
The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99253-2_10

Evolutionary Search of Binary Orthogonal
Arrays

Luca Mariot1, Stjepan Picek2, Domagoj Jakobovic3, and Alberto Leporati1

1 DISCo, Università degli Studi di Milano-Bicocca,
Viale Sarca 336/14, 20126 Milano, Italy

{luca.mariot, alberto.leporati}@unimib.it
2 Cyber Security Research Group, Delft University of Technology,

Mekelweg 2, Delft, The Netherlands
S.Picek@tudelft.nl

3 Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, Zagreb, Croatia

domagoj.jakobovic@fer.hr

Abstract. Orthogonal Arrays (OA) represent an interesting breed of
combinatorial designs that finds applications in several domains such
as statistics, coding theory, and cryptography. In this work, we address
the problem of constructing binary OA through evolutionary algorithms,
an approach which received little attention in the combinatorial designs
literature. We focus on the representation of a feasible solution, which we
encode as a set of Boolean functions whose truth tables are used as the
columns of a binary matrix, and on the design of an appropriate fitness
function and variation operators for this problem. We finally present
experimental results obtained with genetic algorithms (GA) and genetic
programming (GP) on optimizing such fitness function, and compare the
performances of these two metaheuristics with respect to the size of the
considered problem instances. The experimental results show that GP
outperforms GA at handling this type of problem, as it converges to an
optimal solution in all considered problem instances but one.

Keywords: Orthogonal arrays, Genetic algorithms, Genetic programming, Boolean
functions

1 Introduction

The field of combinatorial designs provides an interesting source of problems
for heuristic optimization techniques. Depending on the size of the support set
and the particular nature of the balancedness constraints, the two main research
questions addressed in combinatorial design theory are the following:
1. Existence: Does a design with a particular set of parameters (i.e., support

set, balancedness constraints) exist?
2. Construction: Once the existence question for a specified kind of design is

positively answered, is there an efficient method to generate its instances?

1

https://doi.org/10.1007/978-3-319-99253-2_10

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99253-2_10

Since the existence question of a design can always be cast as a combinatorial
optimization problem [2], it follows that the use of heuristic techniques can
contribute to the above research questions in a twofold way: first, by providing
concrete examples of designs with specific parameters, hence answering the
existence question in positive; second, once the existence question has been
settled, by providing another method for efficiently constructing designs.

Despite this, the amount of literature devoted to the use of heuristic op-
timization techniques for constructing combinatorial designs is rather limited
(see Chapter 6 of [2] for a concise survey). This is especially true for the case
of orthogonal arrays (OA), which represent one of the most interesting breeds
of combinatorial designs, due to their numerous applications in other research
domains such as the design of experiments, error-correcting codes and cryptogra-
phy [11]. Indeed, one can find only the papers by Safadi et al. [9] and Wang et
al. [12] that deal with the construction of mixed-level orthogonal arrays (MOA),
respectively through genetic algorithms (GA) and simulated annealing (SA).
Nonetheless, MOA represent a very specific kind of OA, and to the best of our
knowledge there are no works in the literature addressing the heuristic design of
classic OA through evolutionary algorithms.

The aim of this paper is to begin filling this gap by considering the construction
of orthogonal arrays through evolutionary algorithms (EAs), in particular genetic
algorithms and genetic programming (GP). Beside its potential impact in other
domains mentioned above, this research is also interesting from the evolutionary
computing point of view. As a matter of fact, evolving OA through evolutionary
heuristics requires to define suitable encodings and variation operators, which
could find applications also in other optimization problems. Additionally, depend-
ing on the difficulty of converging to an optimal solution, designing OA could
also represent an interesting benchmark problem for new evolutionary algorithms
and optimization heuristics, as well as for more established ones.

Since the present work is the first one in this line of research, we consider
in particular the modeling aspects of the optimization problem, focusing on the
encodings for the feasible solutions and the design of variation operators to evolve
them. For this reason, we begin by tackling the case of binary orthogonal arrays,
since this allows us to represent the candidate solutions of our problem as sets
of Boolean functions. More specifically, we take the truth tables of such Boolean
functions as the columns of a binary matrix, which actually corresponds to the
phenotype of a candidate solution. On the other hand, the genotype is either a
set of binary strings for GA or a set of Boolean trees for GP.

