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Implementation Attacks

Cryptographic Theory vs Physical Reality

Cryptographic algorithms are (supposed to be) theoretically
secure.

Implementations leak in physical world.
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Implementation Attacks

Blackbox Scenario

Cryptographic function is a black box, parameterized with key,
that maps plaintext into ciphertext.

Analyzing the security in the blackbox scenario relates to
classical cryptanalysis.

Adversary’s goal: secret key or plaintext recovery by observing
plaintext/ciphertext pairs.
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Implementation Attacks

Graybox Scenario

Cryptographic algorithm is implemented on a real device such
as a microcontroller, FPGA, ASIC etc.

We can measure and process certain physical quantities in the
device’s vicinity.

Adversary’s goal: secret key or plaintext recovery by observing
plaintext/ciphertext pairs and a side channel.

Side-channel information relates to all sorts of leakage on the
algorithm’s internal computations.

Examples: execution/reaction time, power consumption,
electromagnetic emission, sound, temperature.

Assuming limited access to the internal computations through
this side channel window brings us to the graybox scenario.

Security in the blackbox scenario does not imply security
under the graybox scenario.
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Implementation Attack Categories

Side-channel attacks.

Faults.

Microprobing.
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Implementation Attacks

Implementation attacks

Implementation attacks do not aim at the weaknesses of the
algorithm, but on its implementation.

Side-channel attacks (SCAs) are passive, non-invasive
attacks.

SCAs represent one of the most powerful category of attacks
on crypto devices.
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Taxonomy of Implementation Attacks

Active vs passive.

Active:

1 Active: the key is recovered by exploiting some abnormal
behavior.

2 Insertion of signals.

Passive:

1 The device operates within its specifications.
2 Reading hidden signals.
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The Goals of Attackers

Secret data.

Location.

Reverse engineering.

Theoretical cryptanalysis.

. . .
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Physical Security in the Beginning

Tempest – already known in 1960s that computers generate
EM radiation that leaks information about the processed data.

1965: MI5 used a microphone positioned near the rotor
machine used by Egyptian embassy to deduce the positions of
rotors.

1996: first academic publication on SCA – timing.

1997: Bellcore attack.

1999: first publication of SCA – power.
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Side Channels

Timing

One of the earliest side-channel attacks due to easy
measurements collection.

Can also be exploited remotely.

Exploit some not foreseen effects of caches to crypto
implementations.

Applied to symmetric and asymmetric cryptography.
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Side Channels

Power Consumption

CMOS is one of the most popular technologies for chip design.

CMOS circuits exhibit several types of leakage.

Charge and discharge of the CMOS load capacitance leads to
side-channel leakage (dynamic power consumption).

Power analysis attack exploits the fact that the dynamic
power consumption depends on the data and instructions
being processed.

Dynamic power consumption is produced by CMOS
transitions from state 0 to 1 and from state 1 to 0.
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Side Channels

How to Model the Leakage

We use the number of transitions to model the leakage.
The Hamming distance model counts the number of 0 → 1
and 1 → 0 transitions.
Example 1: A register R is storing the result of an AES round
and initial value v0 gets overwritten with v1.
The power consumption because of the register transition
v0 → v1 is related to the number of bit flips that occurred.
Modeled as HammingDistance(v0, v1) =
HammingWeight(v0 ⊕ v1).
Common leakage model for hardware implementations
(FPGA, ASIC).
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Side Channels

How to Model the Leakage

Example 2: In a microcontroller, a register A contains value
v0 and an assembly instruction moves the content of register
A to B.
This instruction transfers v0 from A to B via the CPU, using
the bus.
Typically the bus is precharged at all bits being zeros or one
(busInitialValue).
The power consumption of the instruction can be modeled as
HammingDistance(busInitialValue, v0) =
HammingWeight(v0 ⊕ 0) = HW (v0).
Common leakage model for software implementations
(AVR/ARM).
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Measurement Setup
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Side-channel Attacks

Analysis Capabilities

Direct attacks:

1 Simple side-channel analysis.
2 Differential side-channel analysis.
3 Higher order attacks.
4 . . .

Two-stage (profiling) attacks:

1 Template attack.
2 Stochastic models.
3 Machine learning-based attacks.
4 . . .
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Side-channel Attacks

Scientific Metrics

The most common evaluation metrics in the side-channel
analysis are success rate (SR) and guessing entropy (GE).

Success rate defines the estimated averaged probability of
success.

The average key rank is given by the guessing entropy.

