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Abstract

The aim of this paper is to find cellular automata (CA) rules that
are used to describe S-boxes with good cryptographic properties and
low implementation cost. Up to now, CA rules have been used in
several ciphers to define an S-box, but in all those ciphers, the same
CA rule is used. This CA rule is best known as the one defining
the Keccak χ transformation. Since there exists no straightforward
method for constructing CA rules that define S-boxes with good crypto-
graphic/implementation properties, we use a special kind of heuristics
for that – Genetic Programming (GP). Although it is not possible to
theoretically prove the efficiency of such a method, our experimental re-
sults show that GP is able to find a large number of CA rules that define
good S-boxes in a relatively easy way. We focus on the 4× 4 and 5× 5
sizes and we implement the S-boxes in hardware to examine implemen-
tation properties like latency, area, and power. Particularly interesting
is the internal encoding of the solutions in the considered heuristics
using combinatorial circuits; this makes it easy to approximate S-box
implementation properties like latency and area a priori.

Keywords Lightweight cryptography, S-boxes, Cellular automata, Ge-
netic programming, Implementation

1 Introduction

When studying the design of block ciphers, a common concept is to adhere
to Shannon’s confusion and diffusion principles [23]. To provide confusion,
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one usually uses Substitution boxes (S-boxes). In most cases, those S-boxes
are the only nonlinear part of the cipher and they operate on parts of the
state. Smaller S-boxes, e.g. those with size 4× 4, are most often employed
in lightweight cryptographic ciphers such as PRESENT [5]. On the other
hand, 8× 8 S-boxes are found in the AES cipher [16], and subsequently in a
number of ciphers that draw inspiration from AES.

Naturally, there exists a clear trade-off between the choices of S-box sizes
and properties. S-boxes based on a finite field inversion will have the smallest
possible differential probability, the largest possible algebraic degree, and the
largest possible nonlinearity (or what is believed to be the largest possible
nonlinearity in the case of a bijective 8× 8 S-box). Those properties ensure
that the cipher can be secure with a relatively small number of rounds and
consequently have good performance However, an S-box of such a size can
be troublesome to implement in constrained environments and consequently
one uses either smaller optimal S-boxes, large S-boxes with suboptimal
cryptographic properties but small implementation cost or constructions of
larger S-boxes through smaller S-boxes.

To construct any of the aforementioned S-boxes, algebraic constructions
with possible additional affine transformations are usually employed to change
the representation of an S-box without affecting its cryptographic properties.
This concept can be levied for the 4× 4 size since there it is also possible to
use an exhaustive search in order to obtain all optimal S-boxes. Besides that,
there have been numerous papers advocating the use of heuristic techniques.
Nevertheless, the results are mostly suboptimal with regards to cryptographic
properties and they do not describe a proper use case [12, 8, 20]. Finally,
there are several ciphers that use cellular automata (CA) rules to describe the
S-box. The best known example is the Keccak sponge construction [4] that is
now the SHA-3 standard. There, the authors use CA rules affecting only two
neighborhood positions for each bit, which results in an extremely lightweight
definition of the S-box and a small implementation cost. However, that S-box
has suboptimal cryptographic properties (like nonlinearity and differential
uniformity), which results in a cipher with more rounds than with optimal
S-boxes. As far as the authors know, all the other ciphers using CA rules
for the S-box definition actually use the same rule. This is the case in the
Panama [13], RadioGatún [3], Subterranean [11], and 3Way [15] ciphers. It is
also an interesting consideration (although maybe more in the philosophical
domain) whether those ciphers (excluding 3Way) actually use S-boxes, since
every output bit depends only on three input bits for the considered CA rule.
Taking this into account, the Panama cipher would have a 17-bit S-box and
Subterranean would have a 257-bit S-box. We note that since the same local
rule is used in different S-box sizes, the cryptographic properties actually
degrade with the increase of the S-box size. For instance, when used in 3× 3
S-boxes, both the nonlinearity and differential uniformity equal 2, which is
optimal, but if used in 7× 7 S-boxes, both of those properties would have a
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value equal to 32, which is far from optimal.
In this paper, we focus on the investigation of cellular automata rules

that are able to produce optimal S-boxes with a low implementation cost.
In order to achieve that, we employ a heuristic technique known as Genetic
Programming (GP) to evolve CA rules – definitions of S-boxes. Genetic
Programming evolves tree structures that consist of logical operations and
therefore offer a natural mapping to combinatorial circuits which makes
it possible to estimate the area of the generated S-boxes. Thanks to the
maximum tree depth parameter of GP, we are also able to limit the latency of
the S-boxes. Finally, to evaluate the power consumption, we use a posteriori
setup where we batch large numbers of CA rules to find which one coincides
with the smallest power consumption.