In order to evaluate the candidate solutions evolved by GA and GP, we design
a fitness function based on the Minkowski distance that measures the deviation
of a binary matrix from being an orthogonal array having specified parameters,
with the goal of minimizing it. In the case of GA, we also exploit a basic property
of orthogonal arrays to design ad-hoc crossover and mutation operators, which
ensure that the Boolean functions composing an individual are balanced, thus
reducing the resulting search space. For GP, we incorporate this property as an
additional penalty factor in the fitness function, since there is no straightforward

2

https://doi.org/10.1007/978-3-319-99253-2_10

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99253-2_10

way to design GP variation operators that enforce the balancedness constraint at
the tree level.

We compute the size of the search spaces respectively explored by GA and
GP in terms of the number of variables of the Boolean functions and the columns
of the binary matrices involved, showing that the resulting search spaces cannot
be exhaustively enumerated already for Boolean functions of n = 4 variables and
k = 8 columns.

The experimental results show that GP largely outperforms GA at evolving
binary OA, even though the latter actually explores a smaller search space. As a
matter of fact, GA is able to find orthogonal arrays defined by up to 8 Boolean
functions of 4 variables, while GP arrives one step further by obtaining also
orthogonal arrays composed of 16 functions of 5 variables. This performance differ-
ence is analogous to the findings reported in [5], where the authors observed that
GP outperforms GA in the generation of cellular automata defining orthogonal
Latin squares, which are a type of combinatorial designs closely connected with
orthogonal arrays. Consequently, the present work brings additional empirical
evidence that GP is a better metaheuristic at handling optimization problems
related to combinatorial designs.

2 Basic Definitions

We begin by giving the basic definition of orthogonal arrays, following the notation
used by Hedayat et al. [3]:

Definition 1. Let S be a finite set of s symbols (called the support set) and
let N, k, t, λ ∈ N with 0 ≤ t ≤ k. An N × k matrix A with entries from S is an
orthogonal array with s levels, k columns, strength t, and index λ (for short, an
OA(N, k, s, t)) if in each submatrix of N rows and t columns each t-uple over S
occurs exactly λ times.

Clearly, if A is an OA(N, k, s, t), then it follows that λ = N/st.
This is the reason why the parameter λ is usually omitted from the specifica-

tion of an OA.
A basic property of orthogonal arrays of strength t is that they satisfy the

balancedness constraint also for smaller strengths, as shown in [3]:

Theorem 1. Let A be an OA(N, k, s, t) with λ = N/st. Then, A is also an
OA(N, k, s, t− i) with λ = N/st−i for all 1 ≤ i < t.

An OA without repeated rows is called simple. If S = {0, 1} (i.e., the symbol
set is the Boolean alphabet), then the OA is called binary.

Simple binary OA have an important application in defining the support of
correlation-immune Boolean functions, which play an important role in the design
of countermeasures for side-channel attacks [1].

Finally, we give a basic definition of Boolean functions and their truth tables:

3

https://doi.org/10.1007/978-3-319-99253-2_10

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99253-2_10

Definition 2. A Boolean function of n variables is a mapping f : Fn
2 → F2.

Assuming that the vector of Fn
2 are lexicographically ordered, the truth table

associated to f is the 2n-bit vector Ω(f) defined as follows:

Ω(f) = (f(0, 0, · · · , 0), f(0, 0, · · · , 1), · · · f(1, 1, · · · , 1)) . (1)

In particular, a Boolean function f : Fn
2 → F2 is called balanced if the number of

zeros in its truth table (and thus also the number of ones) equals 2n−1.
We can now formulate the combinatorial optimization problem which we

will investigate in the rest of this work. We represent the columns of binary
orthogonal arrays with the truth tables of a set of Boolean functions. This can
be formally stated as follows:

Problem 1. Let n, k, t ∈ N. Find k Boolean functions of n variables f1, · · · fk :
Fn

2 → F2 such that the matrix

A = [Ω(f1)>, Ω(f2)>, · · · , Ω(fk)>] (2)

is an OA(2n, k, 2, t), with λ = 2n−t.

In other words, solving Problem 1 requires finding a set of k Boolean functions of
n variables whose truth tables, when put one next to the other, form the columns
of an orthogonal array with N = 2n rows, k columns, 2 levels, and strength t.

