UNIVERSITY
OF TWENTE.

Al and Cryptography

Lecture 2 & 3 — Al Methods to Design Cryptographic Primitives

Luca Mariot

Semantics, Cybersecurity and Services Group, University of Twente
1 .mariot@utwente.nl

Trieste, June 27, 2023



Topics and Reading Material

Main topics:
> Boolean functions and S-boxes for symmetric crypto
> Genetic Algorithms to optimize Boolean functions
> S-boxes based on Cellular Automata
> Other representations: orthogonal arrays
» Evolving algebraic constructions

References:

» C. Carlet. Boolean Functions for Cryptography and Coding
Theory [C21]

> Survey papers: [MJBC22] and [DJMP23] (see references)
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This Lecture

Boolean Functions and S-boxes
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Vernam-like Stream Cipher

> PRG: Pseudorandom generator that stretches a short secret
key K into an arbitrary long keystream z

PRG PRG
r@@ @%ﬁo
a) Encryption b) Decryption

> Question: how to build a PRG in practice?
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Linear Feedback Shift Registers (LFSR)

> Device computing the binary linear recurring sequence

Sn+k = a-+apSn+aiSn+1+ -+ ak-1Sn+k-1

o DD

OO SRS

Output ¢ —"

Do Dy Dk-—2 D+

> Too weak as a PRG: 2k consecutive bits of keystream are
enough to recover the LFSR initialization

L. Mariot Al and Cryptography



An Example of PRG: The Combiner Model

> a Boolean function f: {0,1}" — {0, 1} combines the outputs of

n LFSR [C21]
LFSR 1 °
(TSR 2}— (e )L ke, )

LFSR n

'

» Security of the combiner < cryptographic properties of f
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Boolean Functions - Basic Representations

» Truth table: a 2"-bit vector Qy specifying f(x) for all x € {0,1}"

(x1,%2,X3) | 000 100 010 110 001 101 011 111
% |o 1 1 0 1 0 1 0|

> Algebraic Normal Form (ANF): Sum (XOR) of products (AND)
f(X1,X2,X3) = X1 D Xo D X3P XoX3

> Walsh Transform: correlation with linear functions a- x,
W(f,a) = Yyeoapn(=1)X%8 for all a € {0,1)"

T T T T T T T T
000 100 010 110 001 101 011 111
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Cryptographic Properties: Balancedness

» Hamming weight wy(f): number of 1s in Q¢
> A function f : Fj — Fz is balanced if wy(f) = 2"

» Walsh characterization: f balanced & F(0) =0

(X1,X2,x3) | 000 100 010 110 001 101 011 111
 |o0o 1 1 1 1 0 0 0 |

U

f is balanced

> Unbalanced functions present a statistical bias that can be
exploited for distinguishing attacks
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Cryptographic Properties: Algebraic Degree

> Algebraic degree d: the degree of the multivariate polynomial
representing the ANF of f

f(X1,X2,X3) = X1 - XoD X1 DXoD X3
U
f has degree d =2

> Linear functions w-x = w1x1 ®---®wnpX, have degree d =1

> Boolean functions of high degree make the attack based on
Berlekamp-Massey algorithm less effective
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Cryptographic Properties: Nonlinearity

» Nonlinearity nl(f): Hamming distance of f from linear functions
> Walsh characterization:

1
ni(f) =2""-— max{

n
wEeF,

F(w)|)

(x1,%,X3) | 000 100 010 110 001 101 011 111
Qs o 1 1 1 1 0 0 0
W; o 0 0 0 -4 4 4 4

U
ni(f) = 2371 —;4:2

» Functions with high nonlinearity resist fast-correlation
attacks
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Bent Functions

> Parseval’s Relation, valid on any Boolean function:

D W(fa)? =22" forall £:{0,1}" > {0,1)
a<{0,1}"

» Bent functions: W(f,a) = +22 for all a € {0,1)"
> Reach the highest possible nonlinearity
> Exist onlv for n even and thev are unbalanced

4_

T T T T T T T T T T T T T T T T
0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111
a

