
c©ACM, 2017. This is the authors’ version of the work. It is posted here by permission of ACM

for your personal use. Not for redistribution. The definitive version was published in the

Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

Evolving S-boxes Based on Cellular Automata with

Genetic Programming

Stjepan Picek1, Luca Mariot2, Domagoj Jakobovic3, and Alberto
Leporati1

1KU Leuven, imec-COSIC, Kasteelpark Arenberg 10 3001 Leuven, Belgium ,
stjepan@computer.org

2Dipartimento di Informatica, Sistemistica e Comunicazione, Università

degli Studi di Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy ,
{luca.mariot, leporati}@disco.unimib.it

3University of Zagreb, Unska 3, 10000 Zagreb, Croatia ,
domagoj.jakobovic@fer.hr

Abstract

The design of cryptographically strong Substitution Boxes (S-boxes)
is an interesting problem from both a cryptographic perspective as well
as the combinatorial optimization one. Here we introduce the concept
of evolving cellular automata rules that can be then translated into
S-boxes. With it, we are able to find optimal S-boxes for sizes from
4× 4 up to 7× 7. As far as we know, this is the first time a heuristic
approach is able to find optimal S-boxes for sizes larger than 4.

Keywords Substitution boxes, Genetic Programming, Cellular au-
tomata, Cryptography

1 Introduction

In the process of designing block ciphers, one well explored direction is to
build the so-called Substitution-Permutation Network (SPN) cipher. Such
ciphers usually consist of an XOR operation with the key/subkeys, a linear
layer, and a substitution layer [3]. A standard way to build the substitution
layer is to use one or more Substitution Boxes (S-boxes) where a number
of properties need to be satisfied for an S-box to be useful in practice. An
S-box, or (n,m) function, is a mapping from n inputs into m outputs.

From the cryptographic properties perspective, the bare minimum one
would need to consider when designing S-boxes with the same number
of inputs and outputs (as we consider in this paper) is for them to be

1

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ version of the work. It is posted here by permission of ACM

for your personal use. Not for redistribution. The definitive version was published in the

Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

bijective, with high nonlinearity, and low differential uniformity. When
utilizing heuristics in the design of S-boxes, a common approach is to use
the permutation encoding since it ensures the bijectivity property. However,
already for the size 5×5 heuristics are not able to reach the optimal values of
nonlinearity and differential uniformity and therefore algebraic constructions
are the common method of choice [5]. However, there are several ciphers that
use S-boxes not directly obtained by algebraic constructions or heuristics,
but where the S-boxes are actually cellular automata (CA). The best known
example is the Keccak sponge construction that is now part of the SHA-3
standard [1].

In this paper, we focus on the investigation of CA rules that are able
to produce S-boxes with optimal cryptographic properties. In particular,
we use Genetic Programming (GP) to evolve CA local rules in the form of
Boolean functions, by viewing the corresponding CA as S-boxes. With our
approach we are able to produce large quantities of S-boxes with optimal
cryptographic properties, dependent on the chosen optimization criteria.

2 S-boxes and Cellular Automata

Let n,m be positive integers, i.e., n,m ∈ N+. The set of all n-tuples
of elements in the field F2 is denoted as Fn

2 , where F2 is the Galois field
with two elements. The inner product of two vectors a and b from Fn

2

equals a · b =
⊕n

i=1 aibi where “
⊕

” represents addition modulo two. An
(n,m)-function is any mapping F from Fn

2 to Fm
2 . For any set S, we denote

S\{0} by S∗.
An (n,m)-function F is balanced if it takes every value of Fm

2 the same
number 2n−m of times.

The nonlinearity NF of an (n,m)-function F equals the minimum non-
linearity of all its component functions v · F , where v ∈ Fm∗

2 [2]:

NF = 2n−1 − 1

2
max
a ∈ Fn

2
v ∈ Fm∗

2

|WF (a, v)|. (1)

Here, WF (a, v) is the Walsh-Hadamard transform of an (n,m)-function
F, defined as:

WF (a, v) =
∑
x∈Fn

2

(−1)v·F (x)⊕a·x, a, v ∈ Fm
2 . (2)

Let F : Fn
2 → Fm

2 , a ∈ Fn
2 and b ∈ Fm

2 . We denote:

DF (a, b) = {x ∈ Fn
2 : F (x) + F (x+ a) = b} . (3)

The entry at the position (a, b) corresponds to the cardinality of the delta
difference table DF (a, b). The differential uniformity δF is then defined as [4]:

δF = max
a6=0,b

DF (a, b). (4)

2

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ version of the work. It is posted here by permission of ACM

for your personal use. Not for redistribution. The definitive version was published in the

Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

Cellular automata (CA) are a parallel computational model which can
be represented as a regular grid of cells, such that each cell synchronously
updates its state according to a local rule, which depends on a specific
number of neighboring cells. In this paper we consider a CA model where
the cells are arranged on a finite periodic one-dimensional array and are
described by a binary state, 0 or 1.

Formally, let m,n ∈ N with m ≥ n, and let f : Fn
2 → F2 be a Boolean

function. A cellular automaton (CA) of length m with local rule f and
periodic boundary condition is a vectorial Boolean function F : Fm

2 → Fm
2

defined for all x = (x1, · · · , xm) ∈ Fm
2 as:

F (x1, · · · , xm) = (f(x1, x2, · · · , xn), · · · , f(xm, x1, · · · , xn−1)) . (5)

In the rest of the paper we assume m = n, and we identify F (the CA) with
an S-box.

