

UNIVERSITY OF TWENTE.

Al and Cryptography Lectures 4 & 5 – Adversarial Examples in ML and Differential Privacy for Adversarial Robustness

Luca Mariot

Semantics, Cybersecurity and Services Group, University of Twente l.mariot@utwente.nl

Trieste, June 28, 2023

Main topics:

- Basic Recap of Machine Learning (ML)
- Adversarial Examples in ML
- Differential Privacy (DP)
- DP for Adversarial Robustness

References:

- T. Mitchell. Machine Learning. McGraw Hill, 1997
- D. McKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003
- G. James, D. Witten, T. Hastie, R. Tibshirani. An Introduction to Statistical Learning. Springer, 2021
- Papers: see references in the footnotes

Recap of Machine Learning (ML)

Adversarial Examples (AE) in ML

AE from Evolutionary Algorithms

Defenses from AE

Differential Privacy (DP)

DP for Adversarial Robustness

Machine Learning

 Algorithms that learn a model to discover something about future data.

Machine Learning

A computer program learns from experience E with respect to some task T and some performance measure P, if its performance on T, as measured with P, improves with experience E.

Types of Machine Learning

Basic components of ML:

- Model.
- Loss function.
- Optimization procedure to minimize the empirical error.

Types of ML:

- Supervised learning.
- Unsupervised learning.
- Semi-supervised learning.
- Reinforcement learning.

Training data:

- Training set: pairs (x, y) called training examples.
- x is a feature vector, y is a label.

Goals:

- The objective is to find a function *f* such that y = f(x).
- We test our function *f* on the test set.

Types of Classification:

- If y is a real number \rightarrow regression.
- y is a Boolean variable \rightarrow binary classification.
- y is member of a finite set \rightarrow multiclass classification.

Learning method:

Empirical Risk Minimization (ERM): the parameters θ are obtained by solving the optimization problem:

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f_{\theta}(\mathbf{x}_i), \mathbf{y}_i).$$
(1)

One input layer, one output layer, at least one hidden layer.

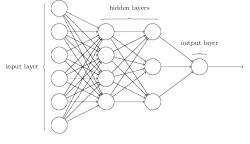
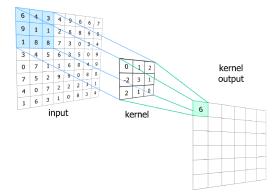


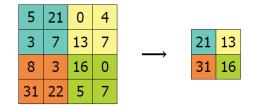
Figure: Multilayer perceptron.

Convolutional Neural Networks - Convolution Layer

 Convolutional layer: input data are convoluted with some filters, also called *kernels*.



Pooling layer: The feature map is divided into regions and this layer computes the max (or average) over these regions.



Activation Functions

Nane	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \left\{ \begin{array}{ll} 0 & \text{for} x \neq 0 \\ ? & \text{for} x = 0 \end{array} \right.$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH	\checkmark	$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
årcTan	\checkmark	$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)	/	$f(x) = \begin{cases} 0 & \text{for } x < 0\\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]	/	$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]	/	$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0\\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus	/	$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1+e^{-x}}$

Recap of Machine Learning (ML)

Adversarial Examples (AE) in ML

AE from Evolutionary Algorithms

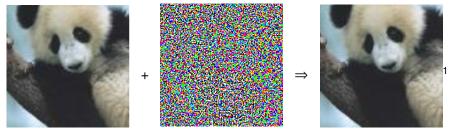
Defenses from AE

Differential Privacy (DP)

DP for Adversarial Robustness

The Problem: Adversarial Examples (AE)

Idea: perturb a valid example to mess the DNN's classification



Classification: Panda

Noise perturbation

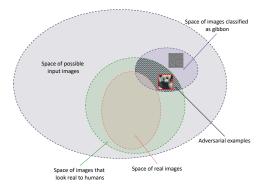
Classification: Gibbon

- Perturbations move the example beyond the decision boundary of a DNN
- Perturbations for AE can be minimal

L. Mariot

¹Example credits: I.J. Goodfellow, J. Shlens, C. Szegedy, *Explaining and Harnessing Adversarial Examples*, ICLR 2015

Will the panda image be classified as panda by a neural network?



Why do adversarial examples exist?

- Robust and non-robust features.
- Standard accuracy refers to accuracy on clean examples, robust accuracy refers to accuracy on adversarial examples.