Example: f(x1,X2,X3,Xa) = X1 X3 -+ X1 X4 + XoX4
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Cryptographic Properties: Resiliency

> {-Resiliency: when fixing any t variables, the restriction of f
stays balanced

» Walsh characterization:
Flw)=0VYw: wy(w) <t

(x1,X2,%3) | 000 100 010 110 001 101 011 111
Qs K 1 1 1 0 0 0
F(w) 0o 0 0 0 -4 4 4 4

U
F(001) = —4 = f is NOT 1-resilient

> Resilient functions of high order t resist to correlation
attacks
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S-boxes in SPN Ciphers

Plaintext
NN Zoom in on a S-box S;:
ssls[s]s[s s s[5
0 A 23 233 Y 7 )
Permutation layer ‘ J F:{0,1}" > {0,1)"
P Y. (y1]y2]ys]ya|ys|ye|y7|ye]
‘ Ciphertext ‘ (b) S-box S;

(a) Substitution-Permutation Network (SPN)

S-boxes F : {0,1}" — {0,1}" are vectorial Boolean functions
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S-Boxes: General definitions

» The output of an (n, m)-function is defined by m coordinate
functions f; : F} — Fo.

> Hence, an S-box F : F] — F7' can be represented by a mx 2"
truth table, where row i is the truth table of f;.

» Example: n = m = 3 (the 3-War S-box)

(X1,X2,X3) 000 o001 o010 011 100 101 110 111
dec(xy,X2,x3) | O 1 2 3 4 5 6 7
F(x{,X0.x3) | 0 5 6 1 3 2 4 7
f1 (X1,X2,X3) 0 1 1 0 0 0 1 1
f2(X1,X2,X3) 0 0 1 0 1 1 0 1
f3(X1,X2,X3) 0 1 0 1 1 0 0 1
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Component Functions

> Given F: Fg - IFg’ and a vector v e F? the component
function v - F is defined for all x € F] as:

v-F(x) =P, vifi(x)
» Example withn=8, m=6and v=(1,0,1,0,1,0):

[xi]xe|xs [ xa x5 | %67 ]
J FiEE>F
| fe|fo]f] ] f]

(1,0,1,0,1,0)'F:f1@f3€9f5

» Component functions are thus linear combinations of
coordinate functions.
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Walsh-Hadamard Transform (WHT)

» The Walsh-Hadamard Transform (WHT) of a (n, m)-function is
the WHT of all its component functions v - F, that is

We(a,v) = Z (=1)"FI2ax for all a e F,v € FY

n
xeFy

» Example: n=m = 3 (the 3-War S-box)

(x1,X2.x3) | 000 001 010 011 100 101 110 111

F(x) | 000 101 110 001 011 010 100 111
Wr(a,0000] 8 0 0 0 ©O0 ©0 0 0
Wr(a,001)| 0 4 0 -4 0 4 0 4
Wr(a,010)| 0 0 0 0 4 -4 4 4
Wr(a,011)| 0 4 0 4 -4 0 4 0
Wr(a,100)| 0 0 4 4 0 0 -4 4
Wr(a,101) | 0 -4 4 0 0 4 4 0
Wr(a,110)| 0 0 -4 4 4 4 0 0
Wr(a,111)| 0 4 4 0 4 0 0 -4
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Balancedness

> F:Fj —FJ is balanced if |F~'(y)|=2"""for all y e FJ".
» Fis balanced iff for all v € ]Fg’ \ {0}, the component function
v- F is balanced.

> Balanced functions with m = n are invertible (or bijective)
S-boxes, since |F~'(y)| =2"" =1.
» Example: n = m = 3, the 3-War S-box

(X1,X2,X3)‘000 001 010 011 100 101 110 111
F(x) ‘000 101 110 001 011 010 100 111

U

F is balanced (bijective)
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Nonlinearity

> Given F: Fg - IF"g’ recall that the Walsh-Hadamard transform
for component v - F is, for all a € FJ:

Wi(a,v) = ) (-1)Fieax

xng
> Hence, the nonlinearity of component v- F is:

1
ni(v- F) = 27" = 5 max(|Wr(a.v))

