UNIVERSITY OF TWENTE.

Al and Cryptography

Lecture 2 \& 3 - Al Methods to Design Cryptographic Primitives

Luca Mariot

Semantics, Cybersecurity and Services Group, University of Twente
l.mariot@utwente.nl

Trieste, June 27, 2023

Topics and Reading Material

Main topics:

- Boolean functions and S-boxes for symmetric crypto
- Genetic Algorithms to optimize Boolean functions
- S-boxes based on Cellular Automata
- Other representations: orthogonal arrays
- Evolving algebraic constructions

References:

- C. Carlet. Boolean Functions for Cryptography and Coding Theory [C21]
- Survey papers: [MJBC22] and [DJMP23] (see references)

This Lecture

Boolean Functions and S-boxes

Evolutionary Algorithms

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

Vernam-like Stream Cipher

- PRG: Pseudorandom generator that stretches a short secret key K into an arbitrary long keystream z

(a) Encryption

(b) Decryption
- Question: how to build a PRG in practice?

Linear Feedback Shift Registers (LFSR)

- Device computing the binary linear recurring sequence

$$
s_{n+k}=a+a_{0} s_{n}+a_{1} s_{n+1}+\cdots+a_{k-1} s_{n+k-1}
$$

- Too weak as a PRG: $2 k$ consecutive bits of keystream are enough to recover the LFSR initialization

An Example of PRG: The Combiner Model

- a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ combines the outputs of n LFSR [C21]

- Security of the combiner \Leftrightarrow cryptographic properties of f

Boolean Functions - Basic Representations

- Truth table: a 2^{n}-bit vector Ω_{f} specifying $f(x)$ for all $x \in\{0,1\}^{n}$

$\left(x_{1}, x_{2}, x_{3}\right)$	000	100	010	110	001	101	011	111
Ω_{f}	0	1	1	0	1	0	1	0

- Algebraic Normal Form (ANF): Sum (XOR) of products (AND)

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{2} x_{3}
$$

- Walsh Transform: correlation with linear functions $a \cdot x$, $W(f, a)=\sum_{x \in\{0,1\}^{n}}(-1)^{f(x) \oplus a \cdot x}$ for all $a \in\{0,1\}^{n}$

Cryptographic Properties: Balancedness

- Hamming weight $w_{H}(f)$: number of 1 s in Ω_{f}
- A function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is balanced if $w_{H}(f)=2^{n-1}$
- Walsh characterization: f balanced $\Leftrightarrow \hat{F}(0)=0$

$\left(x_{1}, x_{2}, x_{3}\right)$	000	100	010	110	001	101	011	111
Ω_{f}	0	1	1	1	1	0	0	0

f is balanced

- Unbalanced functions present a statistical bias that can be exploited for distinguishing attacks

Cryptographic Properties: Algebraic Degree

- Algebraic degree d: the degree of the multivariate polynomial representing the ANF of f

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \cdot x_{2} \oplus x_{1} \oplus x_{2} \oplus x_{3}
$$

\Downarrow
f has degree $d=2$

- Linear functions $\omega \cdot x=\omega_{1} x_{1} \oplus \cdots \oplus \omega_{n} x_{n}$ have degree $d=1$
- Boolean functions of high degree make the attack based on Berlekamp-Massey algorithm less effective

Cryptographic Properties: Nonlinearity

- Nonlinearity $n l(f)$: Hamming distance of f from linear functions
- Walsh characterization:

$$
n l(f)=2^{n-1}-\frac{1}{2} \max _{\omega \in \mathbb{F}_{2}^{n}}\{|\hat{F}(\omega)|\}
$$

$\left(x_{1}, x_{2}, x_{3}\right)$	000	100	010	110	001	101	011	111
Ω_{f}	0	1	1	1	1	0	0	0
W_{f}	0	0	0	0	-4	4	4	4

$$
\begin{gathered}
\Downarrow \\
n l(f)=2^{3-1}-\frac{1}{2} \cdot 4=2
\end{gathered}
$$

