
c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

Evolving S-boxes Based on Cellular Automata with

Genetic Programming

Stjepan Picek1, Luca Mariot2, Domagoj Jakobovic3, and Alberto
Leporati1

1KU Leuven, imec-COSIC, Kasteelpark Arenberg 10 3001 Leuven, Belgium ,
stjepan@computer.org

2Dipartimento di Informatica, Sistemistica e Comunicazione, Università

degli Studi di Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy ,
{luca.mariot, leporati}@disco.unimib.it

3University of Zagreb, Unska 3, 10000 Zagreb, Croatia ,
domagoj.jakobovic@fer.hr

Abstract

The design of cryptographically strong Substitution Boxes (S-boxes)
is an interesting problem from both a cryptographic perspective as well
as the combinatorial optimization one. A number of papers appeared
throughout the years that utilized various forms of heuristic search
techniques in order to find S-boxes with good cryptographic values.
The permutation encoding showed to be the most successful one but
even there the obtained results were bad for sizes larger than 4 × 4.
Consequently, for a number of years the general perception was that
heuristics cannot compete with deterministic techniques when designing
good S-boxes. Here, we introduce the concept of evolving cellular
automata rules that can be then translated into S-boxes. With it, we
are able to find optimal S-boxes for sizes from 4× 4 up to 7× 7. As
far as we are aware, this is the first time a heuristic approach is able
to find optimal S-boxes for sizes larger than 4. Besides that, we also
present a Genetic Programming implementation that is able to ”reverse
engineer” S-boxes, i.e., to find a cellular automata rule from an S-box
corresponding to it.

Keywords Substitution boxes, Genetic Programming, Cellular au-
tomata, Cryptography

1 Introduction

In the process of designing block ciphers, one may follow several options. One
well explored direction is to build the so-called Substitution-Permutation

1

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

Network (SPN) cipher. Such ciphers usually consist of an XOR operation
with the key/subkeys, a linear layer, and a substitution layer [18]. A standard
way to build the substitution layer is to use one or more Substitution Boxes
(S-boxes, vectorial Boolean functions) where a number of properties need
to be satisfied for an S-box to be useful in practice. An S-box, or (n,m)
function is a mapping from n inputs into m outputs.

Indeed, already Shannon in his seminal work on the design of block ciphers
introduced the concept of confusion that an S-box needs to have [26]. Here,
confusion can be defined as the property that the ciphertext statistics should
depend on the plaintext statistics in a manner which is too complicated to
be exploited by an attacker. This concept is most easily connected with the
cryptographic property of nonlinearity. However, to find an S-box that is
resilient against various attacks is not easy and the problem becomes even
more complicated if we consider various sizes of S-boxes that are of practical
relevance. For instance, some occurring S-box sizes are 3× 3 (3Way [15]),
4× 4 (PRESENT [5]), 5× 5 (Keccak [3]), and 8× 8 (AES [16]). Note that
the three most used sizes of S-boxes are 4× 4, 5× 5, and 8× 8.

From the cryptographic properties perspective, the bare minimum one
would need to consider if designing S-boxes with the same number of inputs
and outputs (as we consider in this paper) is for them to be bijective, with
high nonlinearity, and low differential uniformity. When utilizing heuristics
in the design of S-boxes, a common approach is to use the permutation
encoding since it ensures the bijectivity property. However, already for the
size 5× 5 heuristics are not able to reach the optimal values of nonlinearity
and differential uniformity and therefore algebraic constructions are the
common method of choice [21]. Here, by algebraic constructions we consider
deterministic methods relying on results from field theory [9].

However, there are several ciphers that use S-boxes not directly obtained
by algebraic constructions or heuristics, but where the S-boxes are actually
cellular automata (CA). The best known example is the Keccak sponge con-
struction [3] that is now a part of the SHA-3 standard. There, the authors
use a cellular automaton rule affecting only two neighborhood positions for
each bit, which results in an extremely lightweight definition of the S-box
and a small implementation cost. However, that S-box has suboptimal
cryptographic properties, which results in a construction that requires more
rounds than would be the case with optimal S-boxes. As far as the authors
know, all the other ciphers using CA rules for the S-box definition actually
use that same rule. This is the case of Panama [13], RadioGatún [2], Sub-
terranean [11], and 3Way [15] ciphers. Besides those S-boxes, there are also
designs that use an S-box that is an affine transformation of the Keccak
S-box like Ascon [10].

In this paper, we focus on the investigation of cellular automata rules that
are able to produce S-boxes with optimal cryptographic properties. In order
to achieve that, we use Genetic Programming (GP) to evolve CA rules in

2

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

the form of Boolean functions, where those rules are actually the description
of S-boxes. With our approach we are able to produce large quantities of
S-boxes with optimal cryptographic properties, dependent on the chosen
optimization criteria. Furthermore, due to the GP solution encoding in the
form of trees, we can also easily impose the length of the solution which can
be then mapped to the latency of such an S-box, but also to the area when
implemented in hardware. We emphasize that not every S-box that is a
permutation can be represented with a CA rule, and therefore the number of
S-boxes expressible with CA rules is smaller than the total number of S-boxes
of a certain size. Indeed, if we consider the AES cipher and the S-box of
size 8× 8 used there, it is possible to see that this S-box cannot be obtained
with a single CA rule, but this does not mean there are no S-boxes of size
8× 8 with the same properties that cannot be designed with a single CA rule.
Moreover, there are infinitely many ways how one can represent an S-box
with CA rules: for example, adopting a tree representation for the rule, it
suffices to consider the trivial approach where one adds subexpressions that
cancel themselves out. Therefore, the number of CA rules representations is
much larger than the number of S-boxes and it is impossible to exhaustively
visit them even for smaller sizes.