More precisely, GE states the average number of key
candidates an adversary needs to test in order to reveal the
secret key after conducting a side-channel analysis.
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Side-channel Attacks

Scientific Metrics

In particular, given Q samples in the attacking phase, an
attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in
decreasing order of probability with |K| being the size of the
keyspace.

So, g1 is the most likely and g|K| the least likely key candidate.

The guessing entropy is the average position of k∗a in g over
multiple experiments.

The success rate is defined as the average empirical
probability that g1 is equal to the secret key k∗a .
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Side-channel Attacks

Scientific Metrics

In practice one may consider leakage models Y (·) that are
bijective functions, thus each output probability calculated
from the classifiers for Y (k) directly relates to one single key
candidate k .

In case Y (·) is not bijective, several key candidates k may get
assigned with the same output probabilities, which is why on
average a single trace attack (Q = 1) may not be possible in
case of non-bijective leakage models.

Further, to calculate the key guessing vector g over Q amount
of samples, the (log-)likelihood principle is used.
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Side-channel Attacks

Practical Evaluation Testing

In practice, there are two main practical schemes:

1 Test-based schemes, such as NIST FIPS 140 and ISO/IEC
17825.

2 Evaluation-based schemes, such as Common Criteria (CC,
ISO/IEC 15408).
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Profiling Attacks

Profiling attacks have a prominent place as the most powerful
among side channel attacks.

Within profiling phase the adversary estimates leakage models
for targeted intermediate computations, which are then
exploited to extract secret information in the actual attack
phase.

Template Attack (TA) is the most powerful attack from the
information theoretic point of view.

Some machine learning (ML) techniques also belong to the
profiling attacks.
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Profiling Attacks

Two stage (profiling) attacks are more complicated than the
direct attacks.

The attacker must have access to a copy of the device to be
attacked.
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Profiling Attacks

Template Attack

Using the copy of device, record a large number of
measurements using different plaintexts and keys. We require
information about every possible subkey value.

Create a template of device’s operation. A template is a set of
probability distributions that describe what the power traces
look like for many different keys.

On device that is to be attacked, record a (small) number of
measurements (called attack traces) using different plaintexts.

Apply the template to the attack traces. For each subkey,
record what value is the most likely to be the correct subkey.

When using high-quality templates made from many traces, it
is possible to attack a system with a single trace.

Template attack can become unstable if there are more points
of interest than measurements per value.
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Profiling Attacks

Side-channel Analysis and Machine Learning

Machine learning techniques also represent an extremely
powerful paradigm in side-channel analysis.

We can observe how profiling scenario in SCA has clear
connections with supervised machine learning.

We can use machine learning in SCA for classification,
clustering, feature engineering, preprocessing.

More recently, deep learning positioned itself as the most
powerful choice for profiling SCA.
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Profiling Attacks

Machine Learning Process Flow
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Profiling Attacks

Neural Network Types in SCA

Multilayer perceptron.

Convolutional neural network.

Autoencoder.

Recurrent neural network.

Residual neural network.

Generative Adversarial Network.
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Well-established Examples

Methodologies

Zaid, G., Bossuet, L., Habrard, A., & Venelli, A. (2019).
Methodology for Efficient CNN Architectures in Profiling
Attacks. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020(1), 1-36.
https://doi.org/10.13154/tches.v2020.i1.1-36.

Wouters, L., Arribas, V., Gierlichs, B., & Preneel, B. (2020).
Revisiting a Methodology for Efficient CNN Architectures in
Profiling Attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(3), 147-168.
https://doi.org/10.13154/tches.v2020.i3.147-168.
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Well-established Examples

Reinforcement Learning

Reinforcement learning attempts to teach an agent how to
perform a task by letting the agent experiment and experience
the environment, maximizing some reward signal.

https://github.com/AISyLab/

Reinforcement-Learning-for-SCA
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Bayesian Optimization

In Bayesian optimization, the aim is to build a probabilistic
model of the underlying function.

We first require a probabilistic model of a function (often
referred to as the surrogate model), where there are several
ways to model it.

Second, we require an acquisition function for Bayesian
optimization to generate the next neural network architecture
to observe, i.e., to select what point to sample next.
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Bayesian Optimization

Bayesian 
Optimization Model Training

Model Evaluation
𝑂𝑂 𝑃𝑃𝑖𝑖

Attack with the best model 
(Guessing Entropy)

AutoSCA tuning strategy

𝑃𝑃𝑖𝑖

𝑖𝑖 = 𝑖𝑖 + 1
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Bayesian Optimization
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Denoising the Countermeasures

Countermeasures as Noise

Various countermeasures make SCAs significantly more
complex, and such countermeasures can be further combined
to make the attacks even more challenging.