- Functions with high nonlinearity resist fast-correlation attacks

Bent Functions

- Parseval's Relation, valid on any Boolean function:

$$
\sum_{a \in\{0,1\}^{n}}[W(f, a)]^{2}=2^{2 n} \text { for all } f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

- Bent functions: $W(f, a)= \pm 2^{\frac{n}{2}}$ for all $a \in\{0,1\}^{n}$
- Reach the highest possible nonlinearity
- Exist onlv for n even and thev are unbalanced

Example: $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{4}$

Cryptographic Properties: Resiliency

- t-Resiliency: when fixing any t variables, the restriction of f stays balanced
- Walsh characterization:

$$
\hat{F}(\omega)=0 \forall \omega: w_{H}(\omega) \leq t
$$

\(\left.\begin{array}{c|cccccccc}\left(x_{1}, x_{2}, x_{3}\right) \& 000 \& 100 \& 010 \& 110 \& 001 \& 101 \& 011 \& 111

\hline \Omega_{f} \& 0 \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0

\hat{F}(\omega) \& 0 \& 0 \& 0 \& 0 \& -4 \& 4 \& 4 \& 4\end{array}\right] .\)| \Downarrow |
| :---: |
| $F(001)=-4 \Rightarrow f$ is NOT 1-resilient |

- Resilient functions of high order t resist to correlation attacks

S-boxes in SPN Ciphers

(a) Substitution-Permutation Network (SPN)

Zoom in on a S-box S_{i} :

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
\hline
\end{array} \\
& \Downarrow F:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \\
& \begin{array}{l|l|l|l|l|l|l|l|}
\hline y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & y_{7} & y_{8} \\
\hline
\end{array}
\end{aligned}
$$

(b) S-box S_{i}

S-boxes $F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ are vectorial Boolean functions

S-Boxes: General definitions

- The output of an (n, m)-function is defined by m coordinate functions $f_{i}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$.
- Hence, an S-box $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ can be represented by a $m \times 2^{n}$ truth table, where row i is the truth table of f_{i}.
- Example: $n=m=3$ (the 3-Way S-box)

$\left(x_{1}, x_{2}, x_{3}\right)$	000	001	010	011	100	101	110	111
$\operatorname{dec}\left(x_{1}, x_{2}, x_{3}\right)$	0	1	2	3	4	5	6	7
$F\left(x_{1}, x_{2}, x_{3}\right)$	0	5	6	1	3	2	4	7
$f_{1}\left(x_{1}, x_{2}, x_{3}\right)$	0	1	1	0	0	0	1	1
$f_{2}\left(x_{1}, x_{2}, x_{3}\right)$	0	0	1	0	1	1	0	1
$f_{3}\left(x_{1}, x_{2}, x_{3}\right)$	0	1	0	1	1	0	0	1

Component Functions

- Given $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ and a vector $v \in \mathbb{F}_{2}^{m}$, the component function $v \cdot F$ is defined for all $x \in \mathbb{F}_{2}^{n}$ as:

$$
v \cdot F(x)=\bigoplus_{i=1}^{m} v_{i} f_{i}(x)
$$

- Example with $n=8, m=6$ and $v=(1,0,1,0,1,0)$:

- Component functions are thus linear combinations of coordinate functions.

Walsh-Hadamard Transform (WHT)

- The Walsh-Hadamard Transform (WHT) of a (n, m)-function is the WHT of all its component functions $v \cdot F$, that is

$$
W_{F}(a, v)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{v \cdot F(x) \oplus a \cdot x}, \text { for all } a \in \mathbb{F}_{2}^{n}, v \in \mathbb{F}_{2}^{m}
$$

- Example: $n=m=3$ (the 3-Way S-box)

$\left(x_{1}, x_{2}, x_{3}\right)$	000	001	010	011	100	101	110	111
$F(x)$	000	101	110	001	011	010	100	111
$W_{F}(a, 000)$	8	0	0	0	0	0	0	0
$W_{F}(a, 001)$	0	4	0	-4	0	4	0	4
$W_{F}(a, 010)$	0	0	0	0	4	-4	4	4
$W_{F}(a, 011)$	0	4	0	4	-4	0	4	0
$W_{F}(a, 100)$	0	0	4	4	0	0	-4	4
$W_{F}(a, 101)$	0	-4	4	0	0	4	4	0
$W_{F}(a, 110)$	0	0	-4	4	4	4	0	0
$W_{F}(a, 111)$	0	4	4	0	4	0	0	-4