Finally, we present here a“reverse-engineering” procedure that is able to
find underlying CA rules that result in specific S-boxes. Indeed, if we start
with an S-box that can be represented with a single CA rule, the question is
whether there exists a shorter rule resulting in the same S-box. Our reverse
engineering can help in obtaining such shorter rules.

2 Cryptographic Properties of S-boxes

Let n,m be positive integers, i.e., n,m ∈ N+. The set of all n-tuples of
elements in the field F2 is denoted as Fn2 , where F2 is the Galois field with
two elements. The inner product of two vectors a and b equals a · b =⊕n

i=1 aibi and “
⊕

” represents addition modulo two. An (n,m)-function
is any mapping F from Fn2 to Fm2 . A (n,m)-function F can be defined as
a vector F = (f1, · · · , fm), where the Boolean functions fi : Fn2 → F2 for
i ∈ {1, · · · ,m} are called the coordinate functions of F. The component
functions of an (n,m)-function F are all the linear combinations of the
coordinate functions with non all-zero coefficients. To graphically depict
the difference between the component and coordinate functions, we show an
example of an S-box of size 3× 3 in Figure 1.

A Boolean function f on Fn2 is represented by a truth table (TT), which is a
vector (f(0), ..., f(1)) that contains the function values of f in lexicographical
order with respect to the input entries, i.e., for a, b ∈ Fn2 , it holds a ≤ b if and

3

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

Figure 1: S-box of size (3× 3).

only if ai ≤ bi for all i ∈ {1, · · · , n} [8]. An (n,m) S-box can be represented
in the truth table form as a matrix of dimension 2n ×m where each of the
m columns represents a Boolean function.

The Walsh-Hadamard transform of an (n,m)-function F is defined as [9]:

WF (a, v) =
∑
x∈Fn

2

(−1)v·F (x)⊕a·x, a, v ∈ Fm2 . (1)

An (n,m)-function F is balanced (BAL) if it takes every value of Fm2 the
same number 2n−m of times.

The nonlinearity NF of an (n,m)-function F equals the minimum non-
linearity of all its component functions v · F , where v ∈ Fm∗2 [20, 9]:

NF = 2n−1 − 1

2
max
a ∈ Fn

2
v ∈ Fm∗

2

|WF (a, v)|. (2)

The maximal nonlinearity for any (n, n)-function F is bounded by the
following inequality:

NF ≤ 2n−1 − 2
n−1
2 . (3)

In the case of equality in Eq. (3), F is called an Almost Bent (AB) function.
Let F be a function from Fn2 into Fn2 and a, b ∈ Fn2 . We denote:

DF (a, b) = |{x ∈ Fn2 : F (x+ a) + F (x) = b}| . (4)

The entry at the position (a, b) corresponds to the cardinality of the delta
difference table D(a, b) and is denoted as δ(a, b). The differential uniformity
δF is then defined as [4, 19]:

δF = max
a6=0,b

δ(a, b). (5)

When discussing the differential uniformity property, the best possible
value is 2 for any odd n and also for n = 6. For n even and larger than 6,
this is an open question. The best known differential uniformity value for the
sizes 4× 4 and 8× 8 equals 4. Functions that have differential uniformity δF
equal to 2 are called Almost Perfect Nonlinear (APN) functions [9]. All AB
functions are also APN functions, but the converse is not true in general. For
further information about S-boxes, we refer the interested reader to [9, 18].

4

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

3 Cellular Automata

A Cellular Automaton (CA) is a parallel computational model characterized
by a regular grid of cells, such that each cell synchronously updates its state
according to a local rule, which depends on a specific number of neighboring
cells.

In this paper we consider a CA model where the cells are arranged on
a finite one-dimensional array and are described by a binary state, 0 or 1.
This can be formalized through the following definition:

Definition 1 A cellular automaton is a quintuple A = 〈c, n, δ, ω, f〉 where c
is a one dimensional array of n cells, each of which takes a value in F2, δ ∈ N
is the diameter, ω ∈ {−δ+ 1, · · · , 0, · · · , δ− 1} is the offset and f : Fδ2 → F2

is the local rule.

Since the local rule f : Fδ2 → F2 is a Boolean function, it can be represented
by a truth table of 2δ bits. In the CA literature a local rule is usually indexed
by the decimal representation of its truth table, which is commonly referred
to as the Wolfram code of the rule.

The next state of a cell ci is determined by applying rule f to the
neighborhood (ci−ω, · · · , ci−ω+δ−1) . Clearly, this leads to the problem of
updating the cells at the left and right boundaries, where there are no enough
left (respectively, right) neighbors. In this work we adopt periodic boundary
conditions to address this issue, where the cellular array is viewed as a ring
with the last cell preceding the first one.

The global rule F : Fn2 → Fn2 of a CA 〈c, n, δ, ω, f〉 maps the current state
of array c to the next one by applying in parallel rule f to all n cells. In
particular, under periodic boundary conditions the global rule F is defined
for all values x ∈ Fn2 of c as:

F (x) = (f(x−ω, · · · , xδ−ω), · · · , f(xn−1−ω, · · · , xn−ω+δ−2)) , (6)

where all indices are computed modulo n. As a consequence, the global
rule of a finite CA is an (n, n)-function, where ∀i ∈ {0, · · · , n− 1} the i-th
coordinate function fi : Fn2 → F2 corresponds to the local rule f applied to
the neighborhood of cell ci.