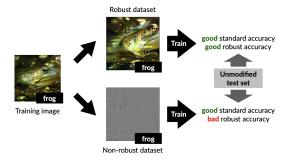
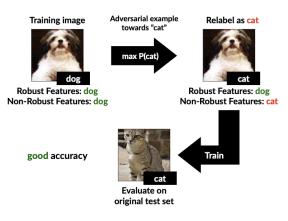


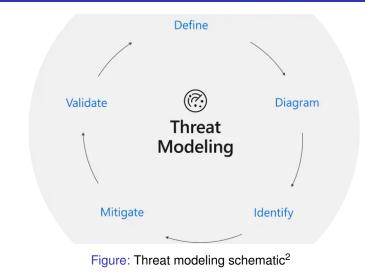
Figure: Ilyas, Andrew, et al. "Adversarial examples are not bugs, they are features." Advances in neural information processing systems 32 (2019).

Why do adversarial examples exist?

Non-robust feature is enough for standard classification.



Threat Modeling

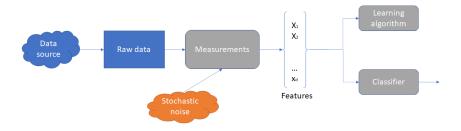


²https:

//www.microsoft.com/en-us/securityengineering/sdl/threatmodeling

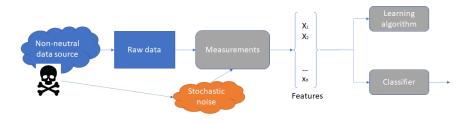
L. Mariot

Al and Cryptography

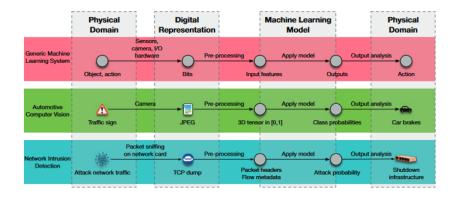


We assume:

- 1. The source of data is given, and it does not depend on the classifier.
- 2. Noise affecting data is stochastic.



- We observe:
 - 1. The source of data is not neutral, and it depends on the classifier.
 - Noise is adversarial and crafted to maximize the probability of error.



SoK: Security and Privacy in Machine Learning

Goal:

- Targeted: misclassifying to a specific class.
- Non-targeted: misclassifying to an arbitrary class.

Knowledge:

- Components: Network structure, activation functions, hyperparameters, training data, etc.
- White-box: Adversary knows all.
- Black-box: Adversary knows none.

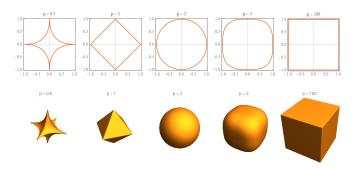
Capability:

- Attacker can modify *test*, not train data
- One-time or iterative attack

Perturbation Metrics

Perturbation Constraints:

- It should be small and stealthy.
- Measuring via metrics (Minkowsky distance).
- $||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}.$



Recap of Machine Learning (ML)

Adversarial Examples (AE) in ML

AE from Evolutionary Algorithms

Defenses from AE

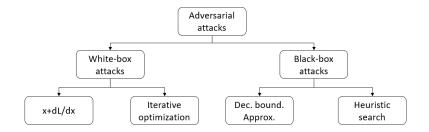
Differential Privacy (DP)

DP for Adversarial Robustness

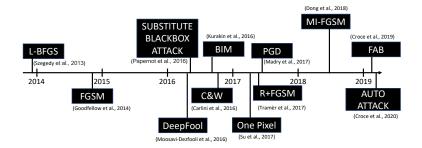
Generating an adversarial example x' is optimizing:

$$\begin{split} \min_{x'} ||x' - x|| & \text{such that} \\ f(x') &= \ell', \\ f(x) &= \ell, \\ \ell \neq \ell'. \end{split}$$

• $\eta = x' - x$ is the perturbation.



 Since 2013, a large number of attack methods have been proposed.