» The nonlinearity of a S-box F is defined as the minimum
nonlinearity among all its component functions v € F7' \ {0}:

nl(F) = minyezpo){ni(v - F)}
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Nonlinearity — Example

» Example: n = m = 3, nonlinearity of the 3-Wavr S-box

(X1.%2,X3) | 000 001 010 011 100 101 110 111 | nl
F(x) 000 101 110 001 011 010 100 111
Wr(a,00) | 0 4 0 -4 0 4 0 4 |2
Wr(a,0100 | 0 0 0 0 4 -4 4 4 |2
Wr(a,011) | 0 4 0 4 -4 0 4 0 |2
Wr(a,100) | 0 0 4 4 0 0 -4 4 |2
Wr(a,101) | 0 -4 4 0 0 4 4 0 |2
Wr(a,110) | 0 0 -4 4 4 4 0 0 |2
Wr(a,111) | 0 4 4 0 4 0 0 -4 /|2
U

Nonlinearity of F: nl=2
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Differential Uniformity

> Given F : F] — F7, the delta difference table of F with respect
toaeF;\{0}and b € F] is:

Ar(a,b) = {x €FJ: DaF(x) = b}
> Let 6r(a,b) =|Ar(a,b)|. The differential uniformity of F is:

5F= max d6F(a,b)
a€Fj\ {0}
beF]

> S-boxes should have low differential uniformity to resist
differential cryptanalysis attacks.
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Differential Uniformity — Example

» Example: n = m = 3, differential uniformity of the 3-War S-box

(X1,X2,X3)‘000 001 010 011 100 101 110 111
F(x) ‘000 101 110 001 011 010 100 111

U
6r(a,b) | 000 001 010 o011 100 101 110 111
001 0 2 0 2 0 2 0 2
010 0 0 0 0 2 2 2 2
011 0 2 0 2 2 0 2 0
100 0 0 2 2 0 0 2 2
101 0 2 2 0 0 2 2 0
110 0 0 2 2 2 2 0 0
111 0 2 2 0 2 0 0 2

= differential uniformity of F: 6; = 2 (APN function)
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Trade-offs

Most of these properties cannot be satisfied simultaneously!
» Covering Radius bound: nl <2M~1 -2z
> Siegenthaler’s bound: d <n—t-1
» Tarannikov’s bound: nl < 2"~1 —2t+1

Number of Boolean functions of n variables: 22"

n| 3 4 5 6 7 8
22" | 256 65536 4.3-10° 1.8-10" 3.4.103%8 1.2.1077

= too huge for exhaustive search when n > 5!

Number of (n, m)-functions: m2%’
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This Lecture

Evolutionary Algorithms
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Al approaches to design symmetric primitives

» "Traditional" approach: ad-hoc and algebraic constructions
to choose primitives with specific security properties

> "Al" approach: support the designer in choosing the primitives
using Al methods/models from the following domains:

> Optimization (Evolutionary algorithms, swarm intelligence...)

—— ~—

\_/

> Computational models (cellular automata, neural networks...)

1 [oofoTo] 1 [of 1]

U F:{0.1}" > {0, 1)

I [ ToTo] 1]+ o]
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Combinatorial Optimization

» Combinatorial Optimization Problem: map # : I — S from a
set I of problem instances to a family S of solution spaces

» S =9(l)is afinite set equipped with a fitness function
fit : S — R, giving a score to candidate solutions x € S

> Optimization goal: find x* € S such that:
Minimization: Maximization:

x* = argminyes{fit(x)} X" = argmaxxes{fit(x)}

» Heuristic optimization algorithm: iteratively tweaks a set of
candidate solutions using fit to drive the search
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Genetic Algorithms (GA) — Genetic Programming (GP)

Optimization algorithms loosely based on evolutionary principles,
introduced respectively by J. Holland (1975) and J. Koza (1989)

» Evolve in parallel a population of solutions.

> Black-box optimization: use only the fithess function to
optimize the solutions.

