
AI and Cryptography
Lecture 2 & 3 – AI Methods to Design Cryptographic Primitives

Luca Mariot

Semantics, Cybersecurity and Services Group, University of Twente
l.mariot@utwente.nl

Trieste, June 27, 2023

Topics and Reading Material

Main topics:
▶ Boolean functions and S-boxes for symmetric crypto
▶ Genetic Algorithms to optimize Boolean functions
▶ S-boxes based on Cellular Automata
▶ Other representations: orthogonal arrays
▶ Evolving algebraic constructions

References:
▶ C. Carlet. Boolean Functions for Cryptography and Coding

Theory [C21]
▶ Survey papers: [MJBC22] and [DJMP23] (see references)

L. Mariot AI and Cryptography

This Lecture

Boolean Functions and S-boxes

Evolutionary Algorithms

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

L. Mariot AI and Cryptography

Vernam-like Stream Cipher

▶ PRG: Pseudorandom generator that stretches a short secret
key K into an arbitrary long keystream z

K

PRG

z⊕
PT CT

(a) Encryption

K

PRG

z⊕
CT PT

(b) Decryption

▶ Question: how to build a PRG in practice?

L. Mariot AI and Cryptography

Linear Feedback Shift Registers (LFSR)

▶ Device computing the binary linear recurring sequence

sn+k = a +a0sn +a1sn+1 + · · ·+ak−1sn+k−1

D0

Output

a0 a1

+

D1

· · ·

ak−2

+· · ·

Dk−2

ak−1

+

Dk−1

▶ Too weak as a PRG: 2k consecutive bits of keystream are
enough to recover the LFSR initialization

L. Mariot AI and Cryptography

An Example of PRG: The Combiner Model

▶ a Boolean function f : {0,1}n→ {0,1} combines the outputs of
n LFSR [C21]

LFSR 1 x1

LFSR 2 x2
...

...

f(x1,x2, · · · ,xn)

LFSR n xn

next bit

▶ Security of the combiner⇔ cryptographic properties of f

L. Mariot AI and Cryptography

Boolean Functions - Basic Representations

▶ Truth table: a 2n-bit vector Ωf specifying f(x) for all x ∈ {0,1}n

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 0 1 0 1 0

▶ Algebraic Normal Form (ANF): Sum (XOR) of products (AND)
f(x1,x2,x3) = x1⊕x2⊕x3⊕x2x3

▶ Walsh Transform: correlation with linear functions a ·x,
W(f ,a) =

∑
x∈{0,1}n(−1)f(x)⊕a·x for all a ∈ {0,1}n

L. Mariot AI and Cryptography

Cryptographic Properties: Balancedness

▶ Hamming weight wH(f): number of 1s in Ωf

▶ A function f : Fn
2→ F2 is balanced if wH(f) = 2n−1

▶ Walsh characterization: f balanced⇔ F̂(0) = 0

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 1 1 0 0 0

⇓

f is balanced

▶ Unbalanced functions present a statistical bias that can be
exploited for distinguishing attacks

L. Mariot AI and Cryptography

Cryptographic Properties: Algebraic Degree

▶ Algebraic degree d: the degree of the multivariate polynomial
representing the ANF of f

f(x1,x2,x3) = x1 ·x2⊕x1⊕x2⊕x3

⇓

f has degree d = 2

▶ Linear functions ω ·x = ω1x1⊕ · · ·⊕ωnxn have degree d = 1
▶ Boolean functions of high degree make the attack based on

Berlekamp-Massey algorithm less effective

L. Mariot AI and Cryptography

Cryptographic Properties: Nonlinearity

▶ Nonlinearity nl(f): Hamming distance of f from linear functions
▶ Walsh characterization:

nl(f) = 2n−1−
1
2
max
ω∈Fn

2

{∣∣∣F̂(ω)∣∣∣}
(x1,x2,x3) 000 100 010 110 001 101 011 111

Ωf 0 1 1 1 1 0 0 0
Wf 0 0 0 0 −4 4 4 4

⇓

nl(f) = 23−1−
1
2
·4 = 2

▶ Functions with high nonlinearity resist fast-correlation
attacks

L. Mariot AI and Cryptography

Bent Functions

▶ Parseval’s Relation, valid on any Boolean function:∑
a∈{0,1}n

[W(f ,a)]2 = 22n for all f : {0,1}n→ {0,1}

▶ Bent functions: W(f ,a) = ±2
n
2 for all a ∈ {0,1}n

▶ Reach the highest possible nonlinearity
▶ Exist only for n even and they are unbalanced