• Idea: Modify just one pixel in a valid example

Pixel selection done with Evolutionary Algorithms

L. Mariot

³Image credit: J. Su et al., *One Pixel Attack for Fooling Deep Neural Networks*. IEEE Trans. Evol. Comput 23(5):828-840 (2019)

The optimization problem:

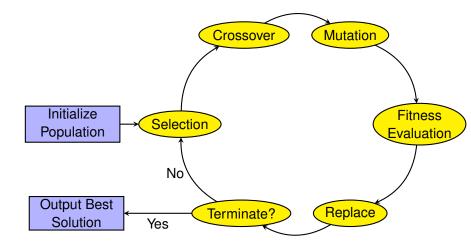
$$\begin{array}{ll} \min_{x'} & \mathcal{J}_{\theta}(x',\ell'),\\ \text{s.t.} & \|\eta\|_0 \leq \epsilon_0 = 1. \end{array}$$

Updating one pixel according to the gradient is difficult.

ľ

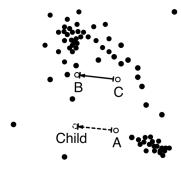
- Brute-forcing is not feasible: in CIFAR-10, the search space is 32 × 32 × 3 × 256.
- Solution: use Evolutionary Algorithms

Evolutionary Algorithms (EA)



Differential Evolution

- ► EA conceived for *continuous* search spaces (e.g., \mathbb{R}^n)
- Adaptive Mutation (based on the variance of the population)



For each individual *i* do:

- Pick three random vectors a,b,c in the population
- Create $d = a + \alpha(b c)$
- Create e by crossing i with d
- Each child *e* is compared with the parent *i*

4

⁴Image credits: S. Luke. Essentials of Metaheuristics. Lulu, 2012

One-pixel Attack

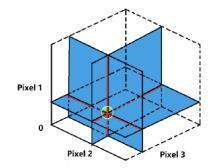


Figure: Illustration of one- and two-pixel search space. One- and two-pixel attacks search the perturbation on, respectively, 1-D (red lines) and 2-D (blue planes) slices of the original 3-D input space.

5

⁵Image credit: J. Su et al., *One Pixel Attack for Fooling Deep Neural Networks*. IEEE Trans. Evol. Comput 23(5):828-840 (2019)

One-pixel Attack

Examples of one-pixel attack.

HORSE FROG(99.9%)

DOG CAT(75.5%)

DEER

DOG(86.4%)

BIRD

VGG

DEER AIRPLANE(85.3%)

BIRD FROG(86.5%)

CAT BIRD(66.2%)

SHIP AIRPLANE(88.2%)

HORSE

SHIP

Al and Cryptography

Recap of Machine Learning (ML)

Adversarial Examples (AE) in ML

AE from Evolutionary Algorithms

Defenses from AE

Differential Privacy (DP)

DP for Adversarial Robustness

Why do we want Adversarial robust networs?

- Better accuracy.
- Better explanation of the behavior of networks.

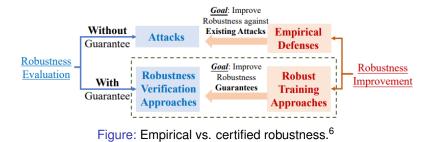
Adversarial Robustness:

Separating the *l*∞-balls requires a significantly more complicated decision boundary.

- Adversarial training
- Network Pruning
- Random input transformation
- Certified Robustness

Certified Robustness

- Most defenses are *empirical*.
- Certified robustness provides theoretical guarantees.



⁶Li Linyi et al. "Sok: Certified robustness for deep neural networks." arXiv preprint arXiv:2009.04131 (2020).

Robustness Verification Taxonomy

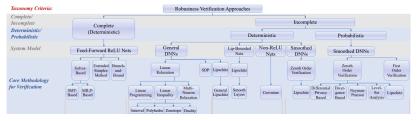


Figure: Robustness Verification Taxonomy.⁷

L. Mariot

⁷Li Linyi et al. "Sok: Certified robustness for deep neural networks." arXiv preprint arXiv:2009.04131 (2020).