Could we consider those as noise and use some techniques to
remove the noise?

We propose a new approach to remove several common hiding
countermeasures with a denoising autoencoder.

Gaussian noise, random delay interrupts, desynchronization,
jitter, shuffling.
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Denoising the Countermeasures

Denoising Autoencoder

An autoencoder consists of two parts: encoder (ϕ) and
decoder (ψ).

The goal of the encoder is to transfer the input to its latent
space F , i.e., ϕ : X → F .

The decoder, on the other hand, reconstructs the input from
the latent space, which is equivalent to ψ : F → X .

When applying the autoencoder for the denoising purpose, the
input and output are not identical but represented by
noisy-clean data pairs.
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Denoising the Countermeasures

Denoising Autoencoder
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(a) GE: denoise with averaging.
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(b) GE: denoise with CAE.

Figure: Guessing entropy: denoising Gaussian noise with averaging (a) and CAE (b).
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Denoising the Countermeasures

Denoising Autoencoder

0 2000 4000 6000 8000 10000
Number of Traces

0

50

100

150

200

250

Gu
es
sin

g 
En

tro
py

TA
MLP
CNN

(a) GE: denoise with static alignment.
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(b) GE: denoise with CAE.

Figure: Guessing entropy: denoising desynchronization with static alignment (a) and
CAE (b).
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Deep Learning Ensembles

Generalization of Function Approximation

While we use machine learning metrics to drive the training,
we are interested in results as observed through SCA metrics.

Ideally, we should always train a neural network until it
achieves the maximum quality in generalization to the
validation set.

Underfitting, generalization, and overfitting phases.
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Well-established Examples

Deep Learning Ensembles

Generalization of Function Approximation

In SCA, the generalization phase is directly related to the key
recovery, and it may start very soon after the training starts
because a low accuracy can already represent the turning
point from underfitting to generalization.

Can a low accuracy (sometimes close to random guessing) still
be associated with this good enough generalization phase?
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Deep Learning Ensembles

How to Improve Generalization?

There are many ways to improve generalization (more
powerful classification methods, better hyperparameter
tuning, regularization, etc.).

We can also do something simpler!

Commonly, in the experimental phase, one runs a number of
evaluations to find the best hyperparameters.

Can we somehow use multiple results?

It sounds reasonable to take the most out of the
hyperparameter tuning phase and explore whether one can use
more than a single machine learning model obtained during
the tuning phase.
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Deep Learning Ensembles

Deep Learning Ensembles

(a) MLP results. (b) CNN results.

Figure: Guessing entropy for ASCAD for the Hamming weight leakage model.
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Deep Learning Ensembles

Deep Learning Ensembles

(a) MLP results. (b) CNN results.

Figure: Guessing entropy for ASCAD for the identity leakage model.
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Recent Results

Important Hyperparameters

MLP: activation functions, number of dense layers, number of
neurons in dense layers, regularization, learning rate,
optimizer, loss function, number of epochs, batch size,
initialization.

CNN: Number of convolutional layers, number and size of
kernels, activation functions, pooling type and size, stride,
number of dense layers, number of neurons in dense layers,
regularization, learning rate, optimizer, loss function, number
of epochs, batch size, initialization.
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Recent Results

Many Things Actually Work

Simple hyperparameter search.

Data Augmentation.

Various types of architectures.

Small architectures.

Custom metrics and neural network elements.

...
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Feature Selection for Deep Learning SCA

Feature Selection for Deep Learning SCA

Scenario
Knowledge of r
mask share

POI selection and
pre-processing

Noisy/non-leaking
samples

RPOI Yes
Main SNR peaks of r and sr .
No pre-processing required.

No

OPOI Yes
Minimum trace interval

including SNR peaks of r and
sr . No pre-processing required.

