
AI and Cryptography
Lecture 7 – Secure Multiparty Computation for Private ML

Luca Mariot

Semantics, Cybersecurity and Services Group, University of Twente
l.mariot@utwente.nl

Trieste, June 30, 2023

Topics and Reading Material

Main topics:
▶ Basics of Secure Multiparty Computation (SMPC)
▶ SMPC for privacy-preserving ML

References:
▶ D. Evans et al.: A Pragmatic Introduction to Secure

Multi-Party Computation. NOW Publishers, 2018
▶ R. Xu et al.: Privacy-Preserving Machine Learning: Methods,

Challenges and Directions. arXiv:2108.04417, 2021

L. Mariot AI and Cryptography

This Lecture

Intro to SMPC

Oblivious Transfer

Garbled Circuits

Secret Sharing

SMPC for private ML

L. Mariot AI and Cryptography

Secure Multiparty Computation

Secure Multiparty Computation (SMPC)
SA allows parties to jointly compute an aggregated value without
revealing their individual values.

Source:https://alibaba-gemini-lab.github.io/docs/blog/pvc/

L. Mariot AI and Cryptography

https://alibaba-gemini-lab.github.io/docs/blog/pvc/

Characteristics of SMPC

Straightforward Solution: Trusted Third Party (TTP)
▶ Users send their private inputs to a server that computes the

function and send back the result, without revealing the inputs
▶ ... in many realistic setting, this is not feasible!

SMPC Solution: no TTPs
▶ Users need to collaborate and interact through a protocol
▶ Typical adversarial models:

▶ Semi-honest
▶ Malicious
▶ Colluding

A metaphor: let’s play cards...

L. Mariot AI and Cryptography

This Lecture

Intro to SMPC

Oblivious Transfer

Garbled Circuits

Secret Sharing

SMPC for private ML

L. Mariot AI and Cryptography

Oblivious Transfer

▶ Probably the first "proper" protocol of SMPC
▶ Invented by Rabin in 19811, refined by Even, Goldreich and

Lempel in 19852

▶ Idea: Alice sends a message (bit) to Bob, but does not know
what she is sending

▶ Implementation: through RSA, let’s review it...

1Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical
Report TR-81, Aiken Computation Laboratory, Harvard University, 1981

2S. Even, O. Goldreich, and A. Lempel, "A Randomized Protocol for Signing
Contracts", Communications of the ACM, Volume 28, Issue 6, pg. 637–647, 1985.

L. Mariot AI and Cryptography

RSA – Scheme

Alice Bob

choose p,q
compute n,d,e

(n,e)

y = xe mod n

x = yd mod n

▶ Finding d from (n,e) requires factorizing n

L. Mariot AI and Cryptography

Hard-core Predicates

Definition
A function hc : {0,1}∗→ {0,1} is a hard-core predicate for a
one-way permutation f : {0,1}∗→ {0,1}∗ if:

1. hc can be computed by a polynomial time algorithm.

2. For all PPT algorithm A there is a negligible function
negl : N→ R such that

Pr[A(f(x)) = hc(x)] ≤
1
2
+negl(n)

where x is sampled with uniform probability from {0,1}n.

▶ Informally, the output bit of a hard-core predicate cannot be
predicted with probability significantly larger than 1

2 .

L. Mariot AI and Cryptography

Hard-core Predicate for RSA

▶ Assume that we have to encrypt one bit at the time, using RSA
▶ Problem: for any choice of the public key (n,e), it holds:

0e ≡ 0 mod n

1e ≡ 1 mod n

hence, y = x, for all x ∈ Zn!
▶ It can be proved that the least significant bit of the plaintext x

(lsb(x)) is a hard-core predicate for the modular
exponentiation xe mod n

▶ Idea: we put the plaintext bit into lsb(x), and we choose the
other bits at random

L. Mariot AI and Cryptography

Randomized RSA

Assume that Alice wants to send the bit b ∈ {0,1} to Bob. Then,
she performs the following steps:

1. Take Bob’s public key (nB ,eB)

2. Choose at random an integer x < nB/2 (hence, 2x < nB)

3. Send to Bob y = (2x +b)eB mod nB

When receiving y, Bob does the following to decrypt it:

1. Compute ydB mod nB = 2x +b

2. Takes the least significant bit of the result

L. Mariot AI and Cryptography

Randomized RSA

▶ Remark: it is not known whether the other bits of x (in
particular, how many of them, and which ones) are hard-core
predicates for RSA

▶ Hence, to encrypt in a very secure way a plaintext message x,
we can encrypt every bit of x with the above randomized
version of RSA

▶ Cryptanalysis becomes very difficult
▶ However, if the message is long, this method is very inefficient