3 Specification of GA and GP

3.1 Solutions Encoding

Since Problem 1 requires finding a set of k Boolean functions whose truth tables
form an OA(2n, k, 2, t), the encoding of the feasible solutions can be reduced to
an appropriate representation of sets of Boolean functions which can be easily
handled by evolutionary algorithms. Depending on the underlying heuristic (GA
or GP), we adopted the following approaches:
1. GA encoding : The chromosome c of an individual is defined as follows:

c = (b1, · · · , bk) ,

where, for all i ∈ {1, · · · , k}, bi ∈ F2n

2 is a bitstring of length 2n that represents
the truth table of the i-th Boolean function fi : Fn

2 → F2 composing a feasible
solution. The GA crossover and mutation operators are applied component-
wise on each bitstring bi.

2. GP encoding : The chromosome c in this case is defined as:

c = (T1, · · ·Tk) ,

where, for all i ∈ {1, · · · , k}, Ti is a Boolean tree which encodes a Boolean
function of n variables, using a given set of Boolean operators. In particular,
the 2n-bit string representing the i-th column of the array is determined

4

https://doi.org/10.1007/978-3-319-99253-2_10

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99253-2_10

by evaluating Ti for all possible input combinations on the leaf nodes, and
taking the corresponding outputs of the function as the values computed at
the root node. Similar to the GA encoding case, the GP variation operators
are applied component-wise for each tree in the chromosome of an individual
(or in a pair of individuals, in the case of tree crossover).

3.2 Fitness Function

Once a suitable chromosome encoding has been designed, one needs to define
a fitness function to determine how good the candidate solutions produced by
an evolutionary algorithm are with respect to the optimal ones. In our case, an
optimal solution is defined as a set of k Boolean functions whose truth tables
form the columns of a binary orthogonal array. Hence, a preliminary idea could
be to determine, for each possible subset of t columns of a candidate solution, how
many t-uples are repeated more than λ times, and then minimize this deviation
over all possible subsets of t columns.

Let us formalize the discussion above. Given a set of k Boolean functions
f1, · · · , fk : Fn

2 → F2, let A be the 2n × k matrix formed by placing side by
side the transpose of the truth tables Ω(f1), · · · , Ω(fk) ∈ F2n

2 . Additionally, let
I = {i1, · · · , it} be a subset of t indices, with 1 ≤ ij ≤ k for all j ∈ {1, · · · , t},
and let AI denote the 2n× t submatrix obtained by considering only the columns
of A specified by the indices of I. For all binary t-uples x ∈ Ft

2, let AI [x] denote
the number of occurrences of x in AI , and define the λ-deviation of x as:

δ(AI , x) = |λ−AI [x]| . (3)

Then, given p ∈ N, we define the p-deviation of AI as:

∆(AI)p =

∑
x∈Ft

2

δ(AI , x)p

 1
p

. (4)

In particular, one may notice that Eq. (4) corresponds to the Minkowski
distance (or Lp distance) between the vector Λ = (λ, · · · , λ) and the vector
(AI [(0, · · · , 0)], · · ·AI [(1, · · · , 1)]).

We can now define the fitness function for our optimization problem, which
amounts to the sum of the deviations of all possible N × t submatrices of A:

fitp(A) =
∑

I⊆[k]:|I|=t

∆(AI)p . (5)

Clearly, if A is an orthogonal array with the required parameters, then fitp(A) = 0.
As a consequence, the optimization objective is to minimize fitp.

3.3 Variation Operators

Recall from Theorem 1 that any OA of strength t is also an OA for all strengths
i < t. Considering the extreme case where i = 1, this means that for each column

5

https://doi.org/10.1007/978-3-319-99253-2_10

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99253-2_10

of the array we must see every symbol of the support set equally often. Since
in our problem we are considering binary OA where the number of rows equals
N = 2n, it follows that each column of an optimal solution must be composed
of 2n−1 zeros and 2n−1 ones or, equivalently, that the corresponding Boolean
function of n variables must be balanced.