Since the Keccak cipher is the best known example of a CA rule used in
the construction of an S-box, here we give further details about it. The rule
used in Keccak on an array of length n = 5 can be represented as:

ci(t+ 1) = ci(t)XOR((NOT (ci+1(t))) AND ci+2(t)), (7)

where 0 ≤ i < 5, t ∈ N. The above rule is applied with periodic boundary
conditions to each of the 5 cells composing the current state at step t to
produce the next state in step t+ 1. Note that Eq. (7) is in fact a Boolean
function which defines the CA local update rule.

5

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

4 Related Work

Here, we present a number of relevant works where CA rules are used in
the construction of block ciphers/S-boxes and where EC is used in order to
evolve S-boxes with improved cryptographic properties.

4.1 CA-Based Block Ciphers and S-Boxes

Most of the block ciphers based on the dynamics of cellular automata focus
on the use of reversible CA (RCA). Formally, a CA is reversible if its global
rule F : Fn2 → Fn2 is bijective and the inverse G = F−1 is again the global
rule of a CA. In a CA-based block cipher, the idea is to represent a block
of plaintext as the initial configuration of the CA. The global rule is then
applied for a certain number of steps to obtain the encrypted block. For
decryption, the inverse global rule is applied for the same number of steps
starting from the ciphertext block to recover the plaintext.

The first block cipher based on cellular automata was proposed by
Gutowitz [17]. In particular, for the substitution phase block CA were
used to ensure the invertibility of the resulting S-box. In a block CA, the
local rule does not determine the next state of a single cell, but rather the
state of a block of adjacent cells. The cellular array is partitioned in blocks
of equal length, and then a permutation is applied to each block in parallel.
In the next step, the partition is shifted one cell to the right with periodic
boundary conditions.

A second type of CA which have been used for block ciphers are second-
order CA, where the state of a cell is determined by XOR-ing its previous
state with the result of the local rule. Hence, the configuration at time t− 1
can be computed by knowing both the configurations at time t and t + 1.
Seredynsky et al. [25] investigated second-order CA as S-boxes, by assessing
the avalanche properties of several rules with diameter δ = 5, 7 and array
lengths n = 32, 64.

Another interesting kind of CA for block ciphers are the so-called com-
plementing landscapes cellular automata (CLCA), where the state of a cell
is flipped if and only if a pattern belonging to a specific landscape occurs
in the surrounding cells. Daemen et al. [14] studied CLCA for designing
block ciphers, discovering a particular rule (called χ) with a diameter δ = 3
and offset ω = 0, which induces invertible CA if the length n of the cellu-
lar array is odd. Additionally, rule χ has a simple description in terms of
correlation and propagation characteristics, which makes it interesting for
cryptographic applications. Indeed, this CA is the only nonlinear component
used in Keccak [3]. Note that if such a rule would be used when the length
of the cellular array is even, then the resulting S-box would not be bijective.
Furthermore, since the Keccak rule has diameter of size 3, it results in an
optimal S-box of size 3× 3, while for the size 5× 5 the resulting S-box has

6

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

suboptimal cryptographic properties. Naturally, as one would extend the
size of an S-box, the cryptographic properties would become increasingly
worse.

4.2 Evolutionary Design of S-boxes

From the EC perspective, we mention only several characteristic approaches,
all of which use the permutation encoding. Clark et al. used the principles
from the evolutionary design of Boolean functions to evolve S-boxes with the
desired cryptographic properties for sizes up to 8× 8 [12].

Burnett et al. used a heuristic method to generate MARS-like S-boxes [7].
With their approach, they were able to generate a number of S-boxes of
appropriate sizes that satisfy all the requirements placed on a MARS S-box.

Picek et al. used Cartesian Genetic Programming and Genetic Program-
ming to evolve S-boxes and discussed how to obtain permutation based
encoding with those algorithms [22]. Furthermore, they argued that the
representation in the form of a truth table of coordinate Boolean functions is
an approach that works only for small S-boxes (up to the size 4× 4). Finally,
Picek et al. present an improved fitness function with which EC is able to
find higher nonlinearity values for a number of S-box sizes [21].

5 Experimental Setup and Results

In this section we present our experimental setting as well as the results we
obtained.

5.1 Genetic Programming Approach

Genetic Programming (GP) is an evolutionary algorithm in which the data
structures that undergo optimization are computer programs [1]. Although
GP has a history longer than 50 years, its full acceptance is due to the work
of John Koza at the beginning of the 1990s in which he formalized the idea
of employing chromosomes on the basis of tree data structures. Since the
aim of GP is to automatically generate new programs, each individual of a
population represents a computer program [1], where the most common are
symbolic expressions representing parse trees. A parse tree (syntax tree) is
an ordered, rooted tree that represents the syntactic structure of a string
according to some context-free grammar. A tree can represent a mathematical
expression, a rule set or a decision tree, for instance. The building elements
in a tree-based GP are functions (inner nodes) and terminals (leaves, problem
variables) where both functions and terminals are known as primitives.

In our approach, the task of GP is to evolve a Boolean function of n
variables, in the form of a tree, which is used as a CA local rule. In this
process, we assume the following: the state of a CA is represented with a

7

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

periodic one-dimensional binary array of size n. The elements of the binary
array are used as GP terminals, where the terminal c0 denotes the value that
is being updated. The terminals c1, . . . , cn−1 denote the cells to the right of
the current cell. In our experiments, the neighborhood of a cell is formed
by the cell itself and the n− 1 cells to its right, so each value in the current
state can be used in a local update rule.