> Use Probabilistic operators to evolve the solutions

GA Encoding: individual = fixed-length bitstring
of1]1]1][1]o]o]o]
U

f(X1,X2,X3) = X1 XoD X1 DXoD X3
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Genetic Algorithms (GA) — Genetic Programming (GP)

» GP Encoding: an individual is represented by a tree

> Terminal nodes: input variables of a program
> Internal nodes: operators (e.g. AND, OR, NOT, XOR, ...)

f(x1,%2,X3,%4) = (X1 AND x2) OR (x5 XOR X4)

@ @
@O ® ©® ®

L. Mariot Al and Cryptography




The EA Loop

Initialize
Population
Output Best
Replace
Solution
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Roulette-Wheel Selection (RWS): the probability of selecting an
individual is proportional to its fitness

Tournament Selection (TS): Randomly sample t individuals from
the population and select the fittest one.

Indiyidual 1

46.6 %

~ Individual 6
Individual 5

Individual 4
Individual 2

Individual 3

Generational Breeding: Draw as many pairs as population size

Steady-State Breeding: Select only a single pair



Crossover

Idea: Recombine the genes of two parents individuals to create
the offspring (Exploitation)

GA Example: One-Point Crossover

pr[of1]o]1]o[1]1]0] (o[1]o[1]1] e
{ x point X
pz[1]0]ofo]1]0[1]1]  [1[o]o[a]of4]4T0] c

GP Example: Subtree Crossover

S~ S

Swap subtrees
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Mutation

Idea: Introduce new genetic material in the offspring (Exploration)
GA Example: Bit-flip mutation

Lr<p,

(1]ofofo[1]o[1]1]
Up
[1Jofa]o[1]o[1]1]

GP Example: Subtree mutation

u point

~——

Generate random subtree
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Replacement and Termination

> Elitism: keep the best individual from the previous generation
> Termination: several criteria such as budget of fithess
evaluations, solutions diversity, ...

IVE Gor-.. AT LEAST IT5 BEMTER ARE THESE CMoN, GYS, BE PANENT. IN A
CHEERIOS THAN THE QUAILEGGS SXITMES FEW HUNDRED MORE MEFLS, THE
WITH A SHOT N WHFFED CRERMAND  EEP-£RIED? GENENC AUGORITHM  SHOD D CATTOH
CFVERMOUTH.  MSG FIROM LAST THE. ) VP TOEXISTING RECIPES AND STRRT

&S ) O

|
@? ¥ Llg
[ N /\r?—j

WEVE DEC\DED T0 DROP THE (S DEFARTMENT™ FROM OUR WEEKLY DINNER PARTY HOSTING ROTATION.
Image credit: https://xkcd.com/720/

Al and Cryptography
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This Lecture

Evolutionary Design of Boolean Functions and S-boxes
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Direct Search of Boolean Functions [MCD98]

> GA encoding: represent the truth tables as 2"-bit strings

> Fitness function measuring nonlinearity, algebraic degree, and
deviation from correlation-immunity

» Specialized crossover and mutation operators for preserving
balancedness

Crossover Idea: Use counters to keep track of the multiplicities of
zeros and ones [MCD98, MMT20]

pi[o]1]of1]o[1]1]0]

p2{1]/0]o]o[1]0]1]1]

X = [(HEl -
RN

count[1] =4 fill with 0

L. Mariot Al and Cryptography



Evolving Boolean Functions with GP

> The truth table is synthesized from a GP tree:

» Difficult to enforce constraints on balancedness
» But, GP has better performance than GA with direct search [?]
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Cellular Automata

> One-dimensional Cellular Automaton (CA): a discrete parallel
computation model composed of a finite array of n cells

Example: n=6, d = 3, (s}, Si+1,Sit2) = Si®Sj+1 ® Sit2 (rule 150)

T

/-/H /-/H
(1[ofofoo]1] [1] [1]1]0]
H/—/ \/—/
£(1,0,0) =1 f(1,1,0)=0
No Boundary CA — NBCA Periodic Boundary CA — PBCA

> Each cell updates its state s € {0, 1} by evaluating a local rule
f:{0,1}9 = {0,1} on itself and the d— 1 cells on its right
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General Research Goal: Investigate cryptographic primitives
defined by Cellular Automata