Balancedness

- $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ is balanced if $\left|F^{-1}(y)\right|=2^{n-m}$ for all $y \in \mathbb{F}_{2}^{m}$.
- F is balanced iff for all $v \in \mathbb{F}_{2}^{m} \backslash\{0\}$, the component function $v \cdot F$ is balanced.
- Balanced functions with $m=n$ are invertible (or bijective) S-boxes, since $\left|F^{-1}(y)\right|=2^{n-n}=1$.
- Example: $n=m=3$, the 3-Way S-box

F is balanced (bijective)

Nonlinearity

- Given $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, recall that the Walsh-Hadamard transform for component $v \cdot F$ is, for all $a \in \mathbb{F}_{2}^{n}$:

$$
W_{f}(a, v)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{v \cdot F(x) \oplus a \cdot x}
$$

- Hence, the nonlinearity of component $v \cdot F$ is:

$$
n l(v \cdot F)=2^{n-1}-\frac{1}{2} \max _{a \in \mathbb{F}_{2}^{n}}\left\{\left|W_{F}(a, v)\right|\right\}
$$

- The nonlinearity of a S-box F is defined as the minimum nonlinearity among all its component functions $v \in \mathbb{F}_{2}^{m} \backslash\{0\}$:

$$
n l(F)=\min _{v \in \mathbb{F}_{2}^{m} \backslash\{0\}}\{n l(v \cdot F)\}
$$

Nonlinearity - Example

- Example: $n=m=3$, nonlinearity of the 3-Way S-box

$\left(x_{1}, x_{2}, x_{3}\right)$	000	001	010	011	100	101	110	111	$n l$
$F(x)$	000	101	110	001	011	010	100	111	
$W_{F}(a, 001)$	0	4	0	-4	0	4	0	4	2
$W_{F}(a, 010)$	0	0	0	0	4	-4	4	4	2
$W_{F}(a, 011)$	0	4	0	4	-4	0	4	0	2
$W_{F}(a, 100)$	0	0	4	4	0	0	-4	4	2
$W_{F}(a, 101)$	0	-4	4	0	0	4	4	0	2
$W_{F}(a, 110)$	0	0	-4	4	4	4	0	0	2
$W_{F}(a, 111)$	0	4	4	0	4	0	0	-4	2
				\Downarrow					

Nonlinearity of $F: n l=2$

Differential Uniformity

- Given $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, the delta difference table of F with respect to $a \in \mathbb{F}_{2}^{n} \backslash\{0\}$ and $b \in \mathbb{F}_{2}^{m}$ is:

$$
\Delta_{F}(a, b)=\left\{x \in \mathbb{F}_{2}^{n}: D_{a} F(x)=b\right\}
$$

- Let $\delta_{F}(a, b)=\left|\Delta_{F}(a, b)\right|$. The differential uniformity of F is:

$$
\delta_{F}=\max _{\substack{a \in \mathbb{F}_{\begin{subarray}{c}{n}\{0\} }}, \mathfrak{P _ { 2 } ^ { m }}}\end{subarray}} \delta_{F}(a, b)
$$

- S-boxes should have low differential uniformity to resist differential cryptanalysis attacks.

Differential Uniformity - Example

- Example: $n=m=3$, differential uniformity of the 3-Way S-box

$\left(x_{1}, x_{2}, x_{3}\right)$	000	001	010	011	100	101	110	111
$F(x)$	000	101	110	001	011	010	100	111
	\Downarrow							
	\Downarrow							
$\delta_{F}(a, b)$	000	001	010	011	100	101	110	111
001	0	2	0	2	0	2	0	2
010	0	0	0	0	2	2	2	2
011	0	2	0	2	2	0	2	0
100	0	0	2	2	0	0	2	2
101	0	2	2	0	0	2	2	0
110	0	0	2	2	2	2	0	0
111	0	2	2	0	2	0	0	2

\Rightarrow differential uniformity of $F: \delta_{f}=2$ (APN function)

Trade-offs

Most of these properties cannot be satisfied simultaneously!