3 GP Approach and Results

We use GP to evolve Boolean functions of n variables, in the form of trees,
which are used as CA local rules. In this process, we assume that the state of
a CA is represented as a periodic one-dimensional binary array of size n. The
elements of the binary array are used as GP terminals, where the terminal c0

denotes the value that is being updated. The terminals c1, . . . , cn−1 denote
the cells to the right of the current cell. In our experiments, the neighborhood
of a cell is formed by the cell itself and the n− 1 cells to its right, so each
value in the current state can be used in a local update rule. A candidate
Boolean function obtained with GP is evaluated in the following manner:
all the possible 2n input states are considered, and for each state the same
rule is applied in parallel to each of the bits to determine the next state.
The obtained global rule represents a candidate S-box that is then evaluated
according to the desired cryptographic criteria.

We use the following function set: NOT, which inverts its argument,
XOR, NAND, NOR, each of which takes two input arguments. Additionally,
we use the function IF, which takes three arguments and returns the second
one if the first one evaluates to true, and the third one otherwise. In the
evolution process, GP uses a 3-tournament selection and mutation with a
probability of 0.5. The variation operators are simple tree crossover, uniform
crossover, size fair, one-point, and context preserving crossover [6] (selected at
random) and subtree mutation. The initial population is created at random
with ramped half-and-half initialization; every experiment is repeated 50
times and the population size equals 2 000.

In the fitness function first the balancedness is verified, and if an S-box
is balanced, we give it a value of zero, otherwise the value equals -1; this
is denoted with the label BAL. If the S-box is balanced, we calculate the

3

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ version of the work. It is posted here by permission of ACM

for your personal use. Not for redistribution. The definitive version was published in the

Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

Table 1: Statistical results and comparison.
S-box
size

T max GP Ours Related work

Max Avg SD NF δF NF δF
4× 4 16 16 16 0 4 4 4 4

5× 5 42 42 41.73 1.01 12 2 10 4

6× 6 86 84 80.47 4.72 24 4 22 6

7× 7 182 182 155.078.86 56 2 48 6

8× 8 364 318 281.8713.86 82 20 104 8

nonlinearity and differential uniformity (which is subtracted from the value
2n, since we aim to minimize the value of that property) and maximize the
resulting value:

fitness = BAL+ ∆BAL,0(NF + (2n − δF)). (6)

∆BAL,0 represents the Kronecker delta function that equals one when the
function is balanced (i.e., BAL = 0) and zero otherwise.

In Table 1 we give the statistical results and compare the best values
obtained here with the state-of-the-art results obtained with EC [5], where
better values are in bold style. Statistical results are averaged over the best
obtained values for each run, and column T max denotes the theoretical
maximal value of the fitness (or one that would correspond to the assumed
theoretical maximal value). For the 4× 4 size both our technique and related
work can easily reach optimal values. However, for sizes 5× 5 till 7× 7 our
approach yielded significantly improved results. On the other hand, for the
8×8 size, related work managed to obtain better nonlinearity and differential
uniformity. Still, we emphasize that even those results are far from the best
one where nonlinearity equals 112 and differential uniformity equals 4 (note
that it is only assumed but not proven that the maximal nonlinearity equals
112).

4 Conclusions

Our approach shows great potential and marks the first time that heuristic
techniques are able to find optimal S-boxes for sizes larger than 4 × 4.
Moreover, our approach transforms a problem that has been up to now of
extreme difficulty into a simpler problem for certain S-box sizes. Naturally,
since not all S-boxes can be represented as a CA, our technique cannot be
used to design all optimal S-boxes of the corresponding size. However, we
believe that the corpus of obtainable functions is still large enough to give a
sufficient diversity for future block cipher designs.

4

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ version of the work. It is posted here by permission of ACM

for your personal use. Not for redistribution. The definitive version was published in the

Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

Acknowledgments

This work has been supported in part by Croatian Science Foundation under
the project IP-2014-09-4882.

References

[1] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The Keccak
reference, January 2011. http://keccak.noekeon.org/.

[2] C. Carlet. Vectorial Boolean Functions for Cryptography. In Y. Crama
and P. L. Hammer, editors, Boolean Models and Methods in Mathematics,
Computer Science, and Engineering, pages 398–469. Cambridge University
Press, New York, USA, 1st edition, 2010.

[3] L. R. Knudsen and M. Robshaw. The Block Cipher Companion. Infor-
mation Security and Cryptography. Springer, 2011.

[4] K. Nyberg. Perfect Nonlinear S-Boxes. In Advances in Cryptology - EU-
ROCRYPT ’91, Workshop on the Theory and Application of of Crypto-
graphic Techniques, Brighton, UK, April 8-11, 1991, Proceedings, volume
547 of Lecture Notes in Computer Science, pages 378–386. Springer, 1991.

[5] S. Picek, M. Cupic, and L. Rotim. A New Cost Function for Evolution
of S-boxes. Evolutionary Computation, 2016.

[6] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J.
R. Koza).

5

http://dx.doi.org/10.1145/3067695.3076084
http://keccak.noekeon.org/

	Introduction
	S-boxes and Cellular Automata
	GP Approach and Results
	Conclusions