In our analysis, we focus on S-boxes of sizes 4× 4 and 5× 5. While larger
S-boxes with optimal cryptographic properties can be also designed by using
our methodology, the initial obtained results show that such CA rules are
usually too large to be of real interest when implemented in hardware. We
are aware that one could argue that there are already enough knowledge
and tools to design smaller S-boxes, but as far as we know, there is nothing
more than the Keccak rule when considering CA rules for the construction
of S-boxes. We emphasize that the way the CA rule is implemented, i.e., one
rule for each bit of the input, make CA rules a very interesting technique but
one that leads to large implementations for larger sizes. Indeed, if a single
rule needs only 5 GE, the overhead for 5× 5 S-boxes is 25 GE.

Additionally, we remark that the number of S-boxes of a certain size
defined by CA is much smaller than the total number of S-boxes of that
size, since a CA S-box is described just by the Boolean function of its local
rule. This means that there are 22n CA S-boxes of size n× n, a space which
could be exhaustively searched up to n = 5. However, since we use tree
encoding to measure the implementation cost (see Sec. 5), the number of CA
rules representations is much larger than the number of S-boxes and thus
impossible to exhaustively visit even for smaller sizes, which motivates the
use of heuristic techniques such as GP.

2 Cryptographic Properties of S-boxes

Let n,m be positive integers, i.e., n,m ∈ N+. The set of all n-tuples of
elements in the field F2 is denoted as Fn2 , where F2 is the Galois field with
two elements. The inner product of two vectors a and b equals a · b =⊕n

i=1 aibi and “
⊕

” represents addition modulo two. An (n,m)-function
is any mapping F from Fn2 to Fm2 . A (n,m)-function F can be defined as
a vector F = (f1, · · · , fm), where the Boolean functions fi : Fn2 → F2 for
i ∈ {1, · · · ,m} are called the coordinate functions of F. The component
functions of an (n,m)-function F are all the linear combinations of the
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coordinate functions with non all-zero coefficients. The following results are
well-known in the theory of Boolean functions and S-boxes and can be found
for instance in [9, 10, 18, 19].

The Walsh-Hadamard transform of an (n,m)-function F equals:

WF (a, v) =
∑
x∈Fm

2

(−1)v·F (x)⊕a·x, a, v ∈ Fm2 . (1)

An (n,m)-function F is balanced (BAL) if it takes every value of Fm2 the
same number 2n−m of times.

The nonlinearity NF of an (n,m)-function F equals the minimum non-
linearity of all its component functions v · F , where v ∈ Fm2 \ {0}:

NF = 2n−1 − 1

2
max
a ∈ Fn

2
v ∈ Fm∗

2

|WF (a, v)|. (2)

The nonlinearity of an S-box should be as high as possible in order to avoid
linear attacks. The maximal nonlinearity for any (n, n) function F is bounded
above by:

NF ≤ 2n−1 − 2
n−1
2 . (3)

Let F be a function from Fn2 into Fn2 and a, b ∈ Fn2 . We denote:

D(a, b) = |{x ∈ Fn2 : F (x+ a) + F (x) = b}|. (4)

The entry at the position (a, b) corresponds to the cardinality of D(a, b) and
is denoted as δ(a, b). The differential uniformity δF is then defined as:

δF = max
a6=0,b

δ(a, b). (5)

In order to withstand differential attacks, the differential uniformity of an
S-box needs to be as low as possible.

The algebraic degree degF of (n,m)-function F is the maximum algebraic
degree of all component functions [10]. As a cryptographic criterion, the
degree of an S-box should be as high as possible in order to thwart higher-
order differential attacks.

