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Topics and Reading Material

Main topics:
▶ Boolean functions and S-boxes for symmetric crypto
▶ Genetic Algorithms to optimize Boolean functions
▶ S-boxes based on Cellular Automata
▶ Other representations: orthogonal arrays
▶ Evolving algebraic constructions

References:
▶ C. Carlet. Boolean Functions for Cryptography and Coding

Theory [C21]
▶ Survey papers: [MJBC22] and [DJMP23] (see references)
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Vernam-like Stream Cipher

▶ PRG: Pseudorandom generator that stretches a short secret
key K into an arbitrary long keystream z

K

PRG

z⊕
PT CT

(a) Encryption

K

PRG

z⊕
CT PT

(b) Decryption

▶ Question: how to build a PRG in practice?
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Linear Feedback Shift Registers (LFSR)

▶ Device computing the binary linear recurring sequence

sn+k = a +a0sn +a1sn+1 + · · ·+ak−1sn+k−1

D0

Output

a0 a1

+

D1

· · ·

ak−2

+· · ·

Dk−2

ak−1

+

Dk−1

▶ Too weak as a PRG: 2k consecutive bits of keystream are
enough to recover the LFSR initialization
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An Example of PRG: The Combiner Model

▶ a Boolean function f : {0,1}n→ {0,1} combines the outputs of
n LFSR [C21]

LFSR 1 x1

LFSR 2 x2
...

...

f(x1,x2, · · · ,xn)

LFSR n xn

next bit

▶ Security of the combiner⇔ cryptographic properties of f
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Boolean Functions - Basic Representations

▶ Truth table: a 2n-bit vector Ωf specifying f(x) for all x ∈ {0,1}n

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 0 1 0 1 0

▶ Algebraic Normal Form (ANF): Sum (XOR) of products (AND)
f(x1,x2,x3) = x1⊕x2⊕x3⊕x2x3

▶ Walsh Transform: correlation with linear functions a ·x,
W(f ,a) =

∑
x∈{0,1}n(−1)f(x)⊕a·x for all a ∈ {0,1}n
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Cryptographic Properties: Balancedness

▶ Hamming weight wH(f): number of 1s in Ωf

▶ A function f : Fn
2→ F2 is balanced if wH(f) = 2n−1

▶ Walsh characterization: f balanced⇔ F̂(0) = 0

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 1 1 0 0 0

⇓

f is balanced

▶ Unbalanced functions present a statistical bias that can be
exploited for distinguishing attacks
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Cryptographic Properties: Algebraic Degree

▶ Algebraic degree d: the degree of the multivariate polynomial
representing the ANF of f

f(x1,x2,x3) = x1 ·x2⊕x1⊕x2⊕x3

⇓

f has degree d = 2

▶ Linear functions ω ·x = ω1x1⊕ · · ·⊕ωnxn have degree d = 1
▶ Boolean functions of high degree make the attack based on

Berlekamp-Massey algorithm less effective
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Cryptographic Properties: Nonlinearity

▶ Nonlinearity nl(f): Hamming distance of f from linear functions
▶ Walsh characterization:

nl(f) = 2n−1−
1
2
max
ω∈Fn

2

{∣∣∣F̂(ω)∣∣∣}
(x1,x2,x3) 000 100 010 110 001 101 011 111

Ωf 0 1 1 1 1 0 0 0
Wf 0 0 0 0 −4 4 4 4

⇓

nl(f) = 23−1−
1
2
·4 = 2

▶ Functions with high nonlinearity resist fast-correlation
attacks
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Bent Functions

▶ Parseval’s Relation, valid on any Boolean function:∑
a∈{0,1}n

[W(f ,a)]2 = 22n for all f : {0,1}n→ {0,1}

▶ Bent functions: W(f ,a) = ±2
n
2 for all a ∈ {0,1}n

▶ Reach the highest possible nonlinearity
▶ Exist only for n even and they are unbalanced

Example: f(x1,x2,x3,x4) = x1x3 +x1x4 +x2x4

L. Mariot AI and Cryptography



Cryptographic Properties: Resiliency

▶ t-Resiliency: when fixing any t variables, the restriction of f
stays balanced

▶ Walsh characterization:

F̂(ω) = 0 ∀ω : wH(ω) ≤ t

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 1 1 0 0 0

F̂(ω) 0 0 0 0 −4 4 4 4

⇓

F(001) = −4⇒ f is NOT 1-resilient

▶ Resilient functions of high order t resist to correlation
attacks
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S-boxes in SPN Ciphers

Plaintext

S5S4S3S2S1 S6 S7 S8 S9 S10

Permutation layer

⊕
Ciphertext

(a) Substitution-Permutation Network (SPN)

Zoom in on a S-box Si :

y2y1 y3 y4 y5 y6 y7 y8

⇓ F : {0,1}n → {0,1}n

x2x1 x3 x4 x5 x6 x7 x8

(b) S-box Si

S-boxes F : {0,1}n→ {0,1}n are vectorial Boolean functions
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S-Boxes: General definitions

▶ The output of an (n,m)-function is defined by m coordinate
functions fi : Fn

2→ F2.
▶ Hence, an S-box F : Fn

2→ F
m
2 can be represented by a m×2n

truth table, where row i is the truth table of fi .
▶ Example: n = m = 3 (the 3-Way S-box)

(x1,x2,x3) 000 001 010 011 100 101 110 111
dec(x1,x2,x3) 0 1 2 3 4 5 6 7
F(x1,x2,x3) 0 5 6 1 3 2 4 7
f1(x1,x2,x3) 0 1 1 0 0 0 1 1
f2(x1,x2,x3) 0 0 1 0 1 1 0 1
f3(x1,x2,x3) 0 1 0 1 1 0 0 1
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Component Functions

▶ Given F : Fn
2→ F

m
2 and a vector v ∈ Fm

2 , the component
function v ·F is defined for all x ∈ Fn

2 as:

v ·F(x) =
⊕m

i=1vi fi(x)

▶ Example with n = 8, m = 6 and v = (1,0,1,0,1,0):

f1 f2 f3 f4 f5 f6

(1,0,1,0,1,0) ·F = f1⊕ f3⊕ f5

⇓ F : F8
2→ F

6
2

x2x1 x3 x4 x5 x6 x7 x8

▶ Component functions are thus linear combinations of
coordinate functions.
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Walsh-Hadamard Transform (WHT)

▶ The Walsh-Hadamard Transform (WHT) of a (n,m)-function is
the WHT of all its component functions v ·F , that is

WF(a,v) =
∑
x∈Fn

2

(−1)v ·F(x)⊕a·x , for all a ∈ Fn
2,v ∈ F

m
2

▶ Example: n = m = 3 (the 3-Way S-box)

(x1,x2,x3) 000 001 010 011 100 101 110 111
F(x) 000 101 110 001 011 010 100 111

WF(a,000) 8 0 0 0 0 0 0 0
WF(a,001) 0 4 0 −4 0 4 0 4
WF(a,010) 0 0 0 0 4 −4 4 4
WF(a,011) 0 4 0 4 −4 0 4 0
WF(a,100) 0 0 4 4 0 0 −4 4
WF(a,101) 0 −4 4 0 0 4 4 0
WF(a,110) 0 0 −4 4 4 4 0 0
WF(a,111) 0 4 4 0 4 0 0 −4
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Balancedness

▶ F : Fn
2→ F

m
2 is balanced if |F−1(y)|= 2n−m for all y ∈ Fm

2 .
▶ F is balanced iff for all v ∈ Fm

2 \ {0}, the component function
v ·F is balanced.

▶ Balanced functions with m = n are invertible (or bijective)
S-boxes, since |F−1(y)|= 2n−n = 1.

▶ Example: n = m = 3, the 3-Way S-box

(x1,x2,x3) 000 001 010 011 100 101 110 111
F(x) 000 101 110 001 011 010 100 111

⇓

F is balanced (bijective)
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Nonlinearity

▶ Given F : Fn
2→ F

m
2 , recall that the Walsh-Hadamard transform

for component v ·F is, for all a ∈ Fn
2:

Wf (a,v) =
∑
x∈Fn

2

(−1)v ·F(x)⊕a·x

▶ Hence, the nonlinearity of component v ·F is:

nl(v ·F) = 2n−1−
1
2
max
a∈Fn

2

{∣∣∣WF(a,v)
∣∣∣}

▶ The nonlinearity of a S-box F is defined as the minimum
nonlinearity among all its component functions v ∈ Fm