Example: f(x1,x2,x3,x4) = x1x3 +x1x4 +x2x4

L. Mariot AI and Cryptography

Cryptographic Properties: Resiliency

▶ t-Resiliency: when fixing any t variables, the restriction of f
stays balanced

▶ Walsh characterization:

F̂(ω) = 0 ∀ω : wH(ω) ≤ t

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 1 1 0 0 0

F̂(ω) 0 0 0 0 −4 4 4 4

⇓

F(001) = −4⇒ f is NOT 1-resilient

▶ Resilient functions of high order t resist to correlation
attacks

L. Mariot AI and Cryptography

S-boxes in SPN Ciphers

Plaintext

S5S4S3S2S1 S6 S7 S8 S9 S10

Permutation layer

⊕
Ciphertext

(a) Substitution-Permutation Network (SPN)

Zoom in on a S-box Si :

y2y1 y3 y4 y5 y6 y7 y8

⇓ F : {0,1}n → {0,1}n

x2x1 x3 x4 x5 x6 x7 x8

(b) S-box Si

S-boxes F : {0,1}n→ {0,1}n are vectorial Boolean functions

L. Mariot AI and Cryptography

S-Boxes: General definitions

▶ The output of an (n,m)-function is defined by m coordinate
functions fi : Fn

2→ F2.
▶ Hence, an S-box F : Fn

2→ F
m
2 can be represented by a m×2n

truth table, where row i is the truth table of fi .
▶ Example: n = m = 3 (the 3-Way S-box)

(x1,x2,x3) 000 001 010 011 100 101 110 111
dec(x1,x2,x3) 0 1 2 3 4 5 6 7
F(x1,x2,x3) 0 5 6 1 3 2 4 7
f1(x1,x2,x3) 0 1 1 0 0 0 1 1
f2(x1,x2,x3) 0 0 1 0 1 1 0 1
f3(x1,x2,x3) 0 1 0 1 1 0 0 1

L. Mariot AI and Cryptography

Component Functions

▶ Given F : Fn
2→ F

m
2 and a vector v ∈ Fm

2 , the component
function v ·F is defined for all x ∈ Fn

2 as:

v ·F(x) =
⊕m

i=1vi fi(x)

▶ Example with n = 8, m = 6 and v = (1,0,1,0,1,0):

f1 f2 f3 f4 f5 f6

(1,0,1,0,1,0) ·F = f1⊕ f3⊕ f5

⇓ F : F8
2→ F

6
2

x2x1 x3 x4 x5 x6 x7 x8

▶ Component functions are thus linear combinations of
coordinate functions.

L. Mariot AI and Cryptography

Walsh-Hadamard Transform (WHT)

▶ The Walsh-Hadamard Transform (WHT) of a (n,m)-function is
the WHT of all its component functions v ·F , that is

WF(a,v) =
∑
x∈Fn

2

(−1)v ·F(x)⊕a·x , for all a ∈ Fn
2,v ∈ F

m
2

▶ Example: n = m = 3 (the 3-Way S-box)

(x1,x2,x3) 000 001 010 011 100 101 110 111
F(x) 000 101 110 001 011 010 100 111

WF(a,000) 8 0 0 0 0 0 0 0
WF(a,001) 0 4 0 −4 0 4 0 4
WF(a,010) 0 0 0 0 4 −4 4 4
WF(a,011) 0 4 0 4 −4 0 4 0
WF(a,100) 0 0 4 4 0 0 −4 4
WF(a,101) 0 −4 4 0 0 4 4 0
WF(a,110) 0 0 −4 4 4 4 0 0
WF(a,111) 0 4 4 0 4 0 0 −4

L. Mariot AI and Cryptography

Balancedness

▶ F : Fn
2→ F

m
2 is balanced if |F−1(y)|= 2n−m for all y ∈ Fm

2 .
▶ F is balanced iff for all v ∈ Fm

2 \ {0}, the component function
v ·F is balanced.

▶ Balanced functions with m = n are invertible (or bijective)
S-boxes, since |F−1(y)|= 2n−n = 1.