The branch number bF of a function F is defined as [16]:

bF = min
a,b 6=a

(HW (a⊕ b) +HW (F (a)⊕ F (b))). (6)

3 Cellular Automata

A cellular automaton (CA) is a parallel computational model that has been
used to simulate and analyze a wide variety of discrete complex systems in
different application domains. A CA is characterized by a lattice of cells.
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During a single time step, each cell in the lattice synchronously updates its
state according to a local rule, which is applied to the neighborhood of the
cell.

For the purposes of our work, we consider only the case in which each
cell is described by a binary state, 0 or 1, leading to the following definition:
An infinite cellular automaton (CA) is a quadruple A = 〈c, δ, ω, f〉 where c
is a bi-infinite array of cells, each of which takes a value in F2, δ ∈ N is the
diameter, ω ∈ Z is the offset and f : Fδ2 → F2 is the local rule. In particular,
the next state of each cell ci with i ∈ Z is determined by applying in parallel
the rule f to the neighborhood (ci−ω, · · · , ci−ω+δ−1).

Notice that, since the local rule f : Fδ2 → F2 is a Boolean function, it
can be represented by a truth table of 2δ bits. The global rule F : FZ

2 → FZ
2

of an infinite CA 〈c, δ, ω, f〉 is the function mapping the current state of
the bi-infinite array c to its next configuration. An important property
characterizing the global rules of CA is their shift invariance. Denoting by σ
the function which shifts all values in a bi-infinite configuration one place to
the left, any CA global rule commutes with σ, i.e. F (σ(x)) = σ(F (x) for all
x ∈ FZ

2 .
For practical applications, CA can obviously be implemented using only

finite arrays, which leads to the problem of updating the cells at the bound-
aries. One of the most commonly adopted policies are periodic boundary
conditions, where the finite cells array is viewed as a ring with the last cell
preceding the first one. In this case, we denote a finite CA by a quintuple
〈c, n, δ, ω, f〉, where n ∈ N indicates the length of the cellular array. The
global rule F : Fn2 → Fn2 is thus defined for all possible values x ∈ FZ

2 of the
state array c as F (x) = (f(x−ω, · · · , xδ−ω), · · · , f(xn−1−ω, · · · , xn−ω+δ−2))
where all indices are computed modulo n. As a consequence, the global rule
of a finite CA is a vectorial Boolean function of n inputs and n outputs,
where for all i ∈ {0, · · · , n − 1} the i-th coordinate function fi : Fn2 → F2

corresponds to the local rule f applied to the neighborhood of cell ci. As
an example, consider the rule f(x1, x2, x3) = x1 ⊕ x2 ⊕ x3 and the finite
configuration c = 01001. The application of the global rule F : F5

2 → F5
2 to c

using periodic boundary conditions changes the CA state to F (c) = 01111.
A finite CA with periodic boundary conditions corresponds to an infinite

CA with the same local rule, but restricted only to periodic configurations,
i.e. configurations x ∈ FZ

2 such that xi+h = xi for a certain h and for all
i ∈ Z.

We conclude this section by mentioning the class of reversible CA (RCA),
which is particularly interesting for cryptographic applications. Formally,
an infinite CA A = 〈c, δ, ω, f〉 is reversible if its global rule F : FZ

2 → FZ
2 is

bijective and the inverse G = F−1 is again the global rule of an infinite CA.
In practice, as Richardson [22] proved, the reversibility of an infinite CA is
characterized just by the bijectivity of its global rule. Since an infinite RCA
A = 〈c, δ, ω, f〉 is clearly reversible over the set of periodic configurations, it
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follows that the global rule of the corresponding finite CA A′ = 〈c, n, δ, ω, f〉 is
a bijective S-box. The converse is however not true: a local rule f : Fδ2 → F2

may give rise to a finite CA whose global rule is invertible only for certain
array lengths, but the associated infinite CA is not reversible.

4 Related Work

The first block cipher based on cellular automata was proposed by Gutowitz [17].
The design was based on the adoption of permutive rules for the diffusion
phase, in particular, where the value of the leftmost or rightmost variable is
XORed with a function of the remaining variables, and block reversible CA
for the confusion phase, where a permutation is applied on smaller blocks of
the cipher state which are then shifted in the next time steps.