2 \ {0}:

nl(F) = minv∈Fm
2 \{0}
{nl(v ·F)}
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Nonlinearity – Example

▶ Example: n = m = 3, nonlinearity of the 3-Way S-box

(x1,x2,x3) 000 001 010 011 100 101 110 111 nl
F(x) 000 101 110 001 011 010 100 111

WF(a,001) 0 4 0 −4 0 4 0 4 2
WF(a,010) 0 0 0 0 4 −4 4 4 2
WF(a,011) 0 4 0 4 −4 0 4 0 2
WF(a,100) 0 0 4 4 0 0 −4 4 2
WF(a,101) 0 −4 4 0 0 4 4 0 2
WF(a,110) 0 0 −4 4 4 4 0 0 2
WF(a,111) 0 4 4 0 4 0 0 −4 2

⇓

Nonlinearity of F : nl = 2
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Differential Uniformity

▶ Given F : Fn
2→ F

m
2 , the delta difference table of F with respect

to a ∈ Fn
2 \ {0} and b ∈ Fm

2 is:

∆F(a,b) =
{
x ∈ Fn

2 : DaF(x) = b
}

▶ Let δF(a,b) = |∆F(a,b)|. The differential uniformity of F is:

δF = max
a ∈ Fn

2 \ {0}
b ∈ Fm

2

δF(a,b)

▶ S-boxes should have low differential uniformity to resist
differential cryptanalysis attacks.
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Differential Uniformity – Example

▶ Example: n = m = 3, differential uniformity of the 3-Way S-box

(x1,x2,x3) 000 001 010 011 100 101 110 111
F(x) 000 101 110 001 011 010 100 111

⇓

δF(a,b) 000 001 010 011 100 101 110 111
001 0 2 0 2 0 2 0 2
010 0 0 0 0 2 2 2 2
011 0 2 0 2 2 0 2 0
100 0 0 2 2 0 0 2 2
101 0 2 2 0 0 2 2 0
110 0 0 2 2 2 2 0 0
111 0 2 2 0 2 0 0 2

⇒ differential uniformity of F : δf = 2 (APN function)
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Trade-offs

Most of these properties cannot be satisfied simultaneously!
▶ Covering Radius bound: nl ≤ 2n−1−2

n
2−1

▶ Siegenthaler’s bound: d ≤ n− t −1
▶ Tarannikov’s bound: nl ≤ 2n−1−2t+1

Number of Boolean functions of n variables: 22n

n 3 4 5 6 7 8
22n

256 65536 4.3 ·109 1.8 ·1019 3.4 ·1038 1.2 ·1077

⇒ too huge for exhaustive search when n > 5!

Number of (n,m)-functions: m22n
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AI approaches to design symmetric primitives

▶ "Traditional" approach: ad-hoc and algebraic constructions
to choose primitives with specific security properties

▶ "AI" approach: support the designer in choosing the primitives
using AI methods/models from the following domains:
▶ Optimization (Evolutionary algorithms, swarm intelligence...)

χ point χ point

▶ Computational models (cellular automata, neural networks...)

1 0 0 1 1 0

⇓ F : {0,1}n → {0,1}m

01 0 0 0 1 0 1
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Combinatorial Optimization

▶ Combinatorial Optimization Problem: map P : I→S from a
set I of problem instances to a family S of solution spaces

▶ S = P(I) is a finite set equipped with a fitness function
fit : S → R, giving a score to candidate solutions x ∈ S

▶ Optimization goal: find x∗ ∈ S such that:

Minimization:

x∗ = argminx∈S {fit(x)}

Maximization:

x∗ = argmaxx∈S {fit(x)}

▶ Heuristic optimization algorithm: iteratively tweaks a set of
candidate solutions using fit to drive the search
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Genetic Algorithms (GA) – Genetic Programming (GP)

Optimization algorithms loosely based on evolutionary principles,
introduced respectively by J. Holland (1975) and J. Koza (1989)

▶ Evolve in parallel a population of solutions.
▶ Black-box optimization: use only the fitness function to

optimize the solutions.
▶ Use Probabilistic operators to evolve the solutions

GA Encoding: individual⇒ fixed-length bitstring

10 1 1 1 0 0 0

⇓

f(x1,x2,x3) = x1 ·x2⊕x1⊕x2⊕x3
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Genetic Algorithms (GA) – Genetic Programming (GP)

▶ GP Encoding: an individual is represented by a tree
▶ Terminal nodes: input variables of a program
▶ Internal nodes: operators (e.g. AND, OR, NOT, XOR, ...)

