

UNIVERSITY OF TWENTE.

Al and Cryptography Lecture 2 & 3 – Al Methods to Design Cryptographic Primitives

Luca Mariot

Semantics, Cybersecurity and Services Group, University of Twente l.mariot@utwente.nl

Trieste, June 27, 2023

Main topics:

- Boolean functions and S-boxes for symmetric crypto
- Genetic Algorithms to optimize Boolean functions
- S-boxes based on Cellular Automata
- Other representations: orthogonal arrays
- Evolving algebraic constructions

References:

- C. Carlet. Boolean Functions for Cryptography and Coding Theory [C21]
- Survey papers: [MJBC22] and [DJMP23] (see references)

Boolean Functions and S-boxes

Evolutionary Algorithms

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

PRG: Pseudorandom generator that stretches a short secret key K into an arbitrary long keystream z

Question: how to build a PRG in practice?

Linear Feedback Shift Registers (LFSR)

Device computing the binary linear recurring sequence

$$s_{n+k} = a + a_0 s_n + a_1 s_{n+1} + \dots + a_{k-1} s_{n+k-1}$$

Too weak as a PRG: 2k consecutive bits of keystream are enough to recover the LFSR initialization

An Example of PRG: The Combiner Model

a Boolean function f: {0,1}ⁿ → {0,1} combines the outputs of n LFSR [C21]

Security of the combiner cryptographic properties of f

Boolean Functions - Basic Representations

- Truth table: a 2^n -bit vector Ω_f specifying f(x) for all $x \in \{0, 1\}^n$
 (x_1, x_2, x_3) 000
 100
 010
 110
 001
 101
 011
 111

 Ω_f 0
 1
 0
 1
 0
 1
 0
- ► Algebraic Normal Form (ANF): Sum (XOR) of products (AND) $f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3 \oplus x_2 x_3$
- ▶ Walsh Transform: correlation with linear functions $a \cdot x$, $W(f,a) = \sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus a \cdot x}$ for all $a \in \{0,1\}^n$

Cryptographic Properties: Balancedness

- Hamming weight $w_H(f)$: number of 1s in Ω_f
- ▶ A function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is balanced if $w_H(f) = 2^{n-1}$
- Walsh characterization: f balanced $\Leftrightarrow \hat{F}(0) = 0$

f is balanced

Unbalanced functions present a statistical bias that can be exploited for distinguishing attacks

Algebraic degree d: the degree of the multivariate polynomial representing the ANF of f

$$f(x_1, x_2, x_3) = x_1 \cdot x_2 \oplus x_1 \oplus x_2 \oplus x_3$$
$$\Downarrow$$

f has degree d = 2

- Linear functions $\omega \cdot x = \omega_1 x_1 \oplus \cdots \oplus \omega_n x_n$ have degree d = 1
- Boolean functions of high degree make the attack based on Berlekamp-Massey algorithm less effective

Cryptographic Properties: Nonlinearity

- Nonlinearity nl(f): Hamming distance of f from linear functions
- Walsh characterization:

$$nl(f) = 2^{n-1} - \frac{1}{2} \max_{\omega \in \mathbb{F}_2^n} \left\{ \left| \hat{F}(\omega) \right| \right\}$$

 Functions with high nonlinearity resist fast-correlation attacks

Bent Functions

Parseval's Relation, valid on any Boolean function:

$$\sum_{a \in \{0,1\}^n} [W(f,a)]^2 = 2^{2n} \text{ for all } f: \{0,1\}^n \to \{0,1\}$$

• Bent functions: $W(f,a) = \pm 2^{\frac{n}{2}}$ for all $a \in \{0,1\}^n$

- Reach the highest possible nonlinearity
- Exist only for n even and they are unbalanced

Cryptographic Properties: Resiliency

- t-Resiliency: when fixing any t variables, the restriction of f stays balanced
- Walsh characterization:

$$\hat{F}(\omega) = 0 \ \forall \omega : \mathbf{w}_{H}(\omega) \leq t$$

(x_1, x_2, x_3)	000	100	010	110	001	101	011	111
Ω_f	0	1	1	1	1	0	0	0
$\hat{F}(\omega)$	0	0	0	0	-4	4	4	4
			1	ļ				

 $F(001) = -4 \Rightarrow f$ is NOT 1-resilient

Resilient functions of high order t resist to correlation attacks

(b) S-box S_i

(a) Substitution-Permutation Network (SPN)

S-boxes $F : \{0,1\}^n \rightarrow \{0,1\}^n$ are **vectorial** Boolean functions

S-Boxes: General definitions

- The output of an (n, m)-function is defined by m coordinate functions f_i : ℝⁿ₂ → ℝ₂.
- ► Hence, an S-box $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ can be represented by a $m \times 2^n$ *truth table*, where row *i* is the truth table of f_i .