A candidate Boolean function obtained with GP is evaluated in the
following manner: all the possible 2n input states are considered, and for
each state the same rule is applied in parallel to each of the bits to determine
the next state. The obtained global rule represents a candidate S-box that is
then evaluated according to the desired cryptographic criteria. The function
set consists of several Boolean primitives necessary to represent any Boolean
function. Here, we use the following function set: NOT, which inverts its
argument, XOR, NAND, NOR, each of which takes two input arguments.
Additionally, we use the function IF, which takes three arguments and returns
the second one if the first one evaluates to true, and the third one otherwise.
This function corresponds to the multiplexer gate (MUX).

In the evolution process, GP uses a 3-tournament selection, where the
worst of 3 randomly selected individuals is eliminated. A new individual is
then created by applying crossover to the remaining two individuals from
the tournament. The new individual is then mutated with a probability
of 0.5. We note that we use the mutation probability to select whether an
individual would be mutated or not, and the mutation operator is executed
only once on a given individual; e.g. if the mutation probability is 0.5,
then on average 5 out of every 10 new individuals will be mutated and one
mutation will be performed on that individual. The variation operators are
simple tree crossover, uniform crossover, size fair, one-point, and context
preserving crossover [24] (selected at random) and subtree mutation. All
our experiments suggest that having a maximum tree depth equal to the
size of S-box is sufficient (i.e., tree depth equals n, which is the number
of terminals). The initial population is created at random with ramped
half-and-half initialization; every experiment is repeated 50 times.

In order to examine the influence of the GP parameters, we conduct a
tuning phase for the stopping criterion and the population size. The starting
set of parameters was tested on S-boxes of size n = 6, with population 500,
1 000, and 2 000, for which 30 runs were executed. Although there were
no significant differences, the best results in terms of average fitness value
and the number of optimal solutions were obtained with a population size
of 2 000, which we use in the subsequent experiments. Furthermore, the
stopping criterion is set to 2 000 000 evaluations, since no change of the best
solution was detected afterwards.

8

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

5.2 Fitness Function

In this paper, we try to find (n, n) S-boxes that have at least the minimal
necessary properties to be used in real world ciphers. Therefore, we require
that the evolved S-boxes are balanced, with high nonlinearity, and low
differential uniformity. We note that those are the standard minimum
properties one should consider, although there are other properties that
are important, but out of the scope of this work. The balancedness and
nonlinearity (and seldom differential uniformity) are the properties of choice
when using EC to evolve S-boxes, see e.g., [22, 23].

With the goal of finding balanced S-boxes that have as high as possible
nonlinearity and as low as possible differential uniformity, we use a two-
stage fitness function. First, the balancedness is verified, and if an S-box is
balanced, we give it a value of zero, otherwise the value equals -1; this is
denoted with the label BAL. Only if the S-box is balanced, we calculate the
nonlinearity and δ-uniformity (which is subtracted from the value 2n, since
we aim to minimize the value of that property) and maximize the resulting
value:

fitness1 = BAL+ ∆BAL,0(NF + (2n − δF)). (8)

Here, ∆BAL,0 represents the Kronecker delta function that equals one when
the function is balanced (i.e., BAL = 0) and zero otherwise. We emphasize
that we opted not to use a multi-objective approach since we consider
balancedness as a constraint rather than a separate objective, and we are not
interested in solutions (no matter how good with the respect to the other
properties) if they are not balanced.

5.3 Improving the Granularity of the Fitness Function

In the early phase of experiments, we noted that the nonlinearity property
as defined in Eq. (2) offers little gradient information which would guide
the evolution towards better solutions. This is also apparent in the related
work where nonlinearity is considered as an objective [21]. Rather than
observing only the minimum nonlinearity of all component functions, as
defined in Eq. (2), we include additional information in terms of the number
of component functions which posses the same minimum nonlinearity. This
number of occurrences is added as a secondary criterion that should be
minimized, since we aim to eliminate the components that contribute to the
lowest nonlinearity value.

Following the above, we define another fitness function which aims to
maximize the nonlinearity while still keeping balancedness as a constraint:

fitness2 = BAL+ ∆BAL,0

(
NF +

(
1− nMinNF

2n

))
, (9)

where nMinNF represents the number of occurrences of the current value
of NF . Since the difference in neighboring levels of nonlinearity is always

9

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

greater than 1, the second part of the expression acts as a secondary criterion
which is being minimized and assumes values in the range [0, 1].

Finally, we combine the previous and the first fitness function by adding
the term that minimizes differential uniformity, as follows:

fitness3 = BAL+ ∆BAL,0

(
NF +

(
1− nMinNF

2n

)
+ (2n − δF)

)
. (10)

For all the previous fitness functions the goal is maximization, i.e., a larger
fitness value denotes a better solution.

5.4 Experimental Results

In Table 1, we give statistical results for our heuristic search. The results are
averaged over the best obtained values for each run. In column Theory max
we denote the theoretical maximal value of the fitness (or one that would
correspond to the assumed theoretical maximal value). These results serve
as an indicator on the performance of our search technique.

Note that the complete search space size equals 2n·2
n

for an n×n function
and within that search space there are n! permutations. However, only a
part of that permutation space can be expressed with a single CA rule.
Furthermore, when comparing the difficulty of evolving Boolean functions
and S-boxes we note that the complexity rises exponentially with the number
of outputs, i.e., we are not interested in only checking each of the output
functions but also all the non-zero linear combinations of those functions. For
instance, for the 8×8 function, there are 255 combinations of output functions
where nonlinearity equals the lowest nonlinearity of all combinations.