OR

f(x1,x2,x3,x4) = (x1 AND x2) OR (x3 XOR x4)

AND XOR

x1 x2 x3 x4
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The EA Loop

Initialize
Population Selection

Crossover Mutation

Fitness
Evaluation

ReplaceTerminate?
Output Best

Solution Yes

No
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Selection

Roulette-Wheel Selection (RWS): the probability of selecting an
individual is proportional to its fitness

Tournament Selection (TS): Randomly sample t individuals from
the population and select the fittest one.

46.6 %

Individual 1

24.6 %

Individual 2
20.4 %

Individual 3

5.1 %

Individual 4

1.3 %
Individual 5

2.0 %
Individual 6

Generational Breeding: Draw as many pairs as population size

Steady-State Breeding: Select only a single pair
L. Mariot AI and Cryptography



Crossover

Idea: Recombine the genes of two parents individuals to create
the offspring (Exploitation)

GA Example: One-Point Crossover

01 0 0 1 0 1 1p2

⇕ χ point

0 1 0 1 0 1 1 0p1

χ
0 1 0 0 1 0 1 1 c1

1 0 0 1 0 1 1 0 c2

GP Example: Subtree Crossover

χ point χ point

Swap subtrees
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Mutation

Idea: Introduce new genetic material in the offspring (Exploration)

GA Example: Bit-flip mutation

01 0 0
↓ r < pµ

1 0 1 1

⇓ µ
01 1 0 1 0 1 1

GP Example: Subtree mutation

µ point

Generate random subtree
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Replacement and Termination

▶ Elitism: keep the best individual from the previous generation
▶ Termination: several criteria such as budget of fitness

evaluations, solutions diversity, ...

Image credit: https://xkcd.com/720/
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Direct Search of Boolean Functions [MCD98]

▶ GA encoding: represent the truth tables as 2n-bit strings
▶ Fitness function measuring nonlinearity, algebraic degree, and

deviation from correlation-immunity
▶ Specialized crossover and mutation operators for preserving

balancedness

Crossover Idea: Use counters to keep track of the multiplicities of
zeros and ones [MCD98, MMT20]

10 0 1 0 1 1 0p1

χ⇒
1 0 0 0 1 0 1 1p2

1 1 0 0 1 1 0 0 c

count[1] = 4 fill with 0
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Evolving Boolean Functions with GP

▶ The truth table is synthesized from a GP tree:

∧

+ ¬

x1 x2 x3

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f(x)

0
0
1
0
1
0
0
0

▶ Difficult to enforce constraints on balancedness
▶ But, GP has better performance than GA with direct search [?]
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Cellular Automata

▶ One-dimensional Cellular Automaton (CA): a discrete parallel
computation model composed of a finite array of n cells

Example: n = 6, d = 3, f(si ,si+1,si+2) = si ⊕si+1 ⊕si+2 (rule 150)

1 0 0 1

f(1,0,0) = 1

01 0 0 0 1

No Boundary CA – NBCA

01 0 1 0 0

f(1,1,0) = 0

01 0 0 0 1 1 0

Periodic Boundary CA – PBCA

▶ Each cell updates its state s ∈ {0,1} by evaluating a local rule
f : {0,1}d → {0,1} on itself and the d −1 cells on its right
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Motivations

General Research Goal: Investigate cryptographic primitives
defined by Cellular Automata

1 0 0 1 1 0

⇓ F : {0,1}n → {0,1}m

01 0 0 0 1 0 1
Alice Encryption

KE

Channel

Oscar

Decryption

KD

Bob
PT CT CT PT

Why CA, anyway?