We can exploit this fact to reduce the size of the search space of feasible
solutions explored by our GA. In fact, since we are interested only in sets of k
balanced Boolean functions, we can adopt variation operators that preserve their
balancedness. To this end, we employ a slightly modified version of the crossover
operator originally proposed by Millan et al. [6]. In particular, let p1 and p2 be
two balanced bitstrings. Then, we generate a balanced offspring chromosome c
using the following procedure:

Balanced-Crossover(p1, p2)
Initialization: Set two counters cnt0 and cnt1 to zero.
Loop: Until all positions in the offspring chromosome c have been filled:

1. Sample a random position i ∈ {1, · · · , 2n} (without replacement)
2. If one of the two counters is equal to 2n−1, then set c[i] to the opposite

value (i.e., 1 if cnt0 = 2n−1 or 0 if cnt1 = 2n−1)
3. Otherwise, randomly choose between p1[i] and p2[i] and copy the corre-

sponding value in c[i], increasing the relevant counter

Output: Return c

As one can observe, our crossover operator uses two counters to keep track
of the number of zeros and ones in the child chromosome during its generation.
Until these two counters are less than half of the chromosome length, a random
position is sampled and the gene to be copied is randomly selected from one of
the two parents. Then, when one of the two counters reaches the 2n−1 threshold,
all remaining positions in the child are filled with the opposite value. This ensures
that the child chromosome is also balanced.

Regarding the mutation operator, we opted for a simple swap-based operator.
More precisely, each column composing an individual is mutated with a small
probability by swapping two bits in it, so that the balancedness of the corre-
sponding Boolean function is preserved. In particular, the swap is performed
between two random positions holding different values, in order to produce a
mutated individual which differs from the original one.

On the contrary, for GP there is no straightforward way to design crossover
and mutation operators which ensure that the resulting trees map to the balanced
Boolean functions. Hence, in this case we chose to employ classic GP variation
operators, specifically simple tree crossover, uniform crossover, size fair, one-point,
and context preserving crossover [8] (selected at random) and subtree mutation.
Additionally, we considered the balancedness constraint at the fitness function
level, using a penalty factor. In particular, let δ0,1(i) = |#0−#1| be the absolute
value of the difference between the number of ones and the number of zeros in
the i-th column of a binary array A. Then, the new fitness function minimized
by GP equals:

6

https://doi.org/10.1007/978-3-319-99253-2_10

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99253-2_10

fitp(A) =
∑

I⊆[k]:|I|=t

∆(AI)p +

k∑
i=1

δ0,1(i) . (6)

4 Analysis of the Search Space

We now give some basic combinatorial remarks that allow us to compute the sizes
of the solution spaces. By taking into account the bare statement of Problem 1,
one can see that the number of feasible solutions depends only on the number of
columns k composing the array and on the number of variables n of the Boolean
functions whose truth tables represent those columns. The number of Boolean
functions of n variables is 22n

, since it equals the number of bitstrings of length
2n, which are in one-to-one correspondence with the truth tables of such functions.
Hence, it follows that the number of ways one can choose a set of k Boolean
functions of n variables is given by

Fn,k =

(
22n

k

)
, (7)

which corresponds to the size of the search space Fn,k induced by Problem 1.
Indeed Fn,k is actually a subset of the search space explored by our GP algorithm.
This is due to the fact that different Boolean trees evolved by GP can be
semantically equivalent (i.e. evaluate to the same truth table, such as x and
NOT (NOT (x))).

On the contrary, the search space explored by our GA coincides the set of
binary 2n × k matrices whose columns are balanced, or equivalently to the space
of all subsets of k balanced Boolean functions of n variables. The number of
balanced Boolean functions of n variables is

BALn =

(
2n

2n−1

)
, (8)

since it is equal to the number of bitstrings of length 2n that include 2n−1 ones.
Thus, the number of combinations of k balanced n-variable Boolean functions is

Gn,k =

(
BALn

k

)
=

((2n

2n−1

)
k

)
, (9)

which gives the size of the search space explored by GA.
A natural question that arises is up to which values of the parameters n and

k the two sets Fn,k and Gn,k are amenable to exhaustive search. Table 1 reports
the corresponding sizes for increasing values of n, along with the dimensions of
the spaces of all Boolean functions and balanced functions of n variables.

From Table 1, one can see that the sizes of the two search spaces grow very
quickly with respect to the number of variables of the Boolean functions involved,
and that exhaustive enumeration is already unfeasible for n ≥ 4 variables.