As can be seen in the table, for dimensions 4× 4 and 5× 5 the problem
is easy. Indeed, for the former, all the experiments finished with the optimal
value, and for the latter, most of the runs reached the optimal solution.

For the size 6×6, we observe a larger standard deviation, but the average
value is still high. However, for the size 7 × 7, we see that the problem
becomes difficult, although there are a few runs reaching the optimal value.
Finally, for the size 8 × 8, we see that our approach does not even come
close to the optimal value. Observe that for sizes 4× 4, 5× 5, and 7× 7 we
obtained S-boxes with the best possible values of nonlinearity and differential
uniformity. For 6 × 6 size our best solution is close to the optimal one.
Actually, the difference between our solution and the optimal one is in
the differential uniformity property where our solution has value 4 and the
optimal value equals 2 [6]. However, we investigated that S-box and it is not
possible to obtain it with a single CA rule (see Sec. 5.5), which means that
our approach results in the best possible obtainable values for the 6× 6 size.

Next, in Table 2 we give the best obtained values for the cryptographic
properties for each S-box size. In the column CA Rule, we give the rule (the
shortest we found to be easier to present in a table) that defines the specific

10

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

Table 1: Statistical results, fitness1, Eq. (8)
S-box
size

Theory
max

GP

Max Avg Std dev

4× 4 16 16 16 0

5× 5 42 42 41.73 1.01

6× 6 86 84 80.47 4.72

7× 7 182 182 155.07 8.86

8× 8 364 318 281.87 13.86

Table 2: Examples of S-boxes and their properties.
S-box
size

NF δF CA Rule

4× 4 4 4 IF(((v3 NOR v1) XOR v0), v2,
v1)

5× 5 8 8 ((v2 NOR NOT(v4)) XOR v1)

5× 5 8 4 ((v4 NAND (v2 XOR v0)) XOR
v1)

5× 5 12 2 (IF(v1, v2, v4) XOR (v0 NAND
NOT(v3)))

6× 6 24 4 (v2 XOR ((v0 NAND v1) XOR
IF(v4, v3, v0)))

7× 7 56 2 –

8× 8 82 20 –

S-box. Note that for sizes 7× 7 and 8× 8 we do not present the actual CA
rules since they are complex and consist of large number of gates (e.g., for
the best 7× 7 solution there are 49 primitives). In Figure 2 we display the
smallest rule for 5× 5 S-box size that results in an optimal S-box.

In Table 3 we display statistics for tree sizes for every S-box dimension.
Note that the values are averaged over all runs and not only over those
that resulted in S-boxes with optimal values. The two most interesting sizes
seem to be 4 × 4 and 8 × 8. In the former case it appears to be easy to
obtain optimal values (note that in all runs we obtained optimal solutions as
given in Table 1) and therefore GP relatively easily found even longer rules
that result in optimal S-boxes. In the latter case, we see that even finding
solutions that result in bijective S-boxes requires on average long trees. We
consider this to be one of the reasons for relative lack of success for the 8× 8
size, i.e., to obtain better solutions one would need much larger trees and
consequently much longer evolution.

Finally, in Figure 3 we show the distribution of solutions for all S-box

11

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

v4 v3 v2 v1 v0

o4 o3 o2 o1 o0

Figure 2: 5× 5 rule – ((v2 NOR NOT(v4)) XOR v1).

Table 3: Tree sizes, fitness1, Eq. (8)
S-box
size

Min Max Avg Std dev

4× 4 8 103 48.77 25.03

5× 5 6 67 26.27 11.93

6× 6 9 82 35.13 18.71

7× 7 6 64 30.63 14.77

8× 8 15 119 68.7 28.93

sizes and fitness function 1 where we see that the larger S-box sizes also
result in a wider distribution of fitness values.

On the basis of the results from Table 1 we see that the problem for
sizes 4× 4 and 5× 5 can be considered easy to evolve. Moreover, for sizes
6× 6 and 7× 7 the results obtained here surpass any other results obtained
with heuristics. However, the results for 8× 8 are far from optimal where
even the best obtained solution is worse than one can expect to obtain with
the random search and permutation encoding [21]. We emphasize that the
random search results for 8× 8 size when evolving CA rules reach on average
nonlinearity equal to 64. Therefore, for the 8× 8 size we can assume it is
significantly more difficult to work with CA rules encoding than with the
permutation encoding.

In what follows, we discuss how to improve the behavior of GP for
8 × 8 size. As the first step, we consider only the balancedness and the

12

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

Figure 3: Fitness distributions, fitness function 1.

Table 4: Statistical results, fitness2, Eq. (9)
S-box
size

Max Min Avg Std
dev

8× 8 94.02 56.125 69.85 8.55

nonlinearity property where we do not consider only the extreme value of
the Walsh-Hadamard transform, but rather the whole Walsh-Hadamard
spectrum. Therefore, we use fitness function as in Eq. (9) where the decimal
part of the Max value stems from the fact that we add the number of
occurrences of the maximal Walsh-Hadamard value to the nonlinearity value.

The results for fitness2 are averaged over the best obtained values for
each run. As can be seen in Table 4, we see that our new fitness function
brings improvement where the best nonlinearity value significantly increases
when compared with the best result from Table 2. Naturally, this value is
still far from the optimal nonlinearity value and therefore represents only a
relative improvement. Next, in Table 5 we give results for fitness defined in
Eq. (10) where we also add into account differential uniformity. We observe
that the nonlinearity and differential uniformity improve over results from
Table 1, but only marginally (NF = 84, δF = 18). Interestingly, we see that
now the best obtained nonlinearity is lower than with fitness function 2 where
it equals 94. This points us to the conclusion that for larger S-box sizes
using a multi-objective approach could be beneficial. When analyzing the
tree size, with the fitness function 3 we obtain on average somewhat shorter
trees with the average size of 60.37 primitives. However, the largest tree is
now much longer and consists of 177 primitives.