Gutowitz’s design focused on the iterated behaviour of the CA, where the
global rule is applied for several time steps in order to generate the ciphertext.
Another perspective is to consider the S-box corresponding only to one CA
iteration. This approach has been mainly investigated with respect to the
class of complementing landscapes cellular automata (CLCA), where the local
rule complements the state of the current cell if the values of the surrounding
cells belong to a specific pattern. In [14], CLCA for block cipher design
were studied distinguishing between locally and globally invertible rules. In
particular, all locally invertible CLCA turn out to be involutions, while
globally invertible CLCA are invertible only over certain sets of periodic
configurations. In particular, the transformation χ used in Keccak [4] is
invertible only over configurations of odd lengths.

From the evolutionary computation (EC) perspective, we mention only
some characteristic approaches that are all using permutation encoding.
Clark et al. used the principles from the evolutionary design of Boolean
functions to evolve S-boxes with the desired cryptographic properties [12].
They used simulated annealing (SA) coupled with the hill climbing algorithm
to evolve bijective S-boxes with high nonlinearity. Burnett et al. used a
heuristic method to generate MARS-like S-boxes [8]. With their approach,
they were able to generate a number of S-boxes of appropriate sizes that
satisfy all the requirements placed on a MARS S-box. Picek et al. used
several evolutionary algorithms to evolve S-boxes and discussed how to obtain
permutation-based encoding with those algorithms [20].

5 Experimental Setup and Results

5.1 Genetic Programming Approach

Genetic Programming (GP) is an evolutionary algorithm in which the data
structures that undergo optimization are computer programs. Since the
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aim of GP is to automatically generate new programs, each individual of
a population represents a computer program, where the most common are
symbolic expressions representing parse trees. A parse tree (syntax tree) is
an ordered, rooted tree that represents the syntactic structure of a string
according to some context-free grammar.

A tree can represent a mathematical expression, a rule set or a decision
tree, for instance. The building elements in a tree-based GP are functions
(inner nodes) and terminals (leaves, problem variables). Both functions and
terminals are known as primitives.

Consider the Keccak construction that uses the CA rule χ on an array of
length n = 5 for the nonlinear part. This rule can be represented as:

ci(t+ 1) = ci(t) XOR ((NOT (ci+1(t))) AND ci+2(t)), 0 ≤ i < 5 and t ∈ N. (7)

The above rule is applied to the current state in step t to produce the
next state in step t+ 1. Note that Eq. (7) is in fact a Boolean function which
defines a CA local rule with offset ω = 0.

We use the same approach with GP, where the task is to evolve a Boolean
function of n variables, in the form of a tree, which is used as a CA local rule.
Similarly to the Keccak rule χ, in our experiments we assume that the offset
of the finite CA is ω = 0. Hence the neighborhood of a cell is formed by the
cell itself and the n− 1 cells to its right. Unlike χ, however, we also assume
that the length of the CA equals the number of variables of the CA local rule.
In this process, we assume the following: the state of a CA is represented
with a periodic one-dimensional binary array of size n. The elements of the
binary array are represented as GP terminals, where the terminal c0 denotes
the value that is being updated. The terminals c1, ..., cn−1 denote the cells
to the right of the current cell.

A candidate Boolean function, obtained with GP, is evaluated in the
following manner: all the possible 2n input states are considered, and for
each state the same rule is applied in parallel to each of the bits to determine
the next state. The obtained global rule represents a candidate S-box that is
then evaluated according to the fitness function. The function set consists
of several Boolean primitives necessary to represent any Boolean function.
Here, we use the following function set: NOT, which inverts its argument,
XOR, NAND, NOR, each of which take two input arguments. Additionally,
we use the function IF, which takes three arguments and returns the second
one if the first one evaluates to true, and the third one otherwise. This
function represents the multiplexer gate (MUX). In the evolution process, GP
uses a 3-tournament selection, where the worst of the 3 randomly selected
individuals is eliminated. A new individual is then created by applying
crossover to the remaining two from the tournament. The new individual is
then mutated with a probability of 0.5.