L. Mariot AI and Cryptography

1-2 Oblivious Transfer from RSA

Alice:

1. Starts with secret bits m0,m1 ∈ {0,1}

2. Generates key pair ((N,e),d) and sends (N,e) to Bob

3. Sends two random bits x0,x1 ∈ {0,1} to Bob

Bob:

1. Chooses b ∈ {0,1} and generates random k ∈ {0,1}

2. Blinding: sends v = (xb +k e)modN to Alice

Alice:

1. Compute k0 = (v −x0)
dmodN

2. Computes k1 = (v −x1)
dmodN

3. Sends m′0 = m0 +k0 and m′1 = m1 +k1

Bob:
▶ Retrieves mb = m′b −k

L. Mariot AI and Cryptography

Secure AND with 1-2 OT

▶ Alice has 2 bits, 0 and x (private input)
▶ Bob has b (private input)
▶ Alice and Bob execute 1−2 Oblivious Transfer
▶ Bob in the end gets:

▶ 0 when b = 0
▶ 1 when b = 1

L. Mariot AI and Cryptography

This Lecture

Intro to SMPC

Oblivious Transfer

Garbled Circuits

Secret Sharing

SMPC for private ML

L. Mariot AI and Cryptography

Garbled Circuits

▶ Introduced by Yao in 19863

▶ Idea: convert the function f(x,y) in a Boolean circuit

▶ Let’s start simple, with the AND function

3Yao, A: How to generate and exchange secrets. Foundations of Computer
Science, 1986 pp. 162–167 (1986)

L. Mariot AI and Cryptography

General GC: Idea

▶ Alice garbles the table of each gate composing the circuit
▶ The output of each gate is used as an input for the next one
▶ Remark: OT is only needed in the first layer of the circuit
▶ For the rest, only AES is needed

L. Mariot AI and Cryptography

This Lecture

Intro to SMPC

Oblivious Transfer

Garbled Circuits

Secret Sharing

SMPC for private ML

L. Mariot AI and Cryptography

Secret Sharing Schemes (SSS)

(k ,n) Threshold Secret Sharing Scheme: a procedure enabling a
dealer to share a secret S among n players so that at least k
players out of n can recover S.

Example: (2,3)–scheme

S = B2

B1

B3

Setup

P1

P2

P3

P2 B2

B3

B1P1

P3

Recovery

Remark: (2,2)–scheme⇔ Latin square

L. Mariot AI and Cryptography

Secret Sharing in Practice

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1

▶ We saw what is the combinatorial
structure underlying threshold SSS:
orthogonal arrays (OA)

▶ But how to construct an OA in practice?
▶ Additive (n,n) SSS:

S ∈ ZN = {0, · · · ,N−1}

S = B1 +B2 + · · ·+Bn mod N

▶ All shares are required to reconstruct S

L. Mariot AI and Cryptography

This Lecture

Intro to SMPC

Oblivious Transfer

Garbled Circuits

Secret Sharing

SMPC for private ML

L. Mariot AI and Cryptography

The importance of data for ML

Data is born at the edge:
▶ Smartphones, connected devices, and IoT devices constantly

generate (and share) data.
▶ Data enables better products and smarter models.

L. Mariot AI and Cryptography

The importance of data for ML

Data is then shared from the device to the server for further
processing, e.g., training and data mining
▶ However, data sharing incurs data privacy issues

L. Mariot AI and Cryptography

Collaborative learning

Collaborative learning allow training ML models in decentralized
settings.
▶ Data remains in the device.
▶ But, how?
▶ Federated Learning

L. Mariot AI and Cryptography

What’s FL?

FL 4 enables training ML models without data sharing.
▶ Each device (clients) trains a small model locally.
▶ The model is then shared with the server (aggregator).
▶ The server merges the models using FedAvg.
▶ The aggregated model is sent back to each client.
▶ Repeat.

Upload
Dataset

Training

(a) ML

Local

Training

Averaging

Updates

Exchange

(b) FL

4McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017,
April). Communication-efficient learning of deep networks from decentralized
data. In Artificial intelligence and statistics (pp. 1273-1282). PMLR.

L. Mariot AI and Cryptography

Federated Averaging

The Federated Averaging algorithm
Until convergence:

1. Select a random subset of clients n.

2. Send current model parameters θkt to each client k ∈ {1, · · · ,n}.
For each client k ∈ {1, · · · ,n}:
2.1 Train on θt and get θ′t+1.
2.2 Return θ′t+1− θt .

3. The server aggregates all the models θt+1 =
1
n
∑n

k=0 θ
k
t+1.

L. Mariot AI and Cryptography

	Intro to SMPC
	Oblivious Transfer
	Garbled Circuits
	Secret Sharing
	SMPC for private ML