U F:10,1y"— 0,1y (Alice Encryption c Channel c Decryption Bob

Why CA, anyway?
1. Security from Complexity: CA can yield very complex
dynamical behaviors, depending on the local rule

2. Efficient implementation: Leverage CA parallelism and
locality for lightweight cryptography

L. Mariot Al and Cryptography



CA-based Crypto History: Wolfram’s PRNG

» CA-based Pseudorandom Generator (PRG) [W86]: central
cell of rule 30 CA used as a stream cipher keystream

,—/?l
Seed K—— @ G

Keystream z—— e

() —&—{er) @@%

Encryption Decryption

[ -

> Security claims based mainly on statistical/empirical tests

» This CA-based PRNG was later shown to be vulnerable,
improvements by choosing larger local rules [LM14]
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Real world CA-Based Crypto: Keccak y S-box

> Local rule: x(x1,%2,x3) = x1®(1®(x2-x3)) (rule 210)
> Invertible for every odd size n of the CA

IENERERERER

3
@’/E E?iyéB

IENEREEERER
» Used as a PBCA with n =5 in the Keccak specification of
SHA-3 standard [BDPV11]
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Problem Statement

» Goal: Find PBCA of length n and diameter d = n:

> with cryptographic properties on par with those of other
real-world ciphers [MPLJ19]
> with low implementation cost [PMYJM17]

» Considered S-boxes sizes: fromn=4ton=38
» Genetic Programming to address this problem

> Fitness function: optimize both crypto (nonlinearity,
differential uniformity) and implementation properties (GE
measure)
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Table: Statistical results and comparison.

S-box size T_max GP Ng OF
Max Avg Std
dev
4x4 16 16 16 0 4 4
5x5 42 42 41.73 1.01 12 2
6x6 86 84 80.47 4.72 24 4
7x7 182 182 155.07 8.86 56 2
8x8 364 318 281.87 13.86 82 20

» From n =410 n=7, one obtains CA rules inducing S-boxes
with optimal crypto properties

» Only for n = 8 the performances of GP are consistently worse
wrt to the theoretical optimum
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A Posteriori Analysis — Implementation Properties, n =5

Table: Power is in nW, area in GE, and latency in ns. DPow: dynamic
power, LPow: cell leakage power

Size 5x5 Rule Keccak

DPow. 321.684LPow: 299.725Area: 17 Latency:0.14

Size 5x5 Rule ((v2 NOR NOT(v4)) XOR v1)
DPow. 324.849LPow: 308.418Area: 17 Latency:0.14

Size 5x5 Rule ((v4 NAND (v2 XOR v0)) XOR v1)
DPow. 446.782LPow: 479.33 Area: 24.06 Latency:0.2

Size 5x5 Rule (IF(v1, v2, v4) XOR (vO NAND NOT(v3)))
DPow. 534.015LPow: 493.528Area: 26.67 Latency:0.17

> Results on par with the Keccak y S-box
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Example of Optimal CA S-box found by GP
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This Lecture

Other Representations: orthogonal arrays
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Correlation Immunity (Recall)

» fis t-correlation immune iff Wy(a) = 0 for all a s.t.
1 < HW(a) < t, where HW is the Hamming weight of a

(x1,x2,x3) | 000 100 010 110 001 101 011 111
Qs 0 1 1 K 0 o0 1
F(w) o 0 o o o0 o0 0 8

U

f is 2-order correlation immune

» t-order Cl functions = Masking countermeasures of
order t for Side-Channel Analysis

L. Mariot Al and Cryptography



Orthogonal Arrays (OA)

> (N,k,s,t) Orthogonal Array: N x k matrix A such that each
t-uple occurs A = N/s! times in each N x t submatrix.