The variation operators are simple tree crossover and subtree muta-
tion [21]. In simple tree crossover, randomly selected branches are exchanged
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between two parent trees to create offspring while subtree mutation selects a
node in the parse tree and replaces the branch at that node by a randomly
generated branch. All our experiments suggest that having a maximum tree
depth equal to the size of S-box (i.e., n) is sufficient. The initial population
is created uniformly at random and every experiment is repeated 100 times.

In order to examine the influence of the GP parameters, we conducted a
tuning phase for the stopping criterion and the population size. The starting
set of parameters was tested on S-boxes of size n = 5, with population 200,
for which 100 runs were executed. Based on these results, the stopping
criterion was set to 500 000 evaluations since no change of the best solution
was detected afterwards. Furthermore, we investigated population sizes
100, 200, 500, and 1 000 on the same problem size; although there were no
significant differences, the best results were obtained with a population size
of 500, which we used in the following experiments.

5.2 Fitness Function

We try to find (n, n) S-boxes that possess the minimal necessary properties
to be used in real world ciphers. Therefore, we want the evolved S-boxes
to be balanced, with high nonlinearity, and low differential uniformity. We
note that those are the standard minimum properties one should consider,
although there are other properties that are important, but out of the scope
of this work.

With the goal of finding balanced S-boxes that have as high as possible
nonlinearity and as low as possible differential uniformity, we use a two-
stage fitness function. First, the balancedness is verified, and if an S-box is
balanced, we give it a value of zero, otherwise the value equals -1; this is
denoted with the label BAL. Only if the S-box is balanced, we calculate the
nonlinearity and differential uniformity, which is subtracted from the value
2n, since we aim to minimize the value of that property. Additionally, to
reduce the implementation complexity of the evolved S-box, we aim to reduce
both the number of elements in the CA rule and the approximate circuit
area. Therefore, for every function that may be used in a GP individual, we
define an implementation weight using the GE measure, which stands for
Gate Equivalent (i.e., the number of equivalent NAND gates in the specified
technology). This weight reflects the relative area of those functions as
follows: the weights of NAND and NOR gates are set to 1, the XOR weight
is 2, the weight of IF is 2.33 and the weight of NOT equals 0.667 (note that
the weights can be easily modified to reflect different hardware properties).
Finally, we aim to maximize the resulting value:

fitness = BAL+ ∆BAL,0(NF + (2n − δF )) + 1/area penalty. (8)

Here, ∆BAL,0 represents the Kronecker delta function that equals one
when the function is balanced (i.e., BAL = 0) and zero otherwise. Further-
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more, we give equal weights to both NF and differential uniformity since our
experiments show there is no statistically significant difference between those
two approaches and no weight factors means less tuning. The area penalty
term is the summed weight of all the used functions. We opted not to use
some sort of a multi-objective approach since we consider balancedness as a
constraint and we are not interested in solutions if they are not balanced.

5.3 Experimental Results

In Table 1 we give the best obtained values for the cryptographic properties
for both S-box sizes. In the column Rule, we give the rule that defines the
specific S-box. Note that for the 5× 5 size we are able to find AB function.
Besides the cryptographic properties used in the fitness function, we also
give results for the branch number (bF ), algebraic degree (degF ), and the
algebraic degree of the inverse S-box (deg−1

F ). Note that the results for bF ,
degF , and deg−1

F could be improved by including them into fitness function,
but we leave that for the future work.

After the evolution, the best obtained results are implemented in hard-
ware to examine their performance. We use a clock frequency of 10 MHz
because the dynamic power and the cell leakage power have similar orders
of magnitude for this frequency for the technology used in this paper. This
enables us to optimize both shares of the power at the same time. Fur-
thermore, for a fixed clock frequency and computation time, optimizing for
energy is the same as optimizing for average power. The power consumption
of the S-boxes is estimated by means of simulation. In the first step of
our simulation setup, an S-box is generated in the style of a look-up table
(LUT). A Matlab (R2014b) script is used to generate the HDL description
of the S-box (Verilog file S-box.v). For logic synthesis, we use a standard cell
approach using the NANGATE 45 nm open cell library (PDKv1 3 v2010 12).
Synopsys Design Compiler (I-2013.12) is used to produce the gate-level netlist
and the delay file (.sdf ). The standard method for estimating the power
consumption using the Synopsys tool chain is based on the random switching
activity of the internal nodes. While this approach may be suitable for
first-order estimation, it does not give realistic application-specific data. In
order to obtain a more realistic estimation, one needs to use a real testbench
to approximate the switching activity for each gate. We use a testbench
that goes through all possible n × (n − 1) input transitions of the S-box.
Modelsim SE PLUS 6.6d is used to simulate the wave file (.vcd) containing
the switching activity of all nodes. This file is then converted to an activity
file (.saif) using vcd2saif (D-2010.06-SP2). Finally, Design Compiler is used
to estimate the power consumption. Similarly, the area cost estimation is
based on the netlist before placement and routing. The area consumption of
the S-box is estimated by the Synopsys tool chain and represented with the
unit GE.