Reduced

NOPOI No
No POI selection and

pre-processing is required.
All available

Table: Possible feature selection scenarios for deep learning-based SCA with the
synchronized measurements.
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Feature Selection for Deep Learning SCA

Feature Selection for Deep Learning SCA

Dataset RPOI OPOI NOPOI Total

ASCADf
up to 1 000 SNR

peaks from NOPOI
interval

[45 400, 46 100] [0, 100 000] 100 000

ASCADr
up to 1 000 SNR

peaks from NOPOI
interval

[80 945, 82 345] [0, 250 000] 250 000

DPAv4.2
up to 1 000 SNR

peaks from NOPOI
interval

[170 000, 174 000] +
[206 000, 210 000]

[250 000, 400 000] 1 700 000

CHES CTF -
[0, 10 000] +

[120 000, 150 000]
[0, 150 000] 650 000

Table: Selected intervals for each feature selection scenario. ’-’ denotes that we did
not explore that specific setting.
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Feature Selection for Deep Learning SCA

Feature Selection for Deep Learning SCA

Table: Points of interest, minimum number of attack traces to get guessing entropy
equal to 1, model search success (when GE=1), and number of trainable parameters
for all datasets and feature selection scenarios.

Neural Feature Amount Attack Search Trainable
Dataset Network Selection of POIs Traces Success (%) Parameters

Model Scenario (HW/ID) (HW/ID) (HW/ID) (HW/ID)
ASCADf MLP RPOI 200/100 5/1 99.22%/96.86% 82 209/429 256
ASCADf CNN RPOI 400/200 5/1 99.23%/99.08% 499 533/158 108
ASCADf MLP OPOI 700/700 480/104 82.80%/68.80% 16 309/10 266
ASCADf CNN OPOI 700/700 744/87 55.53%/35.33% 594 305/62 396
ASCADf MLP NOPOI 2 500/2 500 7/1 74.50%/39.00% 2 203 009/5 379 256
ASCADf CNN NOPOI 10 000/10 000 7/ 1 15.40%/2.45% 545 693/439 348
ASCADf CNN NOPOI desync 10 000/10 000 532/36 2.44%/2.64% 268 433/64 002
ASCADr MLP RPOI 200/20 3/1 99.23%/100% 565 209/639 756
ASCADr CNN RPOI 400/30 5/1 100%/100% 575 369/636 224
ASCADr MLP OPOI 1 400/1 400 328/129 71.40%/37.25% 31 149/34 236
ASCADr CNN OPOI 1 400/1 400 538/78 47.92%/23.95% 270 953/87 632
ASCADr MLP NOPOI 25 000/25 000 6/ 1 44.39%/7.02% 5 243 209/12 628 756
ASCADr CNN NOPOI 25 000/25 000 7/ 1 19.17%/4.35% 369 109/721 012
ASCADr CNN NOPOI desync 25 000/25 000 305/73 0.71%/1.04% 22 889/90 368
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Recent Results

Unsupervised Deep Learning-based SCA

Introduction

There are already few settings that consider unsupervised
deep learning-based SCA.

First approach (DDLA) is by B. Timon.

While it works, the attack performance is not great and the
computational complexity is high.
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Unsupervised Deep Learning-based SCA

Plaintext/Ciphertext-based Non-profiling SCA

Supervised deep learning-based SCA learns a mapping based
on known plaintexts and keys.

Then, the adversary estimates the conditional probability
given a leakage trace with the unknown key.

In unsupervised setting, we do not know the key.

But, the key is commonly fixed for all traces.
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Unsupervised Deep Learning-based SCA

Plaintext/Ciphertext-based Non-profiling SCA

Supervised deep learning-based SCA learns a mapping based
on known plaintexts and keys.

Then, the adversary estimates the conditional probability
given a leakage trace with the unknown key.

In unsupervised setting, we do not know the key.

But, the key is commonly fixed for all traces.

The label l(k , di ) and di would satisfy:

di 7−→ l(k , di ). (1)
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Unsupervised Deep Learning-based SCA

Plaintext/Ciphertext-based Non-profiling SCA

Intermediate data-based model

Profiling model f𝜃𝜃

Leakage traces 
𝐓𝐓

Sensitive data 
l(𝑘𝑘∗,𝐝𝐝)

Bijective

Plaintext-based model

Profiling model f𝜃𝜃𝑑𝑑

Plaintext           
𝐝𝐝

Leakage traces 
𝐓𝐓

map𝑘𝑘∗
′

map𝑘𝑘∗
′ −1

Label Label

Figure: The relationship between intermediate data-based model and plaintext-based
model.
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Unsupervised Deep Learning-based SCA

Plaintext/Ciphertext-based Non-profiling SCA

For supervised DLSCA, if a profiling model is generalized well
on the leakage traces, the probability of the incorrect value is
closely correlated with the correct label.