• Example: n = m = 3 (the 3-Way S-box)

(x_1, x_2, x_3)	000	001	010	011	100	101	110	111
$dec(x_1, x_2, x_3)$	0	1	2	3	4	5	6	7
$F(x_1, x_2, x_3)$	0	5	6	1	3	2	4	7
$f_1(x_1, x_2, x_3)$	0	1	1	0	0	0	1	1
$f_2(x_1, x_2, x_3)$	0	0	1	0	1	1	0	1
$f_3(x_1, x_2, x_3)$	0	1	0	1	1	0	0	1

Component Functions

Given F : 𝔽ⁿ₂ → 𝔽^m₂ and a vector v ∈ 𝔽^m₂, the component function v · F is defined for all x ∈ 𝔽ⁿ₂ as:

$$v \cdot F(x) = \bigoplus_{i=1}^m v_i f_i(x)$$

Example with n = 8, m = 6 and v = (1,0,1,0,1,0):

 Component functions are thus linear combinations of coordinate functions.

Walsh-Hadamard Transform (WHT)

The Walsh-Hadamard Transform (WHT) of a (n, m)-function is the WHT of all its component functions v · F, that is

$$W_F(a,v) = \sum_{x \in \mathbb{F}_2^n} (-1)^{v \cdot F(x) \oplus a \cdot x}$$
, for all $a \in \mathbb{F}_2^n, v \in \mathbb{F}_2^m$

Example: n = m = 3 (the 3-Way S-box)

(x_1, x_2, x_3)	000	001	010	011	100	101	110	111
F(x)	000	101	110	001	011	010	100	111
$W_F(a,000)$	8	0	0	0	0	0	0	0
$W_F(a,001)$	0	4	0	-4	0	4	0	4
$W_F(a, 010)$	0	0	0	0	4	-4	4	4
$W_{F}(a,011)$	0	4	0	4	-4	0	4	0
$W_F(a, 100)$	0	0	4	4	0	0	-4	4
$W_F(a, 101)$	0	-4	4	0	0	4	4	0
$W_F(a, 110)$	0	0	-4	4	4	4	0	0
$W_F(a, 111)$	0	4	4	0	4	0	0	-4

- ► $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is balanced if $|F^{-1}(y)| = 2^{n-m}$ for all $y \in \mathbb{F}_2^m$.
- F is balanced iff for all v ∈ ℝ₂^m \ {0}, the component function v · F is balanced.
- Balanced functions with m = n are invertible (or bijective) S-boxes, since |F⁻¹(y)| = 2ⁿ⁻ⁿ = 1.
- Example: n = m = 3, the 3-Way S-box

F is balanced (bijective)

Nonlinearity

Given F : ℝ₂ⁿ → ℝ₂^m, recall that the Walsh-Hadamard transform for component v · F is, for all a ∈ ℝ₂ⁿ:

$$W_f(a, v) = \sum_{x \in \mathbb{F}_2^n} (-1)^{v \cdot F(x) \oplus a \cdot x}$$

- ► Hence, the nonlinearity of component $v \cdot F$ is: $nl(v \cdot F) = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{R}^n} \{ |W_F(a, v)| \}$
- The nonlinearity of a S-box F is defined as the minimum nonlinearity among all its component functions v ∈ ℝ₂^m \ {0}:

$$nl(F) = min_{v \in \mathbb{F}_2^m \setminus \{0\}} \{nl(v \cdot F)\}$$

Nonlinearity – Example

Example: n = m = 3, nonlinearity of the 3-Way S-box

(x_1, x_2, x_3)	000	001	010	011	100	101	110	111	nl
F(x)	000	101	110	001	011	010	100	111	
$W_{F}(a,001)$	0	4	0	-4	0	4	0	4	2
<i>W_F(a</i> ,010)	0	0	0	0	4	-4	4	4	2
<i>W_F(a</i> ,011)	0	4	0	4	-4	0	4	0	2
$W_{F}(a, 100)$	0	0	4	4	0	0	-4	4	2
<i>W_F(a</i> ,101)	0	-4	4	0	0	4	4	0	2
<i>W_F(a</i> ,110)	0	0	-4	4	4	4	0	0	2
$W_{F}(a, 111)$	0	4	4	0	4	0	0	-4	2