▶ Example: n = m = 3, the 3-Way S-box

(x1,x2,x3) 000 001 010 011 100 101 110 111
F(x) 000 101 110 001 011 010 100 111

⇓

F is balanced (bijective)

L. Mariot AI and Cryptography

Nonlinearity

▶ Given F : Fn
2→ F

m
2 , recall that the Walsh-Hadamard transform

for component v ·F is, for all a ∈ Fn
2:

Wf (a,v) =
∑
x∈Fn

2

(−1)v ·F(x)⊕a·x

▶ Hence, the nonlinearity of component v ·F is:

nl(v ·F) = 2n−1−
1
2
max
a∈Fn

2

{∣∣∣WF(a,v)
∣∣∣}

▶ The nonlinearity of a S-box F is defined as the minimum
nonlinearity among all its component functions v ∈ Fm

2 \ {0}:

nl(F) = minv∈Fm
2 \{0}
{nl(v ·F)}

L. Mariot AI and Cryptography

Nonlinearity – Example

▶ Example: n = m = 3, nonlinearity of the 3-Way S-box

(x1,x2,x3) 000 001 010 011 100 101 110 111 nl
F(x) 000 101 110 001 011 010 100 111

WF(a,001) 0 4 0 −4 0 4 0 4 2
WF(a,010) 0 0 0 0 4 −4 4 4 2
WF(a,011) 0 4 0 4 −4 0 4 0 2
WF(a,100) 0 0 4 4 0 0 −4 4 2
WF(a,101) 0 −4 4 0 0 4 4 0 2
WF(a,110) 0 0 −4 4 4 4 0 0 2
WF(a,111) 0 4 4 0 4 0 0 −4 2

⇓

Nonlinearity of F : nl = 2

L. Mariot AI and Cryptography

Differential Uniformity

▶ Given F : Fn
2→ F

m
2 , the delta difference table of F with respect

to a ∈ Fn
2 \ {0} and b ∈ Fm

2 is:

∆F(a,b) =
{
x ∈ Fn

2 : DaF(x) = b
}

▶ Let δF(a,b) = |∆F(a,b)|. The differential uniformity of F is:

δF = max
a ∈ Fn

2 \ {0}
b ∈ Fm

2

δF(a,b)

▶ S-boxes should have low differential uniformity to resist
differential cryptanalysis attacks.

L. Mariot AI and Cryptography

Differential Uniformity – Example

▶ Example: n = m = 3, differential uniformity of the 3-Way S-box

(x1,x2,x3) 000 001 010 011 100 101 110 111
F(x) 000 101 110 001 011 010 100 111

⇓

δF(a,b) 000 001 010 011 100 101 110 111
001 0 2 0 2 0 2 0 2
010 0 0 0 0 2 2 2 2
011 0 2 0 2 2 0 2 0
100 0 0 2 2 0 0 2 2
101 0 2 2 0 0 2 2 0
110 0 0 2 2 2 2 0 0
111 0 2 2 0 2 0 0 2

⇒ differential uniformity of F : δf = 2 (APN function)

L. Mariot AI and Cryptography

Trade-offs

Most of these properties cannot be satisfied simultaneously!
▶ Covering Radius bound: nl ≤ 2n−1−2

n
2−1

▶ Siegenthaler’s bound: d ≤ n− t −1
▶ Tarannikov’s bound: nl ≤ 2n−1−2t+1

Number of Boolean functions of n variables: 22n

n 3 4 5 6 7 8
22n

256 65536 4.3 ·109 1.8 ·1019 3.4 ·1038 1.2 ·1077

⇒ too huge for exhaustive search when n > 5!

Number of (n,m)-functions: m22n

L. Mariot AI and Cryptography

This Lecture

Boolean Functions and S-boxes

Evolutionary Algorithms

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

L. Mariot AI and Cryptography

AI approaches to design symmetric primitives

▶ "Traditional" approach: ad-hoc and algebraic constructions
to choose primitives with specific security properties

▶ "AI" approach: support the designer in choosing the primitives
using AI methods/models from the following domains:
▶ Optimization (Evolutionary algorithms, swarm intelligence...)

χ point χ point

▶ Computational models (cellular automata, neural networks...)