Finally, in Table 6 we compare the best values obtained here with the
state-of-the-art results obtained with EC where we give better values in
bold style. For the 4 × 4 size both our technique and related work can

13

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

Table 5: Statistical results, fitness3, Eq. (10)
S-box
size

Theory
max

Max Min Avg Std
dev

8× 8 384 322.98256.88 288.99 15.74

Table 6: Comparison with the state-of-the-art from EC.
Ours Related

S-box
size

NF δF NF δF

4× 4 4 4 4 4

5× 5 12 2 10 4

6× 6 24 4 22 6

7× 7 56 2 48 6

8× 8 94 20 104 8

easily reach optimal values. However, for sizes 5× 5 till 7× 7 our approach
yielded significantly improved results. On the other hand, for the 8 × 8
size, related work managed to obtain better nonlinearity and differential
uniformity. Still, we emphasize that even those results are far from the best
one where nonlinearity equals 112 and δ-uniformity equals 4 (note that it is
only assumed but not proven that the maximal nonlinearity equals 112).

5.5 Reverse Engineering of CA-based S-boxes

Up to now we considered a problem where for a given S-box size we want to
find a CA rule that maps to an S-box that is as good as possible with regards
to the cryptographic properties. In this section, we change our objective and
assume that we already have an S-box and we want to obtain its CA rule
representation. There are two obvious reasons why one would want to do this.
The first reason is to check whether some S-box is expressible with a CA rule.
The second reason is to obtain a combinatorial circuit representation of an
S-box (in the case that the S-box can be represented with a CA rule). The
first objective can be reached with another technique that we briefly explain.

Given the truth table description of an S-box, the task of determining
the local rule of the CA can be determined using the De Bruijn graph
representation [27]. The De Bruijn graph associated to a CA 〈c, n, δ, ω, f〉
is a directed graph G = (V,E) where |V | = 2δ−1. In particular, each vertex
in G is labeled with a binary vector of length δ − 1. An edge from vertex
a ∈ V to b ∈ V exists if and only if a and b overlap respectively on the last
and the first δ − 2 coordinates. For example, for δ = 3 the De Bruijn graph
has an edge from a = 01 to b = 10 since a and b have a 1 respectively in
the last and in the first position. A CA local rule is represented over the

14

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

De Bruijn graph as a labeling of the edges, i.e., a function l : E → {0, 1}.
Hence, in the example above the labeling of (01, 10) would be the result of
the local rule applied to the input 010. To check if a given S-box of length
n can be expressed using a CA rule with diameter δ < n and offset ω, one
could start from a De Bruijn graph with 2δ−1 vertices and iteratively label
the edges by reading the entries in the truth table of the S-box. As soon as
an inconsistency is found (i.e., an edge gets more than one label), one knows
that the S-box is not representable with a CA of diameter δ. On the other
hand, if after reading the whole S-box each edge has a unique label, then
the De Bruijn graph of a CA rule implementing that S-box is obtained.

As an example, we consider the S-box of size 6 × 6 with δ-uniformity
equal to 2 [6]. Considering the last occurring value that equals 22, we see
that this S-box cannot be generated with a CA rule. This is due to the
fact that for the input 63 (111111 in binary) the output equals 22 (010110),
which means that the local rule is not consistent because it assigns different
values to the cells 1, 3, and 6 (value 0) and to the cells 2, 4, and 5 (value 1).

However, we note that the above procedure cannot help us to find a
combinatorial representation of an S-box. Moreover, this problem is much
more difficult since there exist many circuits mapping to the same truth
table and there is no easy way to determine the smallest circuit. Therefore,
we can use a regression process in order to find combinatorial circuits for a
given S-box. In this process, we apply the same evolutionary algorithm (GP)
with the same functions and terminals as before. However, the evolution is
now guided with the fitness function that describes the difference between
the S-box obtained by a CA rule, and the one given as an input parameter.
The design of the objective function is such that the truth table output of
the current CA rule is compared with the truth table of the given S-box.

Rather than simply counting all the bits in which the two differ, we
employ a two-stage fitness as in the previous sections: in the first stage
only a single output function (the first component) of an S-box is compared
with the desired output. Only if all the bits in this component match the
ones in the given S-box, the other part of the truth table is included in
the comparison. Note that this is only an implementation and possibly a
convergence issue, since in this way we hope to make it easier for the GP to
find an equivalent rule.

Additionally, we add a term devoted to minimizing the size of the resulting
CA rule (enforcing parsimony); this is only included if the error described
above reaches zero. If that is the case, we add a term that is inversely
proportional to the size of the GP individual, in this case corresponding to a
CA rule. The final fitness function in this case equals:

fitness4 = nErrors+ ∆nErrors,0

(
treeSize

maxTreeSize

)
, (11)

where nErrors denotes the number of differing bits, treeSize is the actual

15

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

Table 7: Reverse engineering, fitness4, Eq. (11)
S-box
size

Original
size

New size

Max Min Avg Std
dev

4× 4 77 26 11 13.96 3.36

5× 5 27 30 9 15.32 6.13

6× 6 26 31 13 20.11 5.34

7× 7 23 42 13 22.19 8.99

tree size, and maxTreeSize is the maximum size that the tree may assume
given a maximum tree depth and the number of arguments of the GP
functions.