↓

Nonlinearity of F: nl = 2

► Given $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, the *delta difference table* of *F* with respect to $a \in \mathbb{F}_2^n \setminus \{0\}$ and $b \in \mathbb{F}_2^m$ is:

$$\Delta_F(a,b) = \left\{ x \in \mathbb{F}_2^n : D_a F(x) = b \right\}$$

Let $\delta_F(a,b) = |\Delta_F(a,b)|$. The differential uniformity of *F* is:

$$\delta_F = \max_{\substack{a \in \mathbb{F}_2^n \setminus \{0\} \\ b \in \mathbb{F}_2^m}} \delta_F(a, b)$$

 S-boxes should have low differential uniformity to resist differential cryptanalysis attacks.

Differential Uniformity – Example

Example: n = m = 3, differential uniformity of the 3-Way S-box

(x_1, x_2, x_3)	000	001	010	011	100	101	110	111
F(x)	000	101	110	001	011	010	100	111
			ļ	Ų				

$\delta_F(a,b)$	000	001	010	011	100	101	110	111	
001	0	2	0	2	0	2	0	2	
010	0	0	0	0	2	2	2	2	
011	0	2	0	2	2	0	2	0	
100	0	0	2	2	0	0	2	2	
101	0	2	2	0	0	2	2	0	
110	0	0	2	2	2	2	0	0	
111	0	2	2	0	2	0	0	2	

 \Rightarrow differential uniformity of *F*: $\delta_f = 2$ (APN function)

Most of these properties cannot be satisfied simultaneously!

- Covering Radius bound: $nl \le 2^{n-1} 2^{\frac{n}{2}-1}$
- Siegenthaler's bound: $d \le n t 1$
- Tarannikov's bound: $nl \le 2^{n-1} 2^{t+1}$

Number of Boolean functions of *n* variables: 2^{2ⁿ}

п	3	4	5	6	7	8
2 ^{2ⁿ}	256	65536	4.3 · 10 ⁹	1.8 · 10 ¹⁹	3.4 · 10 ³⁸	$1.2 \cdot 10^{77}$

 \Rightarrow too huge for exhaustive search when n > 5!

Number of (n, m)-functions: $m2^{2^n}$

Boolean Functions and S-boxes

Evolutionary Algorithms

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

Al approaches to design symmetric primitives

- "Traditional" approach: ad-hoc and algebraic constructions to choose primitives with specific security properties
- "Al" approach: support the designer in choosing the primitives using Al methods/models from the following domains:
 - Optimization (Evolutionary algorithms, swarm intelligence...)

Computational models (cellular automata, neural networks...)

ιm

- Combinatorial Optimization Problem: map P : I → S from a set I of problem instances to a family S of solution spaces
- S = P(I) is a finite set equipped with a fitness function fit : S → ℝ, giving a score to candidate solutions x ∈ S
- Optimization goal: find $x^* \in S$ such that:

Minimization: Maximization:

 $x^* = \operatorname{argmin}_{x \in S} \{ \operatorname{fit}(x) \}$ $x^* = \operatorname{argmax}_{x \in S} \{ \operatorname{fit}(x) \}$

Heuristic optimization algorithm: iteratively tweaks a set of candidate solutions using *fit* to drive the search Optimization algorithms loosely based on evolutionary principles, introduced respectively by **J. Holland** (1975) and **J. Koza** (1989)

- Evolve in parallel a population of solutions.
- Black-box optimization: use only the fitness function to optimize the solutions.
- Use Probabilistic operators to evolve the solutions

GA Encoding: individual \Rightarrow fixed-length bitstring

Genetic Algorithms (GA) – Genetic Programming (GP)

GP Encoding: an individual is represented by a tree

- Terminal nodes: input variables of a program
- Internal nodes: operators (e.g. AND, OR, NOT, XOR, ...)

Selection

Roulette-Wheel Selection (RWS): the probability of selecting an individual is proportional to its fitness

Tournament Selection (TS): Randomly sample *t* individuals from the population and select the fittest one.

Generational Breeding: Draw as many pairs as population size **Steady-State Breeding**: Select only a single pair

L. Mariot

Al and Cryptography

Crossover

Idea: Recombine the genes of two parents individuals to create the offspring (Exploitation)

GA Example: One-Point Crossover

GP Example: Subtree Crossover

Mutation

Idea: Introduce new genetic material in the offspring (Exploration) GA Example: Bit-flip mutation

GP Example: Subtree mutation

Replacement and Termination

- Elitism: keep the best individual from the previous generation
- Termination: several criteria such as budget of fitness evaluations, solutions diversity, ...