1 0 0 1 1 0

⇓ F : {0,1}n → {0,1}m

01 0 0 0 1 0 1

L. Mariot AI and Cryptography

Combinatorial Optimization

▶ Combinatorial Optimization Problem: map P : I→S from a
set I of problem instances to a family S of solution spaces

▶ S = P(I) is a finite set equipped with a fitness function
fit : S → R, giving a score to candidate solutions x ∈ S

▶ Optimization goal: find x∗ ∈ S such that:

Minimization:

x∗ = argminx∈S {fit(x)}

Maximization:

x∗ = argmaxx∈S {fit(x)}

▶ Heuristic optimization algorithm: iteratively tweaks a set of
candidate solutions using fit to drive the search

L. Mariot AI and Cryptography

Genetic Algorithms (GA) – Genetic Programming (GP)

Optimization algorithms loosely based on evolutionary principles,
introduced respectively by J. Holland (1975) and J. Koza (1989)

▶ Evolve in parallel a population of solutions.
▶ Black-box optimization: use only the fitness function to

optimize the solutions.
▶ Use Probabilistic operators to evolve the solutions

GA Encoding: individual⇒ fixed-length bitstring

10 1 1 1 0 0 0

⇓

f(x1,x2,x3) = x1 ·x2⊕x1⊕x2⊕x3

L. Mariot AI and Cryptography

Genetic Algorithms (GA) – Genetic Programming (GP)

▶ GP Encoding: an individual is represented by a tree
▶ Terminal nodes: input variables of a program
▶ Internal nodes: operators (e.g. AND, OR, NOT, XOR, ...)

OR

f(x1,x2,x3,x4) = (x1 AND x2) OR (x3 XOR x4)

AND XOR

x1 x2 x3 x4

L. Mariot AI and Cryptography

The EA Loop

Initialize
Population Selection

Crossover Mutation

Fitness
Evaluation

ReplaceTerminate?
Output Best

Solution Yes

No

L. Mariot AI and Cryptography

Selection

Roulette-Wheel Selection (RWS): the probability of selecting an
individual is proportional to its fitness

Tournament Selection (TS): Randomly sample t individuals from
the population and select the fittest one.

46.6 %

Individual 1

24.6 %

Individual 2
20.4 %

Individual 3

5.1 %

Individual 4

1.3 %
Individual 5

2.0 %
Individual 6

Generational Breeding: Draw as many pairs as population size

Steady-State Breeding: Select only a single pair
L. Mariot AI and Cryptography

Crossover

Idea: Recombine the genes of two parents individuals to create
the offspring (Exploitation)

GA Example: One-Point Crossover

01 0 0 1 0 1 1p2

⇕ χ point

0 1 0 1 0 1 1 0p1

χ
0 1 0 0 1 0 1 1 c1

1 0 0 1 0 1 1 0 c2

GP Example: Subtree Crossover

χ point χ point

Swap subtrees

L. Mariot AI and Cryptography

Mutation

Idea: Introduce new genetic material in the offspring (Exploration)

GA Example: Bit-flip mutation

01 0 0
↓ r < pµ

1 0 1 1

⇓ µ
01 1 0 1 0 1 1

GP Example: Subtree mutation

µ point

Generate random subtree

L. Mariot AI and Cryptography

Replacement and Termination

▶ Elitism: keep the best individual from the previous generation
▶ Termination: several criteria such as budget of fitness

evaluations, solutions diversity, ...

Image credit: https://xkcd.com/720/

L. Mariot AI and Cryptography

https://xkcd.com/720/

This Lecture

Boolean Functions and S-boxes

Evolutionary Algorithms

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

L. Mariot AI and Cryptography

Direct Search of Boolean Functions [MCD98]

▶ GA encoding: represent the truth tables as 2n-bit strings
▶ Fitness function measuring nonlinearity, algebraic degree, and

deviation from correlation-immunity
▶ Specialized crossover and mutation operators for preserving

balancedness

Crossover Idea: Use counters to keep track of the multiplicities of
zeros and ones [MCD98, MMT20]

10 0 1 0 1 1 0p1

χ⇒
1 0 0 0 1 0 1 1p2

1 1 0 0 1 1 0 0 c

count[1] = 4 fill with 0

L. Mariot AI and Cryptography

Evolving Boolean Functions with GP

▶ The truth table is synthesized from a GP tree:

∧

+ ¬

x1 x2 x3

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f(x)

0
0
1
0
1
0
0
0

▶ Difficult to enforce constraints on balancedness
▶ But, GP has better performance than GA with direct search [?]