In our experiments, we use as input S-boxes previously evolved solutions
with the best obtained properties. That way, we can be sure that the S-box
can be represented with a CA rule, while trying to find an implementation
with a smaller complexity. In Table 7 we give results for each S-box size.
Column Original size gives the size of the S-box used in the regression
process, and the other columns give statistics for the obtained results (here,
column Min represents the best obtained solution). Note that we selected
S-boxes randomly among those with the best obtained properties.

We see that for all presented sizes our procedure is able to find much
shorter CA rules than used in the original case. Therefore, this makes
our methodology a viable option when the goal is to implement the S-box
obtained via a CA rule in hardware since a shorter rule will mean smaller
gate count and consequently a smaller area. As an interesting fact, we note
that we also tried this approach with the Keccak S-box. Among obtained
solutions there were several occurrences of the exact same CA rule as used in
Keccak. When working with the 8×8 S-box size, our regression technique was
unable to find any correct rule corresponding to the given S-box. However,
we note that we experimented with an S-box originally obtained with a CA
rule consisting of 177 primitives, which is a much longer rule when compared
with the sizes where our approach found correct rules.

6 Discussion and Future Work

On the basis of the presented results one can observe that for dimensions
from 4 × 4 up to 7× 7 it is possible to find CA rules that result in S-boxes
with very good cryptographic properties. Here, only 6 × 6 size remains
slightly suboptimal but we show in the previous section that the optimal
solution (from the cryptographic perspective) is not even attainable with a
single CA rule. Naturally, there is also a clear distinction in the difficulty of

16

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

this problem between size 4× 4 and 7× 7.
On the other hand, 8×8 size results in CA rules that are far from optimal

and even far from the results obtainable with heuristics using permutation
encoding. We see that the average sizes of 8× 8 rules are significantly larger
when compared with the other investigated dimensions, which certainly
results in a more complicated evolution process. Besides the goal of evolving
CA rules resulting in S-boxes with good cryptographic properties, we also
changed the paradigm and looked for CA rules that map to a specific S-box.
Again, results for sizes 4 × 4 up to 7 × 7 are very good, where up to the
7 × 7 size we have 100% success rate in obtaining correct rules. For 7 × 7
size, that percentage equals 96.7%, which is still an excellent result. As with
the previous goal, size 8× 8 presents an unsurmountable obstacle where our
approach did not succeed in obtaining any equivalent CA rule.

As this work opens a new direction in the optimization of S-boxes with
good cryptographic properties, there are many possible future research
directions. The most obvious one is concentrating on the 8×8 size and trying
to improve the values of cryptographic properties. Naturally, in this paper we
concentrated only on a small set of cryptographic properties and one could
include in the fitness function other relevant properties like algebraic degree
or branch number. Another interesting direction would be to concentrate on
the implementation perspective where one would try to minimize the size
of CA rules resulting in S-boxes with optimal implementation properties
like area or latency. This could be done in a naive way by just counting
the number of primitives or even by accounting for the relative size of each
terminal (e.g., IF function, which corresponds to the MUX gate requires
more gates than the NOT function).

7 Conclusions

In this paper, we approach the problem of evolving S-boxes with good
cryptographic properties from a completely new perspective. Instead of
evolving S-boxes directly (regardless of the representation) we evolve cellular
automata rules that are then mapped to S-boxes with good cryptographic
properties. Our approach shows great potential where this is the first time
evolutionary computation (or more generally, heuristic) techniques are able
to find optimal S-boxes for sizes larger than 4× 4. Moreover, our approach
transforms a problem that has been up to now of extreme difficulty into
a simpler problem for certain S-box sizes. Naturally, since not all S-boxes
can be represented with a cellular automaton rule, our technique cannot be
used to design all optimal S-boxes of the corresponding size. However, we
believe that the corpus of obtainable functions is still large enough to give a
sufficient diversity in the future block cipher designs. Furthermore, we note
that the GP approach also offers easy handling of the resulting S-box latency

17

http://dx.doi.org/10.1145/3067695.3076084

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

and area when implemented in hardware, which makes our methodology
even more usable.

Finally, we show how one can use GP in order to “reverse-engineer” an
S-box. There, we use the regression approach to find the shortest CA rule
resulting in a specific S-box. This approach has interesting ramifications
from two aspects: fast checking whether an S-box is expressible through CA
rules and obtaining different rules (and consequently their sizes) resulting in
a specific S-box.

8 Acknowledgments

This work has been supported in part by Croatian Science Foundation under
the project IP-2014-09-4882.

References

[1] T. Bäck, D. Fogel, and Z. Michalewicz, editors. Evolutionary Computa-
tion 1: Basic Algorithms and Operators. Institute of Physics Publishing,
Bristol, 2000.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Radiogatún, a
belt-and-mill hash function. IACR Cryptology ePrint Archive, 2006:369,
2006.

[3] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The Keccak
reference, January 2011. http://keccak.noekeon.org/.

[4] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. In Proceedings of the 10th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’90, pages 2–21, Lon-
don, UK, UK, 1991. Springer-Verlag.

[5] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-
Lightweight Block Cipher. In Proceedings of the 9th International
Workshop on Cryptographic Hardware and Embedded Systems, CHES
’07, pages 450–466, Berlin, Heidelberg, 2007. Springer-Verlag.

[6] K. A. Browning, J. F. Dillon, M. T. McQuistan, and A. J. Wolfe. An APN
permutation in dimension six. Finite Fields: theory and applications,
pages 33–42, 2010.