1. Security from Complexity: CA can yield very complex
dynamical behaviors, depending on the local rule

2. Efficient implementation: Leverage CA parallelism and
locality for lightweight cryptography
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CA-based Crypto History: Wolfram’s PRNG

▶ CA-based Pseudorandom Generator (PRG) [W86]: central
cell of rule 30 CA used as a stream cipher keystream

Seed K

Keystream z

K

CA

z⊕
Encryption

PT CT

K

CA

z⊕
Decryption

CT PT

▶ Security claims based mainly on statistical/empirical tests
▶ This CA-based PRNG was later shown to be vulnerable,

improvements by choosing larger local rules [LM14]
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Real world CA-Based Crypto: Keccak χ S-box

▶ Local rule: χ(x1,x2,x3) = x1⊕ (1⊕ (x2 ·x3)) (rule 210)
▶ Invertible for every odd size n of the CA

▶ Used as a PBCA with n = 5 in the Keccak specification of
SHA-3 standard [BDPV11]
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Problem Statement

▶ Goal: Find PBCA of length n and diameter d = n:
▶ with cryptographic properties on par with those of other

real-world ciphers [MPLJ19]
▶ with low implementation cost [PMYJM17]

▶ Considered S-boxes sizes: from n = 4 to n = 8
▶ Genetic Programming to address this problem
▶ Fitness function: optimize both crypto (nonlinearity,

differential uniformity) and implementation properties (GE
measure)
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Results

Table: Statistical results and comparison.

S-box size T_max GP NF δF

Max Avg Std
dev

4×4 16 16 16 0 4 4

5×5 42 42 41.73 1.01 12 2

6×6 86 84 80.47 4.72 24 4

7×7 182 182 155.07 8.86 56 2

8×8 364 318 281.87 13.86 82 20

▶ From n = 4 to n = 7, one obtains CA rules inducing S-boxes
with optimal crypto properties

▶ Only for n = 8 the performances of GP are consistently worse
wrt to the theoretical optimum
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A Posteriori Analysis – Implementation Properties, n = 5

Table: Power is in nW , area in GE, and latency in ns. DPow: dynamic
power, LPow: cell leakage power

Size 5×5 Rule Keccak

DPow. 321.684LPow: 299.725Area: 17 Latency:0.14

Size 5×5 Rule ((v2 NOR NOT(v4)) XOR v1)

DPow. 324.849LPow: 308.418Area: 17 Latency:0.14

Size 5×5 Rule ((v4 NAND (v2 XOR v0)) XOR v1)

DPow. 446.782LPow: 479.33 Area: 24.06 Latency:0.2

Size 5×5 Rule (IF(v1, v2, v4) XOR (v0 NAND NOT(v3)))

DPow. 534.015LPow: 493.528Area: 26.67 Latency:0.17

▶ Results on par with the Keccak χ S-box
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Example of Optimal CA S-box found by GP

v4 v3 v2 v1 v0

o4 o3 o2 o1 o0
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Correlation Immunity (Recall)

▶ f is t-correlation immune iff Wf (a) = 0 for all a s.t.
1 ≤ HW(a) ≤ t , where HW is the Hamming weight of a

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 0 1 0 0 1

F̂(ω) 0 0 0 0 0 0 0 8

⇓

f is 2-order correlation immune

▶ t-order CI functions⇒ Masking countermeasures of
order t for Side-Channel Analysis
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Orthogonal Arrays (OA)

▶ (N,k ,s, t) Orthogonal Array: N×k matrix A such that each
t-uple occurs λ= N/st times in each N× t submatrix.

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1 0 0

0 0 0

0 1 0

0 0 1

0 1 1

1 1 1

1 0 1

1 1 0

Each 3-bit vector
(x1,x2,x3) ∈ {0,1}3

appears once in
the submatrix with
columns 1, 3, 4

Example: OA (8,4,2,3)

⇒

▶ Applications in statistics, coding theory, cryptography
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Correlation Immunity: OA Characterization

▶ Support of f : sets of input vectors x that map to 1 under f

Truth table
x1 x2 x3 f(x)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Support
x1 x2 x3

0 0 1
0 1 0
1 0 0
1 1 1
⇓

OA(4,3,2,2)

Theorem
f : {0,1}n→ {0,1} is t-order CI⇔ Support of f is an OA(N,n,2, t),
with N = |Supp(f)|
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Solutions Encoding

