages 306–313, 2017.

[23] L. Mariot, S. Picek, D. Jakobovic, and A. Leporati. An evolutionary view on
reversible shift-invariant transformations. In T. Hu, N. Lourenço, E. Medvet, and
F. Divina, editors, Genetic Programming, pages 118–134, Cham, 2020. Springer
International Publishing.

[24] L. Mariot, S. Picek, A. Leporati, and D. Jakobovic. Cellular automata based
S-boxes. Cryptography and Communications, 11(1):41–62, 2019.

[25] M. Mitchell, J. P. Crutchfield, R. Das, et al. Evolving cellular automata with
genetic algorithms: A review of recent work. In Proceedings of the First Interna-
tional Conference on Evolutionary Computation and Its Applications (EvCA’96),
volume 8, 1996.

[26] H. Nishio and Y. Kobuchi. Fault tolerant cellular spaces. J. Comput. Syst. Sci.,
11(2):150–170, 1975.

[27] J. Olsen, R. Scholtz, and L. Welch. Bent-function sequences. IEEE Trans. on
Information Theory, 28(6):858–864, November 1982.

[28] K. Paterson. On Codes With Low Peak-to-Average Power Ratio for Multicode
CDMA. IEEE Transactions on Information Theory, 50:550 – 559, 04 2004.

[29] Y. Patt. Injections of Neighborhood Size Three and Four on the Set of Configu-
rations from the Infinite One-Dimensional Tessellation Automata of Two-State
Cells. Technical report, Army Electronics Command Fort Monmouth NJ, 1972.

[30] S. Picek, C. Carlet, S. Guilley, J. F. Miller, and D. Jakobovic. Evolutionary Algo-
rithms for Boolean Functions in Diverse Domains of Cryptography. Evolutionary
Computation, 24(4):667–694, 2016.

[31] S. Picek, L. Mariot, A. Leporati, and D. Jakobovic. Evolving S-boxes Based on
Cellular Automata with Genetic Programming. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO ’17, pages 251–252,
2017.

[32] S. Picek, L. Mariot, B. Yang, D. Jakobovic, and N. Mentens. Design of S-boxes
Defined with Cellular Automata Rules. In Proceedings of the Computing Frontiers
Conference, CF’17, pages 409–414, 2017.

[33] S. Picek, J. F. Miller, D. Jakobovic, and L. Batina. Cartesian Genetic Programming
Approach for Generating Substitution Boxes of Different Sizes. In GECCO
Companion ’15, pages 1457–1458. ACM, 2015.

[34] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza. A field guide to genetic
programming. Lulu. com, 2008.

[35] D. Richardson. Tessellations with local transformations. J. Comput. Syst. Sci.,
6(5):373–388, 1972.

32

https://doi.org/10.1007/s10710-021-09415-7


This is a post-print version of an article published in Genetic Programming and Evolvable Machines. The final publication

is available at Springer via https://doi.org/10.1007/s10710-021-09415-7

[36] M. Sipper and M. Tomassini. Co-evolving Parallel Random Number Generators.
In Parallel Problem Solving from Nature - PPSN IV, Berlin, Germany, September
22-26, 1996, Proceedings, pages 950–959, 1996.

[37] G. C. Sirakoulis, I. Karafyllidis, C. Mizas, V. A. Mardiris, A. Thanailakis, and
P. Tsalides. A cellular automaton model for the study of DNA sequence evolution.
Comp. in Bio. and Med., 33(5):439–453, 2003.

[38] K. Sutner. De Bruijn graphs and linear cellular automata. Complex Syst., 5(1),
1991.

[39] T. Toffoli and N. H. Margolus. Invertible cellular automata: a review. Physica D:
Nonlinear Phenomena, 45(1-3):229–253, 1990.

[40] S. Wolfram. Statistical mechanics of cellular automata. Reviews of modern physics,
55(3):601, 1983.

33

https://doi.org/10.1007/s10710-021-09415-7

	Introduction
	Cellular Automata (CA)
	Basic Definitions
	Reversible CA
	Marker CA

	Related Works
	Optimizing the Reversibility of CA
	Generic Reversible CA
	Conserved Landscape CA
	Genotype Representation for Marker CA
	Fitness Functions


	Experimental Evaluation
	Preliminary Exhaustive Search
	Research Questions
	Experimental Settings
	Parameter Tuning
	GA Tuning
	GP Tuning


	Results
	Single-objective Optimization Results
	Multi-objective Optimization Results
	Lexicographic Optimization Results
	Diversity Analysis

	Discussion
	Conclusions and Future Works