- Covering Radius bound: $n l \leq 2^{n-1}-2^{\frac{n}{2}-1}$
- Siegenthaler's bound: $d \leq n-t-1$
- Tarannikov's bound: $n l \leq 2^{n-1}-2^{t+1}$

Number of Boolean functions of n variables: $2^{2^{n}}$

n	3	4	5	6	7	8
$2^{2^{n}}$	256	65536	$4.3 \cdot 10^{9}$	$1.8 \cdot 10^{19}$	$3.4 \cdot 10^{38}$	$1.2 \cdot 10^{77}$

\Rightarrow too huge for exhaustive search when $n>5$!
Number of (n, m)-functions: $m 2^{2^{n}}$

This Lecture

Boolean Functions and S-boxes

Evolutionary Algorithms

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

Al approaches to design symmetric primitives

- "Traditional" approach: ad-hoc and algebraic constructions to choose primitives with specific security properties
- "AI" approach: support the designer in choosing the primitives using Al methods/models from the following domains:
- Optimization (Evolutionary algorithms, swarm intelligence...)

- Computational models (cellular automata, neural networks...)

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
\end{array} \\
& \Downarrow F:\{0,1\}^{n} \rightarrow\{0,1\}^{m}
\end{aligned}
$$

Combinatorial Optimization

- Combinatorial Optimization Problem: $\operatorname{map} \mathcal{P}: \mathcal{I} \rightarrow \mathcal{S}$ from a set I of problem instances to a family \mathcal{S} of solution spaces
- $S=\mathcal{P}(I)$ is a finite set equipped with a fitness function fit : $S \rightarrow \mathbb{R}$, giving a score to candidate solutions $x \in S$
- Optimization goal: find $x^{*} \in S$ such that:

Minimization:

$$
x^{*}=\operatorname{argmin}_{x \in S}\{\operatorname{fit}(x)\} \quad x^{*}=\operatorname{argmax}_{x \in S}\{\operatorname{fit}(x)\}
$$

- Heuristic optimization algorithm: iteratively tweaks a set of candidate solutions using fit to drive the search

Genetic Algorithms (GA) - Genetic Programming (GP)

Optimization algorithms loosely based on evolutionary principles, introduced respectively by J. Holland (1975) and J. Koza (1989)

- Evolve in parallel a population of solutions.
- Black-box optimization: use only the fitness function to optimize the solutions.
- Use Probabilistic operators to evolve the solutions

GA Encoding: individual \Rightarrow fixed-length bitstring

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
\hline
\end{array} \\
& \Downarrow \\
& f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \cdot x_{2} \oplus x_{1} \oplus x_{2} \oplus x_{3}
\end{aligned}
$$

Genetic Algorithms (GA) - Genetic Programming (GP)

- GP Encoding: an individual is represented by a tree
- Terminal nodes: input variables of a program
- Internal nodes: operators (e.g. AND, OR, NOT, XOR, ...)

The EA Loop

Selection

Roulette-Wheel Selection (RWS): the probability of selecting an individual is proportional to its fitness
Tournament Selection (TS): Randomly sample t individuals from the population and select the fittest one.

Individual 1

Individual 3
Generational Breeding: Draw as many pairs as population size Steady-State Breeding: Select only a single pair

Crossover

Idea: Recombine the genes of two parents individuals to create the offspring (Exploitation)
GA Example: One-Point Crossover

GP Example: Subtree Crossover

Mutation

Idea: Introduce new genetic material in the offspring (Exploration) GA Example: Bit-flip mutation

$\downarrow r<p_{\mu}$						
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$						
$\Downarrow \mu$						
$\mathbf{1}$	$\boldsymbol{\mu}$					
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

GP Example: Subtree mutation

Replacement and Termination

- Elitism: keep the best individual from the previous generation
- Termination: several criteria such as budget of fitness evaluations, solutions diversity, ...