In unsupervised setting, we can still estimate the label
distance, providing us with plaintext/ciphertext distribution.

1. Train with plaintexts

Profiling model f𝜃𝜃𝑑𝑑

Plaintext           
𝐝𝐝

Leakage traces 
𝐓𝐓

Label

Leakage traces 
𝐓𝐓 arg max corr

PD𝑘𝑘=1, … PD𝑘𝑘=256

2. Attack with PD𝑘𝑘

Figure: Attack scheme of the Plaintext Labeling Deep Learning (PLDL).
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Unsupervised Deep Learning-based SCA

Plaintext/Ciphertext-based Non-profiling SCA

Attack traces 𝐓𝐓
Plaintext 𝐝𝐝

corr(l(𝑘𝑘𝑖𝑖 ,𝐝𝐝),𝐓𝐓)

Classifier f𝜃𝜃𝑑𝑑

corr(PD𝑘𝑘𝑖𝑖 ,𝐩𝐩(𝑑𝑑0, …𝑑𝑑255|𝐓𝐓)) 𝐩𝐩(l(𝑘𝑘𝑖𝑖 ,𝐝𝐝))|𝐓𝐓)

Classifier f𝜃𝜃

Train

PredictPredict

Train

Profiling traces 𝐓𝐓′

Sensitive data l(𝑘𝑘∗,𝐝𝐝′))

Non-profiling 
SCA

PLDL Profiling SCA

Figure: A demonstration of non-profiling SCA, PLDL, and profiling SCA.
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Unsupervised Deep Learning-based SCA

Plaintext/Ciphertext-based Non-profiling SCA

Table: Performance benchmark with non-profiling attacks.

Dataset CPA MOR DDLA PLDL

ASCAD F KR161/KR47 1 957/638 KR7/309 8/111

ASCAD R KR64/KR8 KR28/KR9 27 266/KR48 20/19

CHES CTF KR139/KR220 KR6/KR31 KR54/KR85 6 121/KR2

AES RD KR2/KR31 KR33/3 112 2 541/KR2 1/57

AES HD KR19/KR145 5 593/KR10 KR26/KR20 60/KR6
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Unsupervised Deep Learning-based SCA

Some More Things

Explanaibility.

Custom loss functions.

Portability.
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Challenges

Raw Data

Most of the targets are software implementations offering
limited countermeasures (e.g., first-order masking and
simulation of misalignment).

Break higher-order masking dataset without knowing the
shares.
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Challenges

Data Pre-processing

We are missing a clear set of guidelines on what
pre-processing techniques to use and in what settings.

Considering data augmentation techniques, we can recognize
two directions: either use standard machine learning
techniques or customize data augmentation for SCA. There is
a need for a systematic comparison of those approaches.

If we know something about the traces, why not to use this
knowledge?
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Challenges

Feature Engineering

Feature engineering is not needed for deep learning-based
SCA, or we need only very basic techniques. As using
side-channel traces with thousands (or tens of thousands)
features is common, we must investigate the possible
drawbacks of using extremely lengthy traces.

If feature engineering is required, we must understand what
techniques to use.
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Challenges

Algorithm Selection

As research papers consider relatively small datasets, there are
no efficient guidelines to determine the hyperparameters on
more realistic settings containing millions of noisy and
protected side-channel traces.
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Challenges

Model Training

Recognize the most important hyperparameters for deep
learning-based SCA.

Evaluate how custom neural networks can enhance the attack
performance and generalize for different settings.

As one of the dominant problems in DL-SCA is overfitting, it
is necessary to investigate how to prevent or, at least reduce it.
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Challenges

Attack Evaluation

Little is understood about the relationship between commonly
used SCA metrics (GE, SR) and model-learned parameters
(i.e., the neural network weights).

It is unlikely to find a universal profiling model that could
defeat all types of available countermeasures and that could
be used in a wide variety of targets. We should measure and
understand how the selected hyperparameters make the model
succeed (or fail) in fitting existing leakages.
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Challenges

AI Explainability and SCA

Understand how neural networks process masking
countermeasures.

Propose efficient countermeasures based on the AI
explainability that are tuned to fight against deep
learning-based SCA.
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Conclusions

Deep learning is efficient and powerful option for SCA.

Current results are very promising as we can break protected
targets even with very small architectures.

What is less clear is how would the approach scale for more
realistic targets.

It is not easy to select the most promising approaches from all
that is available.

The big challenges are unsupervised deep learning-based SCA
and explainable AI for SCA.
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