Recap of Machine Learning (ML)

Adversarial Examples (AE) in ML

AE from Evolutionary Algorithms

Defenses from AE

Differential Privacy (DP)

DP for Adversarial Robustness

Data Anonymization

- Suppose we want to release a dataset with sensitive information
- Classic approach: perturb the dataset itself
 - Suppression
 - Generalization

Example: medical dataset

name	age	disease	
Alice	30	no	
Bob	32	no	
Charlie	40	no	
Dave	44	yes	
Eliza	50	no	
Frank	57	yes	

- Query: youngest age of a person with the disease?
- Problem: An adversary might re-identify the (single) row of Dave (age 44, has the disease)

- Idea: partition the row space in groups of size k
- Rows in the same group are indistinguishable wrt an attribute

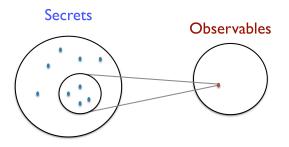
name	age	disease	
Alice	30	no	
Bob	32	no	
Charlie	40	no	
Dave	44	yes	
Eliza	50	no	
Frank	57	yes	

name	age	disease
Alice	[30-39]	no
Bob	[30-39]	no
Charlie	[40-49]	no
Dave	[40-49]	yes
Eliza	[50-59]	no
Frank	[50-59]	yes

• Re-identification probability: $p = \frac{1}{k}$

Principle underlying k-anonymity: many-to-one correlations

Problem: composition attacks



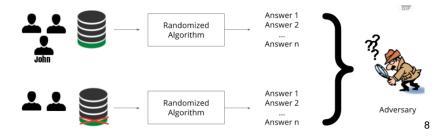
- Idea: Combine two or more queries
- Example: What is the minimal age AND the minimal weight of a person with the disease?

name	age	disease	name	weight	disease
Alice	[30-39]	no	Alice	[60-79]	no
Bob	[30-39]	no	Bob	[80-99]	no
Charlie	[40-49]	no	Charlie	[80-90]	no
Dave	[40-49]	yes	Dave	[100-119]	yes
Eliza	[50-59]	no	Eliza	[60-79]	no
Frank	[50-59]	yes	Frank	[100-119]	yes

Dave is the only row satisfying the query

Differential Privacy

Idea: anonymize the query mechanism, rather than the database itself



 Key property: an adversary has a negligible probability of distinguishing two DBs differing in only one row

L. Mariot

⁸Image credits: N. Papernot, I. Goodfellow, Privacy and machine learning: two unexpected allies?

Differential Privacy

Ingredients:

- Randomized algorithm A
- Database D
- Output space O

Definition: Differential Privacy

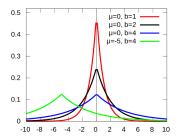
A is (ϵ, δ) -DP wrt a metric ρ on *D* if for any *D'* such that $\rho(D, D') \leq 1$ and $S \subseteq O$, it holds:

$$P(A(D) \in S) \le e^{\epsilon}P(A(D') \in S) + \delta$$
.

• ϵ, δ : privacy strength parameters (small)

• ρ : usually the Hamming distance

- How is A implemented?
- Addition of noise drawn from specific distribution
- Usual choice: Laplace noise $L(\mu, b)$



Recap of Machine Learning (ML)

Adversarial Examples (AE) in ML

AE from Evolutionary Algorithms

Defenses from AE

Differential Privacy (DP)

DP for Adversarial Robustness

- **Trick**: input image x is a "DB", where each row is e.g. a pixel
- ► Randomized A: output scores (y₁(x),...,y_k(x)) (e.g. given by an activation function like SoftMax)

Theorem (Lecuyér et al. 2019)

Suppose A is (ϵ, δ) -DP wrt a *p*-norm metric. If for any input *x*, and some $k \in K$, we have

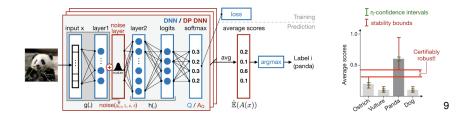
$$\mathbb{E}(A_k(x)) > e^{2e} \max_{\substack{i:i \neq k}} \mathbb{E}(A_i(x)) + (1 + e^{\epsilon})\delta ,$$

the classification model is robust to any perturbation α with $|\alpha| < 1$

PixelDP Architecture (Lecuyér et al. 2019)

Architecture: the noise is added after the first layer

Noise added at inference (test) time



⁹M. Lecuyér et al.: Certified Robustness to Adversarial Examples with Differential Privacy. IEEE S&P 2019

L. Mariot

To summarize:

- Adversarial examples can pose a threat in realistic deployment of DNN
- Several type of countermeasures exist
- Differential Privacy provides theoretical guarantees against minimal perturbations

Caveats:

- DP is not a silver bullet!
- Privacy concerns are not addressed in this case