WEVE DECIDED TO DROP THE CS DEPARTMENT FROM OUR WEEKUY DINNER PARTY HOSTNG ROTATION.
Image credit: https://xkcd.com/720/

This Lecture

Boolean Functions and S-boxes
\section*{Evolutionary Algorithms}

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

Direct Search of Boolean Functions [MCD98]

- GA encoding: represent the truth tables as 2^{n}-bit strings
- Fitness function measuring nonlinearity, algebraic degree, and deviation from correlation-immunity
- Specialized crossover and mutation operators for preserving balancedness

Crossover Idea: Use counters to keep track of the multiplicities of zeros and ones [MCD98, MMT20]

Evolving Boolean Functions with GP

- The truth table is synthesized from a GP tree:

- Difficult to enforce constraints on balancedness
- But, GP has better performance than GA with direct search [?]

Cellular Automata

- One-dimensional Cellular Automaton (CA): a discrete parallel computation model composed of a finite array of n cells

$$
\text { Example: } n=6, d=3, f\left(s_{i}, s_{i+1}, s_{i+2}\right)=s_{i} \oplus s_{i+1} \oplus s_{i+2}(\text { rule 150) }
$$

No Boundary CA - NBCA

Periodic Boundary CA - PBCA

- Each cell updates its state $s \in\{0,1\}$ by evaluating a local rule $f:\{0,1\}^{d} \rightarrow\{0,1\}$ on itself and the $d-1$ cells on its right

Motivations

General Research Goal: Investigate cryptographic primitives defined by Cellular Automata

Why CA, anyway?

1. Security from Complexity: CA can yield very complex dynamical behaviors, depending on the local rule
2. Efficient implementation: Leverage CA parallelism and locality for lightweight cryptography

CA-based Crypto History: Wolfram's PRNG

- CA-based Pseudorandom Generator (PRG) [W86]: central cell of rule 30 CA used as a stream cipher keystream

- Security claims based mainly on statistical/empirical tests
- This CA-based PRNG was later shown to be vulnerable, improvements by choosing larger local rules [LM14]

Real world CA-Based Crypto: Keçak χ S-box

- Local rule: $\chi\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \oplus\left(1 \oplus\left(x_{2} \cdot x_{3}\right)\right)$ (rule 210)
- Invertible for every odd size n of the CA

- Used as a PBCA with $n=5$ in the Keccak specification of SHA-3 standard [BDPV11]

Problem Statement

- Goal: Find PBCA of length n and diameter $d=n$:
- with cryptographic properties on par with those of other real-world ciphers [MPLJ19]
- with low implementation cost [PMYJM17]
- Considered S-boxes sizes: from $n=4$ to $n=8$
- Genetic Programming to address this problem
- Fitness function: optimize both crypto (nonlinearity, differential uniformity) and implementation properties (GE measure)

Results

Table: Statistical results and comparison.

S-box size	$T_{-} \max$		GP		N_{F}	δ_{F}
	Max	Avg	Std dev			
4×4	16	$\mathbf{1 6}$	16	0	4	4
5×5	42	$\mathbf{4 2}$	41.73	1.01	12	2
6×6	86	84	80.47	4.72	24	4
7×7	182	$\mathbf{1 8 2}$	155.078 .86	56	2	
8×8	364	318	281.87	13.86	82	20

- From $n=4$ to $n=7$, one obtains CA rules inducing S-boxes with optimal crypto properties
- Only for $n=8$ the performances of GP are consistently worse wrt to the theoretical optimum

A Posteriori Analysis - Implementation Properties, $n=5$

Table: Power is in $n W$, area in GE, and latency in ns. DPow: dynamic power, LPow: cell leakage power