7

https://doi.org/10.1007/978-3-319-99253-2_10

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99253-2_10

Table 1. Search space sizes with respect to n and k.

n N k Bn BALn Fn,k Gn,k

2 4 2 16 6 120 15
3 8 4 256 70 1.7 · 108 916 895
4 16 8 65 536 12 870 8.4 · 1033 1.8 · 1028

5 32 16 4.2 · 109 6.0 · 108 6.4 · 10140 1.3 · 10127

5 Experiments

5.1 Problem Instances

Table 2 reports the problem instances on which we run our GA and GP heuristics.
In particular, each row of the table reports the number of variables n of the
involved Boolean functions, the number of rows N = 2n of the OA, the number
of columns k, the strength t, and the index λ. In the rest of this section, we
refer to a problem instance by (N, k, t, λ). We selected these instances from the

Table 2. OA parameters/problem instances

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

n 3 3 3 3 3 4 4 5 5 6
N 8 8 8 8 16 16 16 32 32 64
k 4 4 5 7 8 8 15 16 31 32
t 2 3 2 2 2 3 2 3 2 3
λ 2 1 2 2 4 2 4 4 8 8

orthogonal array library published by Sloane [10]. We chose these particular pa-
rameters combinations since they contain both instances that can be exhaustively
enumerated (those with n = 3, which we used for tuning our algorithms) and the
smallest instances that are not amenable to exhaustive search.

5.2 Evolutionary Algorithms Parameters

As mentioned in Section 3.1, the GP encoding uses elementary Boolean operators
to build one or more trees, each representing an independent Boolean function,
whereas the corresponding Boolean variables are used as terminals. The function
set in our experiments comprise the binary operators AND, OR, XOR, XNOR,
and the unary operator NOT . Additionally, we include the function IF , which
takes three arguments and returns the second one if the first one evaluates to
true, and the third one otherwise. The maximum tree depth is varied depending
on the number of Boolean variables, which determines the number of rows of the
target orthogonal array.

8

https://doi.org/10.1007/978-3-319-99253-2_10

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99253-2_10

Regarding the population size, we set it to 500 individuals for GP and 50
for GA. The reason for this difference is that after performing some preliminary
experiments, we observed that using larger population size in GA did not improve
its performance. For the selection process, we employed a steady-state selection
with a 3-tournament operator for both GA and GP, that in each iteration
randomly selects three individuals for the tournament and eliminates the worst
one. A new individual is created immediately by crossing over the remaining
two from the tournament, which then undergoes mutation respectively with
probability 0.5 in GP and 0.2 in GA.

Concerning the fitness function, after some preliminary tuning tests we
observed that using the Minkowski distance with p = 2 yielded the best results,
hence we adopted fit2 for all subsequent experiments. Likewise, we set the
termination condition for both GA and GP to 500 000 fitness evaluations after
observing from a preliminary round of experiments that optimal solutions are
mostly found before reaching this number of evaluations. Finally, each experiment
is repeated 30 times.

5.3 Results

Table 3 presents the results for genetic algorithms and genetic programming in
the form of success rate (in percentages) of finding an optimal solution, i.e., an
orthogonal array with given properties. We denote by GPd a GP experiment
where the maximum tree depth is d. It can be observed that GP outperforms by

Table 3. GP and GA success rates for different problem sizes. Success rates are rounded
to the nearest integer.

Heuristic
Exp. GA GP2 GP3 GP4 GP5

(8, 4, 2, 2) 100 100 100 - -
(8, 4, 3, 1) 100 100 100 - -
(8, 5, 2, 2) 100 100 100 - -
(8, 7, 2, 2) 87 0 100 - -
(16, 8, 2, 4) 27 100 100 100 -
(16, 8, 3, 2) 3 0 100 97 -
(16, 15, 2, 4) 0 0 90 93 -
(32, 16, 3, 4) 0 - 6 10 -
(32, 31, 2, 8) 0 - 0 2 -
(64, 32, 3, 8) - - 0 0 0

far GA at converging to an optimal solution. As a matter of fact, GA is able to
generate OA only up to 16 rows and 8 columns, with the (16, 8, 3, 2) problem
instance having a very low success rate. On the contrary, GP was able to find
an optimal solution at least once in all instances but one (the last row with

9

https://doi.org/10.1007/978-3-319-99253-2_10

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99253-2_10

Table 4. Statistical indicators for GA and GP (largest max tree depth for GP).