WE'VE DECIDED TO DROP THE CS DEPARTMENT FROM OUR WEEKLY DINNER PARTY HOSTING ROTATION.

Image credit: https://xkcd.com/720/

Boolean Functions and S-boxes

Evolutionary Algorithms

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

Direct Search of Boolean Functions [MCD98]

- ► GA encoding: represent the truth tables as 2^{*n*}-bit strings
- Fitness function measuring nonlinearity, algebraic degree, and deviation from correlation-immunity
- Specialized crossover and mutation operators for preserving balancedness

Crossover Idea: Use *counters* to keep track of the multiplicities of zeros and ones [MCD98, MMT20]

Evolving Boolean Functions with GP

The truth table is synthesized from a GP tree:

Difficult to enforce constraints on balancedness

But, GP has better performance than GA with direct search [?]

L. Mariot

Cellular Automata

One-dimensional Cellular Automaton (CA): a discrete parallel computation model composed of a finite array of n cells

Example: n = 6, d = 3, $f(s_i, s_{i+1}, s_{i+2}) = s_i \oplus s_{i+1} \oplus s_{i+2}$ (rule 150)

► Each cell updates its state $s \in \{0, 1\}$ by evaluating a local rule $f : \{0, 1\}^d \rightarrow \{0, 1\}$ on itself and the d - 1 cells on its right

General Research Goal: Investigate cryptographic primitives defined by Cellular Automata

Why CA, anyway?

- 1. **Security from Complexity**: CA can yield very complex dynamical behaviors, depending on the local rule
- 2. Efficient implementation: Leverage CA parallelism and locality for lightweight cryptography

CA-based Crypto History: Wolfram's PRNG

 CA-based Pseudorandom Generator (PRG) [W86]: central cell of rule 30 CA used as a stream cipher keystream

- Security claims based mainly on statistical/empirical tests
- This CA-based PRNG was later shown to be vulnerable, improvements by choosing larger local rules [LM14]

Real world CA-Based Crypto: Keccak χ S-box

- ► Local rule: $\chi(x_1, x_2, x_3) = x_1 \oplus (1 \oplus (x_2 \cdot x_3))$ (rule 210)
- Invertible for every odd size n of the CA

 Used as a PBCA with n = 5 in the Keccak specification of SHA-3 standard [BDPV11]

- Goal: Find PBCA of length n and diameter d = n:
 - with cryptographic properties on par with those of other real-world ciphers [MPLJ19]
 - with low implementation cost [PMYJM17]
- Considered S-boxes sizes: from n = 4 to n = 8
- Genetic Programming to address this problem
- Fitness function: optimize both crypto (nonlinearity, differential uniformity) and implementation properties (GE measure)

S-box size	T_max		GP		N _F	δ_F
		Max	Avg	Std dev		
4×4	16	16	16	0	4	4
5×5	42	42	41.73	1.01	12	2
6×6	86	84	80.47	4.72	24	4
7×7	182	182	155.07	7 8.86	56	2
8×8	364	318	281.87	7 13.86	82	20

Table: Statistical results and comparison.

- From n = 4 to n = 7, one obtains CA rules inducing S-boxes with optimal crypto properties
- Only for n = 8 the performances of GP are consistently worse wrt to the theoretical optimum

A Posteriori Analysis – Implementation Properties, n = 5

Table: Power is in *nW*, area in *GE*, and latency in *ns*. *DPow*: dynamic power, *LPow*: cell leakage power

Size	5×5	Rule		Keccal	K
DPow.	321.68	84 LPow:	299.725 Area:	17	Latency:0.14
Size	5×5	Rule	((v2 NO	R NOT(v4	4)) XOR v1)
DPow.	324.84	9 LPow:	308.418 Area:	17	Latency:0.14
Size	5×5	Rule	((v4 NAND	(v2 XOR	t v0)) XOR v1)
DPow.	446.78	32 LPow:	479.33 Area:	24.06	Latency:0.2
Size	5×5	Rule	(IF(v1, v2, v4)	XOR (v0	NAND NOT(v3)))
DPow.	534.01	5 LPow:	493.528 Area:	26.67	Latency:0.17

Results on par with the Keccak χ S-box

Example of Optimal CA S-box found by GP

Boolean Functions and S-boxes

Evolutionary Algorithms

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

Correlation Immunity (Recall)