▶ Each column is the truth table of a n-variable Boolean function
▶ For GP, the truth table is synthesized from the tree of the

individual

∧

+ ¬

x1 x2 x3

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f(x)

0
0
1
0
1
0
0
0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 0 1
1 1 0 1
1 1 0 0

▶ Crossover and mutation are applied column-wise
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Crossover Operators

▶ Classic GA and GP: one-point and subtree crossover
▶ Balanced GA: counter-based crossover on each column

10 0 1 0 1 1 0p1

χ⇒
1 0 0 0 1 0 1 1p2

1 1 0 0 1 1 0 0 c

count[1] = 4 fill with 0

▶ For GP: Use standard subtree crossover

χ point χ point

Swap subtrees
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Fitness Function

Idea: minimize in each N× t submatrix the number of occurrences
of each t-uple deviating from λ

0 0 1 1
1 0 0 0
0 0 1 1
1 1 1 1
1 0 0 0
0 1 1 0
1 0 0 1
0 1 1 0

0 0 1
1 0 0
0 0 1
1 1 1
1 0 0
0 1 1
1 0 0
0 1 1

#001 = 2

#100 = 3

#111 = 1

#011 = 2

|λ - #000| = 1 +
|λ - #001| = 1 +
|λ - #010| = 1 +
|λ - #011| = 1 +
|λ - #100| = 2 +
|λ - #101| = 1 +
|λ - #110| = 1 +
|λ - #111| = 0 =____

Deviation: 8

λ=1
==⇒

Fitness function: Lp distance between vector (λ, · · · ,λ) and the
vector of deviations for each submatrix

fitp(A) =
∑

S Submatrix

 ∑
x∈{0,1}t

|λ−#x |p


1
p
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Evolving Secondary Constructions

Example of secondary construction: Rothaus’s construction [?]
▶ If g,h,k and g⊕h ⊕k are bent (maximally nonlinear) on Fn

2,
then the following function is bent:

f(x1,x2,x) = g(x)h(x)⊕g(x)k(x)⊕h(x)k(x)⊕

⊕ [g(x)⊕h(x)]x1⊕ [g(x)⊕k(x)]x2⊕x1x2

where (x1,x2,x) ∈ Fn+2
2 with x1,x2 ∈ F2, x ∈ Fn

2

Goal: Evolve secondary constructions using GP
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GP Representation
Predefined functions:

f0 1001

f1 1010

Independent variables:

v0 0101

v1 0011

GP

Boolean construction function

IF

v0 f0 XOR

f1 v1

1010 1001 0101 1001Output:

▶ Idea: represent a secondary
construction as a GP tree

▶ f0, f1: seed functions
▶ v0 v1: additional

independent variables
▶ The GP tree yields a new

function of n+2 variables
▶ Seed functions are obtained

through direct GP search
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Simplification of GP Solutions

▶ ESPRESSO tool to minimize the best GP trees
▶ Equivalence check among the best solutions

0 10 20
0

10

20

(2,4,4,B)

0 10 20
0

10

20

(2,4,4,C)

0 10 20
0

10

20

(2,5,12,A)

0 10 20
0

10

20

(2,5,12,C)
0 10 20

0

10

20

(2,5,12,B)

0 10 20
0

10

20

(4,5,12,B)

0 10 20
0

10

20

(4,5,12,C)

0 10 20
0

10

20

(4,5,12,A)

▶ Result: many solutions turn out to be the same construction,
especially when 2 seeds are used
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Interpretation of Simplest Solutions

Example of bloated GP construction:

IF

+

+

IF

v0v1+

v1v0

¬

f0

∧

+

f3+

v1f2

v0

∧2

f1v0

v0

Main Remark: many constructions are equivalent to the
well-known indirect sum construction [C21]

IF

+

f1v1

f0v0 F(v0,v1,v) =

f0(v) , if v0 = 1 ,

f1(v)⊕v1 , if v0 = 0 .
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Conclusions and Perspectives

Summing up:
▶ Up to now, AI-based methods and models can help in solving

certain specific design problems for symmetric ciphers.
▶ Many more open directions remain!

Open questions:
▶ take into account other primitives (e.g. permutation layers)
▶ perform fitness landscape analsysis on these search spaces
▶ Develop new algebraic constructions with evolutionary

algorithms
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