[7] L. Burnett, G. Carter, E. Dawson, and W. Millan. Efficient Methods for
Generating MARS-Like S-Boxes. In Proceedings of the 7th International
Workshop on Fast Software Encryption, FSE ’00, pages 300–314, London,
UK, UK, 2001. Springer-Verlag.

18

http://dx.doi.org/10.1145/3067695.3076084
http://keccak.noekeon.org/

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

[8] C. Carlet. Boolean Functions for Cryptography and Error Correcting
Codes. In Y. Crama and P. L. Hammer, editors, Boolean Models and
Methods in Mathematics, Computer Science, and Engineering, pages
257–397. Cambridge University Press, New York, NY, USA, 1st edition,
2010.

[9] C. Carlet. Vectorial Boolean Functions for Cryptography. In Y. Crama
and P. L. Hammer, editors, Boolean Models and Methods in Mathe-
matics, Computer Science, and Engineering, pages 398–469. Cambridge
University Press, New York, USA, 1st edition, 2010.

[10] F. M. Christoph Dobraunig, Maria Eichlseder and M. Schläffer. Ascon,
2014. CAESAR submission, http://ascon.iaik.tugraz.at/.

[11] L. Claesen, J. Daemen, M. Genoe, and G. Peeters. Subterranean: A
600 Mbit/sec cryptographic VLSI chip. In Computer Design: VLSI in
Computers and Processors, 1993. ICCD ’93. Proceedings., 1993 IEEE
International Conference on, pages 610–613, Oct 1993.

[12] J. A. Clark, J. L. Jacob, and S. Stepney. The design of S-boxes by
simulated annealing. New Generation Computing, 23(3):219–231, Sept.
2005.

[13] J. Daemen and C. S. K. Clapp. Fast Hashing and Stream Encryption with
PANAMA. In Fast Software Encryption, 5th International Workshop,
FSE ’98, Paris, France, March 23-25, 1998, Proceedings, pages 60–74,
1998.

[14] J. Daemen, R. Govaerts, and J. Vandewalle. Invertible shift-invariant
transformations on binary arrays. Applied Mathematics and Computa-
tion, 62(2):259 – 277, 1994.

[15] J. Daemen, R. Govaerts, and J. Vandewalle. A new approach to block
cipher design. In R. Anderson, editor, Fast Software Encryption: Cam-
bridge Security Workshop Cambridge, U. K.,1993 Proceedings, pages
18–32, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[16] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2002.

[17] H. Gutowitz. Cryptography with dynamical systems. In Cellular Au-
tomata and Cooperative Systems, pages 237–274. Springer, 1993.

[18] L. R. Knudsen and M. Robshaw. The Block Cipher Companion. Infor-
mation Security and Cryptography. Springer, 2011.

[19] K. Nyberg. Perfect Nonlinear S-Boxes. In Advances in Cryptology
- EUROCRYPT ’91, Workshop on the Theory and Application of of

19

http://dx.doi.org/10.1145/3067695.3076084
http://ascon.iaik.tugraz.at/

c©ACM, 2017. This is the authors’ preprint of the work, before peer-review. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version was

published in the Proceedings of the Companion Publication of GECCO 2017,

http://dx.doi.org/10.1145/3067695.3076084

Cryptographic Techniques, Brighton, UK, April 8-11, 1991, Proceed-
ings, volume 547 of Lecture Notes in Computer Science, pages 378–386.
Springer, 1991.

[20] K. Nyberg. On the construction of highly nonlinear permutations. In
R. Rueppel, editor, Advances in Cryptology - EUROCRYPT’ 92, volume
658 of Lecture Notes in Computer Science, pages 92–98. Springer Berlin
Heidelberg, 1993.

[21] S. Picek, M. Cupic, and L. Rotim. A New Cost Function for Evolution
of S-boxes. Evolutionary Computation, 2016.

[22] S. Picek, J. F. Miller, D. Jakobovic, and L. Batina. Cartesian Genetic
Programming Approach for Generating Substitution Boxes of Different
Sizes. In GECCO Companion ’15, pages 1457–1458, New York, NY,
USA, 2015. ACM.

[23] S. Picek, K. Papagiannopoulos, B. Ege, L. Batina, and D. Jakobovic.
Confused by Confusion: Systematic Evaluation of DPA Resistance of
Various S-boxes. In Progress in Cryptology - INDOCRYPT 2014 - 15th
International Conference on Cryptology in India, December 14-17, 2014,
Proceedings, pages 374–390, 2014.

[24] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J.
R. Koza).

[25] M. Seredynski and P. Bouvry. Block encryption using reversible cellular
automata. In Cellular Automata, 6th International Conference on
Cellular Automata for Research and Industry, ACRI 2004, Amsterdam,
The Netherlands, October 25-28, 2004, Proceedings, pages 785–792, 2004.

[26] C. Shannon. Communication theory of secrecy systems. Bell System
Technical Journal, 28(4):656–715, 1949.

[27] K. Sutner. De bruijn graphs and linear cellular automata. Complex
Systems, 5(1):19–30, 1991.

20

http://dx.doi.org/10.1145/3067695.3076084

	Introduction
	Cryptographic Properties of S-boxes
	Cellular Automata
	Related Work
	CA-Based Block Ciphers and S-Boxes
	Evolutionary Design of S-boxes

	Experimental Setup and Results
	Genetic Programming Approach
	Fitness Function
	Improving the Granularity of the Fitness Function
	Experimental Results
	Reverse Engineering of CA-based S-boxes

	Discussion and Future Work
	Conclusions
	Acknowledgments