► *f* is *t*-correlation immune iff $W_f(a) = 0$ for all *a* s.t. $1 \le HW(a) \le t$, where *HW* is the Hamming weight of *a*

(x_1, x_2, x_3)	000	100	010	110	001	101	011	111
Ω_f	0	1	1	0	1	0	0	1
$\hat{F}(\omega)$	0	0	0	0	0	0	0	8
			1	ļ				

f is 2-order correlation immune

► t-order CI functions ⇒ Masking countermeasures of order t for Side-Channel Analysis

Orthogonal Arrays (OA)

(N,k,s,t) Orthogonal Array: N×k matrix A such that each t-uple occurs λ = N/s^t times in each N×t submatrix.

Example: OA (8,4,2,3)

Each 3-bit vector $\Rightarrow (x_1, x_2, x_3) \in \{0, 1\}^3$ appears once in the submatrix with columns 1, 3, 4

Applications in statistics, coding theory, cryptography

Support of f: sets of input vectors x that map to 1 under f

	Trutl	h tab	le			
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	f(x)	;	Suppo	ort
0	0	0	0		<i>X</i> 2)
0	0	1	1	0	0	
0	1	0	1	0	1	
0	1	1	0	1	0	
1	0	0	1	1	1	
1	0	1	0][
1	1	0	0	0/	A(4.3.	2.
1	1	1	1	•		_,

Theorem

 $f : \{0,1\}^n \to \{0,1\}$ is t-order $CI \Leftrightarrow$ Support of f is an OA(N,n,2,t), with N = |Supp(f)|

Solutions Encoding

- Each column is the truth table of a n-variable Boolean function
- For GP, the truth table is synthesized from the tree of the individual

Crossover and mutation are applied column-wise

L. Mariot

Crossover Operators

- Classic GA and GP: one-point and subtree crossover
- Balanced GA: counter-based crossover on each column

Fitness Function

Idea: *minimize* in each $N \times t$ submatrix the number of occurrences of each *t*-uple deviating from λ

Fitness function: L^p distance between vector $(\lambda, \dots, \lambda)$ and the vector of deviations for each submatrix

$$fit_{p}(A) = \sum_{S \text{ Submatrix}} \left(\sum_{x \in \{0,1\}^{t}} |\lambda - \#x|^{p} \right)^{\frac{1}{p}}$$

Boolean Functions and S-boxes

Evolutionary Algorithms

Evolutionary Design of Boolean Functions and S-boxes

Other Representations: orthogonal arrays

Evolving Secondary Constructions

Example of secondary construction: Rothaus's construction [?]

▶ If g, h, k and $g \oplus h \oplus k$ are bent (maximally nonlinear) on \mathbb{F}_2^n , then the following function is bent:

$$f(x_1, x_2, x) = g(x)h(x) \oplus g(x)k(x) \oplus h(x)k(x) \oplus \\ \oplus [g(x) \oplus h(x)]x_1 \oplus [g(x) \oplus k(x)]x_2 \oplus x_1x_2$$

where
$$(x_1, x_2, x) \in \mathbb{F}_2^{n+2}$$
 with $x_1, x_2 \in \mathbb{F}_2, x \in \mathbb{F}_2^n$

Goal: Evolve secondary constructions using GP

GP Representation

- Idea: represent a secondary construction as a GP tree
- f₀, f₁: seed functions
- v₀ v₁: additional independent variables
- The GP tree yields a new function of n+2 variables
- Seed functions are obtained through direct GP search

Simplification of GP Solutions

- ESPRESSO tool to minimize the best GP trees
- Equivalence check among the best solutions

Result: many solutions turn out to be the same construction, especially when 2 seeds are used

L. Mariot

Interpretation of Simplest Solutions

Example of bloated GP construction:

Main Remark: many constructions are equivalent to the well-known *indirect sum construction* [C21]

$$F(v_0, v_1, v) = \begin{cases} f_0(v) \ , & \text{if } v_0 = 1 \ , \\ f_1(v) \oplus v_1 \ , & \text{if } v_0 = 0 \ . \end{cases}$$

ĪΛ

Summing up:

- Up to now, AI-based methods and models can help in solving certain specific design problems for symmetric ciphers.
- Many more open directions remain!

Open questions:

- take into account other primitives (e.g. permutation layers)
- perform fitness landscape analossis on these search spaces
- Develop new algebraic constructions with evolutionary algorithms

References