9

http://dx.doi.org/10.1145/3075564.3079069


c©ACM, 2017. This is the authors’ version of the work. It is posted here by permission of ACM

for your personal use. Not for redistribution. The definitive version was published in the

Proceedings of the Computing Frontiers Conference, CF’17,

http://dx.doi.org/10.1145/3075564.3079069

Table 1: The best obtained properties.

Size NF degF deg−1
F δF bF Rule

4 ×
4

4 3 3 4 2 IF(((v3 NOR v1) XOR v0), v2,
v1)

5 ×
5

8 2 3 8 2 ((v2 NOR NOT(v4)) XOR v1)

5 ×
5

8 2 3 4 2 ((v4 NAND (v2 XOR v0)) XOR
v1)

5 ×
5

12 2 3 2 2 (IF(v1, v2, v4) XOR (v0 NAND
NOT(v3)))

We emphasize that we present rules only for sizes up to 5×5 due to the lack
of space (but also the implementation cost of such rules). For larger sizes, our
technique is still able to find S-boxes with optimal cryptographic properties,
but the logical complexity is high (for example, for 7× 7 the shortest CA
rule we found requires 31 GE which makes the whole S-box 217 GE large, a
result which is much larger than the smallest known implementation for the
AES S-box of 128 GE [6]).

In Table 2 we present the implementation costs for a number of reference
S-boxes as well as S-boxes defined with CA rules. The column DPow denotes
the dynamic power and the column LPow denotes the cell leakage power.

In Figure 1 we depict the rule obtained with our approach that results
in a 5× 5 S-box with the same cryptographic properties (and similar imple-
mentation cost) as Keccak.

v4 v3 v2 v1 v0

o4 o3 o2 o1 o0

Figure 1: 5× 5 rule with optimal nonlinearity and differential uniformity.
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Table 2: Implementation results, power is in nW , area in GE, and latency
in ns.

Size 4× 4 Rule PRESENT

DPow. 470.284 LPow: 430.608 Area: 22.67 Latency:0.27

Size 4× 4 Rule Piccolo

DPow. 222.482 LPow: 215.718 Area: 12 Latency:0.25

Size 4× 4 Rule IF(((v3 NOR v1) XOR v0), v2, v1)

DPow. 242.52 LPow: 337.47 Area: 16.67 Latency:0.14

Size 5× 5 Rule Keccak

DPow. 321.684 LPow: 299.725 Area: 17 Latency:0.14

Size 5× 5 Rule ((v2 NOR NOT(v4)) XOR v1)

DPow. 324.849 LPow: 308.418 Area: 17 Latency:0.14

Size 5× 5 Rule ((v4 NAND (v2 XOR v0)) XOR v1)

DPow. 446.782 LPow: 479.33 Area: 24.06 Latency:0.2

Size 5× 5 Rule (IF(v1, v2, v4) XOR (v0 NAND NOT(v3)))

DPow. 534.015 LPow: 493.528 Area: 26.67 Latency:0.17

5.4 Discussion and Future Work

The results suggest that the most natural size for CA rules is 5× 5 since the
implementation properties have the smallest relative overhead. This is due
to the fact that we always require at least several logical functions to build a
CA rule for an n-bit S-box. With a small modification (e.g., adding just one
logical gate) it is possible to reach optimal S-boxes for size n+ 1. Naturally,
for smaller S-box sizes, one could do an exhaustive search (as done for the
4 × 4 size), but translating such obtained S-boxes to CA rules is far from
trivial for several reasons. The first reason is that not all S-boxes can be
expressed with only a single CA rule. The second reason stems from the fact
that each coordinate function (i.e., each Boolean function) can be expressed
with a number of different CA rules.