GA GP

Exp. min avg std max time (s) min avg std max time (s)

(8, 4, 2, 2) 0 0 0 0 < 1 0 0 0 0 < 1
(8, 4, 3, 1) 0 0 0 0 < 1 0 0 0 0 < 1
(8, 5, 2, 2) 0 0 0 0 < 1 0 0 0 0 < 1
(8, 7, 2, 2) 0 0.533 1.38 4 7 0 0 0 0 1
(16, 8, 2, 4) 0 2.333 1.75 6 38 0 0 0 0 1
(16, 8, 3, 2) 0 39.96 10.9 57.41 110 0 0.565 3.09 16.97 13
(16, 15, 2, 4) 52 65.4 6.41 80 147 0 0.533 2.03 8 48
(32, 16, 3, 4) 1 174 1 266 43.4 1 349 1 995 0 83.72 41.5 135.8 1 212
(32, 31, 2, 8) 654 684 14.5 714 1 125 0 32 13.9 64 692
(64, 32, 3, 8) - - - - - 18 812 19 159 116 19 355 15 308

orthogonal array of 64 rows and 32 columns). Similar to GA, one can see greatly
differing success rates depending on the size of the problem instance. We varied
the maximum tree depth parameter to determine the conditions under which GP
is able to produce an optimal solution. It can be seen that having the maximum
tree depth equal to the number of variables n is enough to obtain an orthogonal
array. Reasonably, the problem becomes much harder to solve also for GP when
the number of variables and the number of trees (i.e., array columns) grow.

Table 4 shows the basic statistical indicators for the fitness of the best
individuals found by GA and GP for every considered problem instance, as well
as the average time needed to either obtain an optimal solution, or terminate the
run after 500 000 evaluations. In the GA case, we did not experiment with the
(64, 32, 3, 8) combination, since as remarked above GA could not even converge
on the smaller instances with 32 rows. These results are based on GP experiments
with the largest maximum tree depth in every configuration.

The data are consistent with those reported in Table 3, indicating that GP
has far better performances than GA on all problem instances, under the same
number of fitness evaluations.

6 Conclusions and Perspectives

In this paper, we considered how evolutionary algorithms can be used to evolve
binary orthogonal arrays. To that end, we formulated the combinatorial optimiza-
tion problem as the search of a set of k Boolean functions of n variables whose
truth tables must be the columns of a binary OA with specified parameters. We
chose GA and GP as heuristics to solve this problem, each working on a specific
solution encoding for the candidate solutions of the problem.

The results show genetic programming greatly outperforming genetic algo-
rithms. Interestingly, for all instances but one (the largest), GP is able to find

10

https://doi.org/10.1007/978-3-319-99253-2_10

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99253-2_10

at least one successful solution. On the other hand, GA managed to solve at
least once only 6 instances out of the 10 considered, with lower success rates
than GP. This experimental finding is interesting, as it contrasts with the fact
that GA actually explored a smaller search space than that of GP, since the
former evolved only sets of balanced Boolean functions. This observation is
somewhat analogous to what has been reported by Mariot et al. in [5], where
GP also outperformed GA at evolving orthogonal Latin squares based on cellular
automata, even though also in that case GA was exploring the smaller search
space of pairwise-balanced Boolean functions. Considering also our findings, this
seems to indicate that GP is a better optimization heuristic at handling problems
related to combinatorial designs. Moreover, since there is no other work in the
literature concerning the heuristic construction of binary OA, the results that we
obtained in our experiments could represent a first baseline of comparison for
future research in this domain, for example by investigating the performances
of other evolutionary optimization methods like discrete PSO [4] or Cartesian
GP [7], which already proved useful to evolve balanced Boolean functions.