L. Mariot AI and Cryptography

Cellular Automata

▶ One-dimensional Cellular Automaton (CA): a discrete parallel
computation model composed of a finite array of n cells

Example: n = 6, d = 3, f(si ,si+1,si+2) = si ⊕si+1 ⊕si+2 (rule 150)

1 0 0 1

f(1,0,0) = 1

01 0 0 0 1

No Boundary CA – NBCA

01 0 1 0 0

f(1,1,0) = 0

01 0 0 0 1 1 0

Periodic Boundary CA – PBCA

▶ Each cell updates its state s ∈ {0,1} by evaluating a local rule
f : {0,1}d → {0,1} on itself and the d −1 cells on its right

L. Mariot AI and Cryptography

Motivations

General Research Goal: Investigate cryptographic primitives
defined by Cellular Automata

1 0 0 1 1 0

⇓ F : {0,1}n → {0,1}m

01 0 0 0 1 0 1
Alice Encryption

KE

Channel

Oscar

Decryption

KD

Bob
PT CT CT PT

Why CA, anyway?

1. Security from Complexity: CA can yield very complex
dynamical behaviors, depending on the local rule

2. Efficient implementation: Leverage CA parallelism and
locality for lightweight cryptography

L. Mariot AI and Cryptography

CA-based Crypto History: Wolfram’s PRNG

▶ CA-based Pseudorandom Generator (PRG) [W86]: central
cell of rule 30 CA used as a stream cipher keystream

Seed K

Keystream z

K

CA

z⊕
Encryption

PT CT

K

CA

z⊕
Decryption

CT PT

▶ Security claims based mainly on statistical/empirical tests
▶ This CA-based PRNG was later shown to be vulnerable,

improvements by choosing larger local rules [LM14]

L. Mariot AI and Cryptography

Real world CA-Based Crypto: Keccak χ S-box

▶ Local rule: χ(x1,x2,x3) = x1⊕ (1⊕ (x2 ·x3)) (rule 210)
▶ Invertible for every odd size n of the CA

▶ Used as a PBCA with n = 5 in the Keccak specification of
SHA-3 standard [BDPV11]

L. Mariot AI and Cryptography

Problem Statement

▶ Goal: Find PBCA of length n and diameter d = n:
▶ with cryptographic properties on par with those of other

real-world ciphers [MPLJ19]
▶ with low implementation cost [PMYJM17]

▶ Considered S-boxes sizes: from n = 4 to n = 8
▶ Genetic Programming to address this problem
▶ Fitness function: optimize both crypto (nonlinearity,

differential uniformity) and implementation properties (GE
measure)

L. Mariot AI and Cryptography

Results

Table: Statistical results and comparison.

S-box size T_max GP NF δF

Max Avg Std
dev

4×4 16 16 16 0 4 4

5×5 42 42 41.73 1.01 12 2

6×6 86 84 80.47 4.72 24 4

7×7 182 182 155.07 8.86 56 2

8×8 364 318 281.87 13.86 82 20

▶ From n = 4 to n = 7, one obtains CA rules inducing S-boxes
with optimal crypto properties

▶ Only for n = 8 the performances of GP are consistently worse
wrt to the theoretical optimum

L. Mariot AI and Cryptography

A Posteriori Analysis – Implementation Properties, n = 5

Table: Power is in nW , area in GE, and latency in ns. DPow: dynamic
power, LPow: cell leakage power

Size 5×5 Rule Keccak

DPow. 321.684LPow: 299.725Area: 17 Latency:0.14

Size 5×5 Rule ((v2 NOR NOT(v4)) XOR v1)

DPow. 324.849LPow: 308.418Area: 17 Latency:0.14

Size 5×5 Rule ((v4 NAND (v2 XOR v0)) XOR v1)

DPow. 446.782LPow: 479.33 Area: 24.06 Latency:0.2

Size 5×5 Rule (IF(v1, v2, v4) XOR (v0 NAND NOT(v3)))

DPow. 534.015LPow: 493.528Area: 26.67 Latency:0.17

▶ Results on par with the Keccak χ S-box

L. Mariot AI and Cryptography

Example of Optimal CA S-box found by GP

v4 v3 v2 v1 v0

o4 o3 o2 o1 o0

L. Mariot AI and Cryptography

This Lecture

Boolean Functions and S-boxes

Evolutionary Algorithms

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

L. Mariot AI and Cryptography

Correlation Immunity (Recall)

