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Secret Sharing Schemes

• A Secret sharing scheme enables a dealer D
to split a secret S among a set {P1, · · · , Pn}

of players, each of whom receives a share Bi

• In (k, n) threshold schemes, the shares of at
least k players out of n are required to recover
the secret [3]

• Goal: Implement (2, n) schemes using cellu-
lar automata (CA) and Latin squares
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Cellular Automata (CA)
• A cellular automaton is composed of a lattice of cells, each

of which updates its binary state according to a local rule f

0

↓local rule f : x1 ⊕ x2 ⊕ x3

110· · · 0 0 · · ·

• The CA evolution is given by the application of the global
rule F on the central cells

10 0 0 1 1 0

⇓ Global rule F

011 0 0 0 1 0 1

Latin Squares
• In a Latin square of side N, each number from 1 to N is

contained exactly once in each row and in each column

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

• Two Latin squares are orthogonal if in their superposition
each pair of numbers from 1 to N occurs exactly once
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• Remark: A set of n mutually orthogonal Latin squares
(MOLS) is equivalent to a (2, n) threshold scheme

Latin Squares from Bipermutive CA
• A CA with bipermutive rule of radius r generates a Latin

square of side 22r
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• Example: radius r = 1, N = 4, f (x1, x2, x3) = x1 ⊕ x2 ⊕ x3
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Encoding: 00 7→ 1, 10 7→ 2, 01 7→ 3, 11 7→ 4

Main Result and Future Developments
• Two linear CA generate orthogonal Latin squares if and only

if their associated polynomials are relatively prime

• Example: Rule 150 7→ 1 + X + X2, Rule 90 7→ 1 + X2
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Superposition

• Future development: Count the number of coprime pairs of
polynomials with nonzero constant term and degree n

• This number is related to OEIS sequence A002450 [2],
a(n) = 0, 1, 5, 21, 85, ... for n = 1, 2, 3, 4, 5, ...
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