Larger sizes of S-boxes, e.g., 7 × 7 and 8 × 8 result in relatively long
rules (inefficient from the implementation perspective), so we refrain from
giving a detailed analysis. Recall that when applying a single rule for a
number of times, even if that rule is relatively efficient (e.g., small), the total
implementation cost of the S-box can be high.

On a more general level, we notice that using the MUX gate (i.e., IF
function) results in much smaller optimal S-boxes compared to cases where
MUX is not allowed. This makes it worthwhile to use MUX gates, even
though they have a somewhat larger area compared to the other gates we
use. As already said, generating CA rules in the form of depth constrained
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trees has the additional advantage that we can control the maximal latency
of the circuit, but naturally this control is somewhat coarse and there are
many possible latency values one can reach for the same tree depth.

For the area results we follow the approach where we try to minimize the
number of gates that constitute a CA rule as well as to use the “cheapest”
gates based on weight factors expressed in terms of GE. Still, we can give
only an approximation of results since the synthesis process can result in
some differences.

For example, the rules IF (v0, ((v3NOR v1)XOR v2), v1) and IF (((v3NOR v1)XOR v0), v2, v1)
have the same number and type of gates, but the area is equal to 18.05GE
for the former and equal to 16.67GE for the latter. This difference stems
from the fact that after the synthesis process the first rule actually uses 14
gates and the second one only 13 gates.

We only used power analysis as an a posteriori approach where we tested
the obtained S-boxes for their dynamic and cell leakage power. Accordingly,
the results are not comparable with for instance those obtained for the
MIDORI cipher [1], but are better than for PRESENT. The implementation
costs of larger S-boxes (i.e., 7 × 7 and larger) is omitted here since it has
been shown that the most power efficient size is 4× 4 [2]. We note that it
would also be possible to run heuristics where the obtained CA rules would
be immediately investigated for their power consumption which would result
in better results than those presented here. To introduce even more diversity
into CA rules, we could use the switching technique [7]. There, we can
exchange one or more coordinate functions (corresponding to a CA rule) with
a new rule. In that way, we could improve the cryptographic properties of
S-boxes, find S-boxes with the same cryptographic properties but smaller or
more power efficient when implemented or just obtain S-boxes not possible
to design with only a single rule. For instance, we can take the Keccak rule
and use it on the first 4 input bits. However, on the last input bit we would
then use the rule (v0 XOR (v4 NOR NOT (v3))) which enables us to obtain
an S-box with the same cryptographic properties but utilizing a different set
of input bits (see Eq. (7)).

6 Conclusions

In this paper, we use Genetic Programming to evolve CA rules that define
S-boxes. The results show that our approach is able to generate a large num-
ber of rules, resulting in S-boxes that vary from having good cryptographic
properties to being optimal, all with low implementation cost. We emphasize
5× 5 as the best size, since it seems to offer the best trade-off between the
minimal number of gates necessary to define a CA rule and the number of
gates needed to define an optimal 5× 5 S-box. Indeed, our best result for
the 5× 5 size has an area of 26 GE, which is 9 GE more than the Keccak

12

http://dx.doi.org/10.1145/3075564.3079069


c©ACM, 2017. This is the authors’ version of the work. It is posted here by permission of ACM

for your personal use. Not for redistribution. The definitive version was published in the

Proceedings of the Computing Frontiers Conference, CF’17,

http://dx.doi.org/10.1145/3075564.3079069

S-box, but 10 GE less than the PRIMATEs S-box, which is an example of
an S-box with the same cryptographic properties.

Furthermore, we are able to generate a large number of rules where we can
set the desired values of cryptographic properties which gives the potential
designer more choice when selecting appropriate S-boxes. Our technique can
also be applied for larger S-box sizes where we are still able to find S-boxes
with optimal values of nonlinearity and differential uniformity but then the
implementation costs can be significantly higher. Finally, we are confident
that some of our CA rules can offer interesting options for future designs of
block ciphers.
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