▶ f is t-correlation immune iff Wf (a) = 0 for all a s.t.
1 ≤ HW(a) ≤ t , where HW is the Hamming weight of a

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 0 1 0 0 1

F̂(ω) 0 0 0 0 0 0 0 8

⇓

f is 2-order correlation immune

▶ t-order CI functions⇒ Masking countermeasures of
order t for Side-Channel Analysis

L. Mariot AI and Cryptography

Orthogonal Arrays (OA)

▶ (N,k ,s, t) Orthogonal Array: N×k matrix A such that each
t-uple occurs λ= N/st times in each N× t submatrix.

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1 0 0

0 0 0

0 1 0

0 0 1

0 1 1

1 1 1

1 0 1

1 1 0

Each 3-bit vector
(x1,x2,x3) ∈ {0,1}3

appears once in
the submatrix with
columns 1, 3, 4

Example: OA (8,4,2,3)

⇒

▶ Applications in statistics, coding theory, cryptography

L. Mariot AI and Cryptography

Correlation Immunity: OA Characterization

▶ Support of f : sets of input vectors x that map to 1 under f

Truth table
x1 x2 x3 f(x)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Support
x1 x2 x3

0 0 1
0 1 0
1 0 0
1 1 1
⇓

OA(4,3,2,2)

Theorem
f : {0,1}n→ {0,1} is t-order CI⇔ Support of f is an OA(N,n,2, t),
with N = |Supp(f)|

L. Mariot AI and Cryptography

Solutions Encoding

▶ Each column is the truth table of a n-variable Boolean function
▶ For GP, the truth table is synthesized from the tree of the

individual

∧

+ ¬

x1 x2 x3

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f(x)

0
0
1
0
1
0
0
0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 0 1
1 1 0 1
1 1 0 0

▶ Crossover and mutation are applied column-wise
L. Mariot AI and Cryptography

Crossover Operators

▶ Classic GA and GP: one-point and subtree crossover
▶ Balanced GA: counter-based crossover on each column

10 0 1 0 1 1 0p1

χ⇒
1 0 0 0 1 0 1 1p2

1 1 0 0 1 1 0 0 c

count[1] = 4 fill with 0

▶ For GP: Use standard subtree crossover

χ point χ point

Swap subtrees

L. Mariot AI and Cryptography

Fitness Function

Idea: minimize in each N× t submatrix the number of occurrences
of each t-uple deviating from λ

0 0 1 1
1 0 0 0
0 0 1 1
1 1 1 1
1 0 0 0
0 1 1 0
1 0 0 1
0 1 1 0

0 0 1
1 0 0
0 0 1
1 1 1
1 0 0
0 1 1
1 0 0
0 1 1

#001 = 2

#100 = 3

#111 = 1

#011 = 2

|λ - #000| = 1 +
|λ - #001| = 1 +
|λ - #010| = 1 +
|λ - #011| = 1 +
|λ - #100| = 2 +
|λ - #101| = 1 +
|λ - #110| = 1 +
|λ - #111| = 0 =____

Deviation: 8

λ=1
==⇒

Fitness function: Lp distance between vector (λ, · · · ,λ) and the
vector of deviations for each submatrix

fitp(A) =
∑

S Submatrix

 ∑
x∈{0,1}t

|λ−#x |p

1
p

L. Mariot AI and Cryptography

This Lecture

Boolean Functions and S-boxes

Evolutionary Algorithms

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

L. Mariot AI and Cryptography

Evolving Secondary Constructions

Example of secondary construction: Rothaus’s construction [?]
▶ If g,h,k and g⊕h ⊕k are bent (maximally nonlinear) on Fn

2,
then the following function is bent:

f(x1,x2,x) = g(x)h(x)⊕g(x)k(x)⊕h(x)k(x)⊕

⊕ [g(x)⊕h(x)]x1⊕ [g(x)⊕k(x)]x2⊕x1x2

where (x1,x2,x) ∈ Fn+2
2 with x1,x2 ∈ F2, x ∈ Fn

2

Goal: Evolve secondary constructions using GP

L. Mariot AI and Cryptography

GP Representation
Predefined functions:

f0 1001

f1 1010

Independent variables:

v0 0101

v1 0011

GP

Boolean construction function

IF

v0 f0 XOR

f1 v1

1010 1001 0101 1001Output:

▶ Idea: represent a secondary
construction as a GP tree

▶ f0, f1: seed functions
▶ v0 v1: additional

independent variables
▶ The GP tree yields a new

function of n+2 variables
▶ Seed functions are obtained

through direct GP search

L. Mariot AI and Cryptography

Simplification of GP Solutions

▶ ESPRESSO tool to minimize the best GP trees
▶ Equivalence check among the best solutions

0 10 20
0

10

20

(2,4,4,B)

0 10 20
0

10

20

(2,4,4,C)

0 10 20
0

10

20

(2,5,12,A)

0 10 20
0

10

20

(2,5,12,C)
0 10 20

0

10

20

(2,5,12,B)

0 10 20
0

10

20

(4,5,12,B)

0 10 20
0

10

20

(4,5,12,C)

0 10 20
0

10

20

(4,5,12,A)

▶ Result: many solutions turn out to be the same construction,
especially when 2 seeds are used

L. Mariot AI and Cryptography

Interpretation of Simplest Solutions

Example of bloated GP construction:

IF

+

+

IF

v0v1+

v1v0

¬

f0

∧

+

f3+

v1f2

v0

∧2

f1v0

v0

Main Remark: many constructions are equivalent to the
well-known indirect sum construction [C21]

IF

+

f1v1

f0v0 F(v0,v1,v) =

f0(v) , if v0 = 1 ,

f1(v)⊕v1 , if v0 = 0 .

L. Mariot AI and Cryptography

Conclusions and Perspectives

Summing up:
▶ Up to now, AI-based methods and models can help in solving

certain specific design problems for symmetric ciphers.
▶ Many more open directions remain!

Open questions:
▶ take into account other primitives (e.g. permutation layers)
▶ perform fitness landscape analsysis on these search spaces
▶ Develop new algebraic constructions with evolutionary

algorithms

L. Mariot AI and Cryptography

References

[BDPV11] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche: The Keccak reference. (January 2011).
http://keccak.noekeon.org/

[C21] C. Carlet: Boolean functions for cryptography and coding theory. Cambridge University Press (2021)

[DJMP23] M. Djurasevic, D. Jakobovic, L. Mariot, S. Picek: A Survey of Metaheuristic Algorithms for the Design of
Cryptographic Boolean Functions. CoRR abs/2301.08012 (2023)

[LM14] A. Leporati and L. Mariot: Cryptographic properties of bipermutive cellular automata rules. J. Cell. Autom.
9(5-6):437–475 (2014)

[MMT20] L. Manzoni, L. Mariot, E. Tuba: Balanced crossover operators in Genetic Algorithms. Swarm Evol.
Comput. 54: 100646 (2020)

[MJBC22] L. Mariot, D. Jakobovic, T. Bäck, J. Hernandez-Castro: Artificial Intelligence for the Design of Symmetric
Cryptographic Primitives. Security and Artificial Intelligence 2022: 3-24 (2022)

[MPLJ19] L. Mariot, S. Picek, A. Leporati, and D. Jakobovic. Cellular automata based S-boxes. Cryptography and
Communications 11(1):41–62 (2019)

[MCD98] W. Millan, J. Clark, E. Dawson: Heuristic Design of Cryptographically Strong Balanced Boolean
Functions. Proceedings of EUROCRYPT 1998, pp. 489-499 (1998)

[PJMBC16] S. Picek, D. Jakobovic, J.F. Miller, L. Batina, M. Cupic: Cryptographic Boolean functions: One output,
many design criteria. Appl. Soft Comput. 40: 635-653 (2016)

[PMYJM17] S. Picek, L. Mariot, B. Yang, D. Jakobovic, N. Mentens: Design of S-boxes defined with cellular
automata rules. Conf. Computing Frontiers 2017: 409-414 (2017)

[W86] S. Wolfram. Cryptography with cellular automata. In CRYPTO ’85, pp. 429–432 (1986)

L. Mariot AI and Cryptography

	Boolean Functions and S-boxes
	Evolutionary Algorithms
	Evolutionary Design of Boolean Functions and S-boxes
	Other Representations: orthogonal arrays
	Evolving Secondary Constructions