Size	5×5 Rule	Keccak		
DPow.	321.684LPow:	299.725 Area:	17	Latency:0.14
Size	5×5 Rule	((v2 NOR NOT(v4)) XOR v1)		
DPow.	324.849 LPow:	308.418 Area:	17	Latency:0.14
Size	5×5 Rule	((v4 NAND (v2 XOR v0)) XOR v1)		
DPow.	446.782 LPow:	479.33 Area:	24.06	Latency:0.2
Size	5×5 Rule	(IF(v1, v2, v4) XOR (v0 NAND NOT(v3)))		
DPow.	534.015LPow:	493.528 Area:	26.67	Latency:0.17

- Results on par with the Keccak χ S-box

Example of Optimal CA S-box found by GP

This Lecture

Boolean Functions and S-boxes
 Evolutionary Algorithms
 Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

Correlation Immunity (Recall)

- f is t-correlation immune iff $W_{f}(a)=0$ for all a s.t.
$1 \leq H W(a) \leq t$, where HW is the Hamming weight of a

$\left(x_{1}, x_{2}, x_{3}\right)$	000	$\mathbf{1 0 0}$	$\mathbf{0 1 0}$	$\mathbf{1 1 0}$	$\mathbf{0 0 1}$	$\mathbf{1 0 1}$	$\mathbf{0 1 1}$	111
Ω_{f}	0	1	1	0	1	0	0	1
$\hat{F}(\omega)$	0	0	0	0	0	0	0	8

\Downarrow
f is 2-order correlation immune

- t-order Cl functions \Rightarrow Masking countermeasures of order t for Side-Channel Analysis

Orthogonal Arrays (OA)

- (N, k, s, t) Orthogonal Array: $N \times k$ matrix A such that each t-uple occurs $\lambda=N / s^{t}$ times in each $N \times t$ submatrix.

1	0	0	0	1	0	0	Example: OA (8,4,2,3) Each 3-bit vector $\Rightarrow\left(x_{1}, x_{2}, x_{3}\right) \in\{0,1\}^{3}$ appears once in the submatrix with columns 1, 3, 4
0	1	0	0	0	0	0	
0	0	1	0	0	1	0	
0	0	0	1	0	0	1	
0	1	1	1	0	1	1	
1	0	1	1	1	1	1	
1	1	0	1	1	0	1	
1	1	1	0	1	1	0	

- Applications in statistics, coding theory, cryptography

Correlation Immunity: OA Characterization

- Support of f : sets of input vectors x that map to 1 under f

Truth table			
x_{1}	x_{2}	x_{3}	$f(x)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Support		
x_{1}	x_{2}	x_{3}
0	0	1
0	1	0
1	0	0
1	1	1
	\Downarrow	

$O A(4,3,2,2)$

Theorem

$f:\{0,1\}^{n} \rightarrow\{0,1\}$ is t-order $\mathrm{Cl} \Leftrightarrow$ Support of f is an $\operatorname{OA}(N, n, 2, t)$, with $N=|\operatorname{Supp}(f)|$

Solutions Encoding

- Each column is the truth table of a n-variable Boolean function
- For GP, the truth table is synthesized from the tree of the individual

- Crossover and mutation are applied column-wise

Crossover Operators

- Classic GA and GP: one-point and subtree crossover
- Balanced GA: counter-based crossover on each column

p_{1}| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

p_{2}| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- For GP: Use standard subtree crossover

Fitness Function

Idea: minimize in each $N \times t$ submatrix the number of occurrences of each t-uple deviating from λ

Fitness function: L^{p} distance between vector $(\lambda, \cdots, \lambda)$ and the vector of deviations for each submatrix

$$
\operatorname{fit}_{p}(A)=\sum_{s \text { Submatrix }}\left(\sum_{x \in\{0,1\}^{t}}|\lambda-\# x|^{p}\right)^{\frac{1}{p}}
$$

This Lecture

Boolean Functions and S-boxes
 Evolutionary Algorithms
 Evolutionary Design of Boolean Functions and S-boxes
 Other Representations: orthogonal arrays

Evolving Secondary Constructions

Evolving Secondary Constructions

Example of secondary construction: Rothaus's construction [?]