Example: OA (8,4,2,3)
Each 3-bit vector
—(x1.X2.X3) €{0,1}3
appears once in
the submatrix with
columns 1, 3, 4

> Applications in statistics, coding theory, cryptography
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Correlation Immunity: OA Characterization

> Support of f: sets of input vectors x that map to 1 under f

Truth table

X1 Xo X3 | f(x) Support
0 0 0 0 X X2 X3
0O 0 1 1 0O 0 1
0 1 0 1 0 1 0
o 1 1 0 1 0 O
1.0 0 1 11 1
1 0 1 0 U
11 0] 0 0A(4,3,2,2)
1 1 1 1
Theorem

f:{0,1}" — {0,1} is t-order Cl & Support of f is an OA(N,n,2,t),
with N = |Supp(f)|
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Solutions Encoding

» Each column is the truth table of a n-variable Boolean function

> For GP, the truth table is synthesized from the tree of the
individual

> Crossover and mutation are applied column-wise
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Crossover Operators

> Classic GA and GP: one-point and subtree crossover
» Balanced GA: counter-based crossover on each column

pi[o1]o[1]o]1]1]0’

X = c
p2{1]/0]o]o[1]0]1]1] f

count[1] =4 fill with 0

» For GP: Use standard subtree crossover
X point x point

Swap subtrees
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Fitness Function

Idea: minimize in each N x t submatrix the number of occurrences
of each t-uple deviating from A

#001 =2 | - #000|
1 - #001]

|- #010]
=11 - #011]
1 - #100]
|

|

|

#100=3

oO|l=|lalo|—=

#111 =1 |4 -#101
|A-#110
|- #111

T T T R TR TR
I+ + + + + + +

O = = N) = — -

0 #011 =2

Deviation: 8

Fitness function: LP distance between vector (4,---,1) and the
vector of deviations for each submatrix

fit,(A)=" > | D -#xP

S Submatrix \ xe{0,1}t
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This Lecture

Evolving Secondary Constructions
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Evolving Secondary Constructions

Example of secondary construction: Rothaus’s construction [?]

> If g,h,k and g®h @k are bent (maximally nonlinear) on F7,
then the following function is bent:

f(x1,x2,x) = g(x)h(x)® g(x)k(x)® h(x)k(x)®
®[g(x)dh(x)]x1 @ [g(x) ®k(X)]X2® X1 X2

where (x1,X2,X) € Fg+2 with xq, x2 € Fa, X € F]

Goal: Evolve secondary constructions using GP
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GP Representation

Predefined functions: Independent variables:
fo 1001 vo 0101
fi 1010 vy 0011

\ > Idea: represent a secondary
construction as a GP tree

@ > fy, fi: seed functions
> Vo vq: additional
independent variables

Boolean construction function

> The GP tree yields a new
e function of n+ 2 variables
> Seed functions are obtained
e ° @ through direct GP search

Output: | 1010 | 1001 [ o101 | 1001 |
L. Mariot Al and Cryptography




Simplification of GP Solutions

» ESPRESSO tool to minimize the best GP trees
> Equivalence check among the best solutions

0 10 2 0 10 20 0 10 20 0 10 2
0 0 0 0 —
. - ey -
. .t I.. . .
10{ = = |0 ||__-" PR A, ool e
. L I o
20{us 1 20 w200 ., 207, - ;
* NP I BRI L.
(2,4,4,B) (2,4,4,C) (2,5,12,A) (2,5,12,C)
0 10 2 0 10 20 0 10 20 0 10 20
o T O 0 o,
A . .o J
T L R I : R
wof T oo 10 . 10} =.
T "t - . 1
i e - K . - . .
20{ L. s " e al20g 20{ = J2of o=t
i L :
.- - A . . -
(2,5,12,B) (4,5,12,B) (4,5,12,C) (4,5,12,A)

» Result: many solutions turn out to be the same construction,
especially when 2 seeds are used
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Interpretation of Simplest Solutions

Example of bloated GP construction:

Main Remark: many constructions are equivalent to the
well-known indirect sum construction [C21]

(7)
@@ e F(vo,v1,v):{f°(v) ; ?fVo=1 :
f1(V)@V1 , ifv=0.
00
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Conclusions and Perspectives

Summing up:
» Up to now, Al-based methods and models can help in solving
certain specific design problems for symmetric ciphers.
> Many more open directions remain!
Open questions:
> take into account other primitives (e.g. permutation layers)
> perform fitness landscape analsysis on these search spaces

> Develop new algebraic constructions with evolutionary
algorithms
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