More generally, an interesting question pertains the comparison between our
evolutionary approach and other non-heuristic methods to construct OA already
known in the relevant literature. In particular, one can observe that most of
the existing constructions of OA are based on algebraic methods, which usually
leverages on finite fields and coding theory (see for example [3]). However, it is
necessary to remark that a straightforward comparison between our heuristics
and these algebraic methods is not possible, due to the great differences that
the two approaches adopt to generate OA. Indeed, our heuristic approach casts
the problem in terms of optimization: starting from a population of candidate
solutions which most likely do not contain an optimal solution, evolve them
until an OA is obtained. On the contrary, algebraic methods usually work by
constructing new OA starting from previously existing ones, which have already
been obtained through other constructions and/or exhaustive search. This the
case, for example, of the juxtaposition construction or the X4 construction
surveyed in [3]. As a consequence, barely looking at the size of the OA produced
by our GA and GP would bring to the conclusion that our approach is no match
for the more established algebraic constructions, since the latter manage to create
significantly bigger OA (as one can see for example in Sloane [10]. However, an
important aspect to remark is that most of the known algebraic constructions
arise from linear error-correcting codes, thus yielding linear orthogonal arrays.
This basically means that each row in the OA is a linear combination of the
remaining rows. Hence, these methods do not provide for a great diversity, and
the OA produced by them are actually a subset of all possible OA. On the
contrary, our optimization approach does not assume any linearity constraint on
the optimal solutions, hence it can generate a wider variety of OA.

Considering the above remarks, it appears natural that the main direction for
future research is to improve the performances of GA and GP over larger problem
instances, in order to obtain binary OA of higher dimensions. To this end, one
could adopt a different fitness function that yields a smoother fitness landscape

11

https://doi.org/10.1007/978-3-319-99253-2_10

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-99253-2_10

over the search space of candidate solutions. A possible idea to accomplish this
would be to define fitness functions based on Theorem 3.30 in [3], which shows that
a binary matrix is a binary OA of strength t if and only if its Walsh-Hadamard
transform vanishes for all subsets of rows having at most i ≤ t nonzero entries.

A second direction would be to start from an OA with a certain number k of
columns, and then incrementally add columns which still satisfy the balancedness
constraints with the previous ones, thus yielding a larger OA. In this case, GA
and GP would work on a single Boolean function at a time, possibly making
convergence easier on larger problem instances.

Acknowledgments This work has been supported in part by Croatian Science
Foundation under the project IP-2014-09-4882.

References

1. Carlet, C., Guilley, S.: Correlation-immune boolean functions for easing counter
measures to side-channel attacks. Algebraic Curves and Finite Fields: Cryptography
and Other Applications 16, 41–70 (2014)

2. Colbourn, C.J., Dinitz, J.H.: Handbook of combinatorial designs. CRC press (2006)
3. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal arrays: theory and applica-

tions. Springer Science & Business Media (2012)
4. Mariot, L., Leporati, A.: Heuristic search by particle swarm optimization of boolean

functions for cryptographic applications. In: Genetic and Evolutionary Computation
Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material
Proceedings. pp. 1425–1426 (2015)

5. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary algorithms for the
design of orthogonal latin squares based on cellular automata. In: Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin,
Germany, July 15-19, 2017. pp. 306–313 (2017)

6. Millan, W., Clark, A., Dawson, E.: Heuristic design of cryptographically strong
balanced Boolean functions. In: Advances in Cryptology - EUROCRYPT ’98. pp.
489–499 (1998)

7. Picek, S., Jakobovic, D., Miller, J.F., Batina, L., Cupic, M.: Cryptographic boolean
functions: One output, many design criteria. Appl. Soft Comput. 40, 635–653 (2016)

8. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic
Programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (2008), (With contributions by J. R. Koza)

9. Safadi, R., Wang, R.: The use of genetic algorithms in the construction of mixed
multilevel orthogonal arrays. Tech. rep., Olin Corp Cheshire CT Olin Research
Center (1992)

10. Sloane, N.J.: A library of orthogonal arrays. Fixed-level arrays with more than
three levels: OA 16(4.2) (2007)

11. Stinson, D.R.: Combinatorial designs: constructions and analysis. Springer Science
& Business Media (2007)

12. Wang, R., Safadi, R.: Generating mixed multilevel orthogonal arrays by simulated
annealing. In: Computing Science and Statistics, pp. 557–560. Springer (1992)

12

https://doi.org/10.1007/978-3-319-99253-2_10

	Evolutionary Search of Binary Orthogonal Arrays