- If g, h, k and $g \oplus h \oplus k$ are bent (maximally nonlinear) on \mathbb{F}_{2}^{n}, then the following function is bent:

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x\right) & =g(x) h(x) \oplus g(x) k(x) \oplus h(x) k(x) \oplus \\
& \oplus[g(x) \oplus h(x)] x_{1} \oplus[g(x) \oplus k(x)] x_{2} \oplus x_{1} x_{2}
\end{aligned}
$$

where $\left(x_{1}, x_{2}, x\right) \in \mathbb{F}_{2}^{n+2}$ with $x_{1}, x_{2} \in \mathbb{F}_{2}, x \in \mathbb{F}_{2}^{n}$
Goal: Evolve secondary constructions using GP

GP Representation

Predefined functions: Independent variables:

f_{0}	1001
f_{1}	1010

v_{0}	0101
v_{1}	0011

- Idea: represent a secondary construction as a GP tree
- f_{0}, f_{1} : seed functions
- $v_{0} v_{1}$: additional independent variables
- The GP tree yields a new function of $n+2$ variables
- Seed functions are obtained through direct GP search

Output: | 1010 | 1001 | 0101 | 1001 |
| :--- | :--- | :--- | :--- |

Simplification of GP Solutions

- ESPRESSO tool to minimize the best GP trees
- Equivalence check among the best solutions

- Result: many solutions turn out to be the same construction, especially when 2 seeds are used

Interpretation of Simplest Solutions

Example of bloated GP construction:

Main Remark: many constructions are equivalent to the well-known indirect sum construction [C21]

$$
F\left(v_{0}, v_{1}, v\right)= \begin{cases}f_{0}(v), & \text { if } v_{0}=1 \\ f_{1}(v) \oplus v_{1}, & \text { if } v_{0}=0\end{cases}
$$

Conclusions and Perspectives

Summing up:

- Up to now, Al-based methods and models can help in solving certain specific design problems for symmetric ciphers.
- Many more open directions remain!

Open questions:

- take into account other primitives (e.g. permutation layers)
- perform fitness landscape analsysis on these search spaces
- Develop new algebraic constructions with evolutionary algorithms

References

[BDPV11] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche: The Keccak reference. (January 2011). http://keccak.noekeon.org/
[C21] C. Carlet: Boolean functions for cryptography and coding theory. Cambridge University Press (2021)
[DJMP23] M. Djurasevic, D. Jakobovic, L. Mariot, S. Picek: A Survey of Metaheuristic Algorithms for the Design of Cryptographic Boolean Functions. CoRR abs/2301.08012 (2023)
[LM14] A. Leporati and L. Mariot: Cryptographic properties of bipermutive cellular automata rules. J. Cell. Autom. 9(5-6):437-475 (2014)
[MMT20] L. Manzoni, L. Mariot, E. Tuba: Balanced crossover operators in Genetic Algorithms. Swarm Evol. Comput. 54: 100646 (2020)
[MJBC22] L. Mariot, D. Jakobovic, T. Bäck, J. Hernandez-Castro: Artificial Intelligence for the Design of Symmetric Cryptographic Primitives. Security and Artificial Intelligence 2022: 3-24 (2022)
[MPLJ19] L. Mariot, S. Picek, A. Leporati, and D. Jakobovic. Cellular automata based S-boxes. Cryptography and Communications 11(1):41-62 (2019)
[MCD98] W. Millan, J. Clark, E. Dawson: Heuristic Design of Cryptographically Strong Balanced Boolean Functions. Proceedings of EUROCRYPT 1998, pp. 489-499 (1998)
[PJMBC16] S. Picek, D. Jakobovic, J.F. Miller, L. Batina, M. Cupic: Cryptographic Boolean functions: One output, many design criteria. Appl. Soft Comput. 40: 635-653 (2016)
[PMYJM17] S. Picek, L. Mariot, B. Yang, D. Jakobovic, N. Mentens: Design of S-boxes defined with cellular automata rules. Conf. Computing Frontiers 2017: 409-414 (2017)
[W86] S. Wolfram. Cryptography with cellular automata. In CRYPTO '85, pp. 429-432 (1986)

