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Summary

Part 1: Cellular Automata and
Mutually Orthogonal Latin Squares
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What is a Combinatorial Design (CD)?

▶ A collection A of subsets (or blocks) of a finite set X
satisfying particular balancedness properties

▶ Example: the Fano Plane

X ={1,2,3,4,5,6,7}

A={123,145,167,246,

257,347,356}
7

1

2 4
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5

▶ Each block in A has 3 elements and each pair of distinct
points in X occurs in exactly 1 block

▶ ⇒ (7,3,1)-BIBD (Balanced Incomplete Block Design)
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Euler’s 36 Officers Problem

« A very curious question [...] revolves around

arranging 36 officers to be drawn from 6 differ-

ent ranks and also from 6 different regiments

so that they are ranged in a square so that in

each line (both horizontal and vertical) there

are 6 officers of different ranks and different

regiments. »

L. Euler, Sur une nouvelle espèce de quarrés

magiques, 1782
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Latin Squares

Definition
A Latin square of order N is a N×N matrix L such that every row
and every column are permutations of [N] = {1, · · · ,N}

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4
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Orthogonal Latin Squares (OLS)

Definition
Two Latin squares L1 and L2 of order N are orthogonal if their
superposition yields all the pairs (x,y) ∈ [N]× [N].

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

(a) L1

1 4 2 3

3 2 4 1

4 1 3 2

2 3 4 1

(b) L2
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(c) (L1,L2)

n pairwise orthogonal Latin squares are denoted as n-MOLS
(Mutually Orthogonal Latin Squares)
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A Cryptographic Application of n-MOLS

(k ,n) Threshold Secret Sharing Scheme: a dealer shares a
secret S among n players so that at least k players out of n are
required to recover S

Example: (2,3)–scheme

S = B2

B1

B3

Setup

P1

P2

P3

P2 B2

B3

B1P1

P3

Recovery

Remark: (2,n)–scheme⇔ set of n-MOLS
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Cellular Automata

▶ Vectorial functions F : Fn
q→ F

m
q with uniform (shift-invariant)

coordinates

Example: q = 2, n = 6, d = 3, f(si ,si+1,si+2) = si ⊕si+1 ⊕si+2

1 0 0 1

f(1,0,0) = 1

01 0 0 0 1

No Boundary CA – NBCA

01 0 1 0 0

f(1,1,0) = 0

01 0 0 0 1 1 0

Periodic Boundary CA – PBCA

▶ Each cell updates its state s ∈ {0,1} by evaluating a local rule
f : {0,1}d → {0,1} on itself and the d −1 cells on its right
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Mutually Orthogonal Latin Squares (MOLS)

Definition
A Latin square is a n×n matrix where all rows and columns are
permutations of [n] = {1, · · · ,n}. Two Latin squares are orthogonal
if their superposition yields all the pairs (x,y) ∈ [n]× [n].

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4
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▶ k -MOLS: set of k pairwise orthogonal Latin squares
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Latin Squares through Bipermutive CA (1/2)

▶ Bipermutive CA: local rule f is defined as

f(x1, · · · ,xd) = x1 +φ(x2, · · · ,xd−1)+xd

▶ φ : Fd−2
q → Fq: generating function of f [LM13]

Lemma ([MFL16])

A (no-boundary) CA F : F
2(d−1)
q → Fd

q with bipermutive rule
f : Fd

q → Fq generates a Latin square of order N = qd−1

x y

L(x,y)

d −1

d −1 d −1

L(x,y)

y

x
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Latin Squares through Bipermutive CA (2/2)

▶ Example: CA F : F4
2→ F

2
2, f(x1,x2,x3) = x1⊕x2⊕x3 (Rule 150)

▶ Encoding: 00 7→ 1,10 7→ 2,01 7→ 3,11 7→ 4

0 0 0 0
0 0

0 0 1 0
1 1

0 0 0 1
0 1

0 0 1 1
1 0

1 0 0 0
1 0

1 0 1 0
0 1

1 0 0 1
1 1

1 0 1 1
0 0

0 1 0 0
1 1

0 1 1 0
0 0

0 1 0 1
1 0

0 1 1 1
0 1

1 1 0 0
0 1

1 1 1 0
1 0

1 1 0 1
0 0

1 1 1 1
1 1

(a) Rule 150 on 4 bits

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(b) Latin square L150
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Linear CA

▶ Local rule: linear combination of the neighborhood cells

f(x1, · · · ,xd) = a1x1 + · · ·+adxd , ai ∈ Fq

▶ Associated polynomial:

f 7→ pf (X) = a1 +a2X + · · ·+adXd−1

▶ (n−d +1)×n transition matrix:

MF =


a1 · · · ad 0 · · · · · · · · · · · · 0
0 a1 · · · ad 0 · · · · · · · · · 0
...
...
...
. . .

...
...
...
. . .

...

0 · · · · · · · · · · · · 0 a1 · · · ad

 , x 7→MFx⊤

▶ Remark: a linear rule is bipermutive iff a1,ad , 0
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MOLS from Linear Bipermutive CA (LBCA)

Theorem ([MGLF20])

A set of t linear bipermutive CA F1, . . .Ft : F
2(d−1)
q → Fd−1

q generates
a family of t-MOLS of order N = qd−1 if and only if their associated
polynomials are pairwise coprime

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(a) Rule 150

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

(b) Rule 90
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(c) Superposition

Figure: P150(X) = 1+X +X2, P90(X) = 1+X2 (coprime)
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Counting MOLS from linear CA

s https://xkcd.com/710/

▶ Number of coprime polynomials over F2

of degree n and nonzero constant term:

a(n) = 4n−1 +a(n−1) =
4n−1−1

3
= 0,1,5,21,85, ...

▶ Corresponds to OEIS A002450

▶ Generalized to any finite field, along with size of largest family
of pairwise coprime polynomials, in:

L. Mariot, M. Gadouleau, E. Formenti, and A. Leporati.

Mutually orthogonal latin squares based on cellular au-

tomata. Des. Codes Cryptogr. 88(2):391–411 (2020)
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Summary

Part 2: Bent functions from CA

Luca Mariot Connections between Latin squares, Cellular Automata and Coprime Polynomials



Boolean Functions in Symmetric Ciphers

K

KSG

z⊕
PT CT

(a) Stream cipher

PT

S5S4S3S2S1 S6 S7 S8 S9 S10

π-box

⊕
Ki

CT

(b) Block cipher

Boolean functions f : {0,1}n→ {0,1} are used in [C21]
▶ Stream ciphers, to design the keystream generator (KSG)
▶ Block ciphers, as the coordinate functions of S-boxes (Si)
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Boolean Functions - Basic Representations

▶ Truth table: a 2n-bit vector Ωf specifying f(x) for all x ∈ {0,1}n

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 0 1 0 1 0

▶ Walsh Transform: correlation with linear functions a ·x,
W(f ,a) =

∑
x∈{0,1}n(−1)f(x)⊕a·x for all a ∈ {0,1}n
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Bent Functions

▶ Parseval’s Relation, valid on any Boolean function:∑
a∈{0,1}n

[W(f ,a)]2 = 22n for all f : {0,1}n→ {0,1}

▶ Bent functions: W(f ,a) = ±2
n
2 for all a ∈ {0,1}n

▶ Reach the highest possible nonlinearity
▶ Exist only for n even and they are unbalanced

Example: f(x1,x2,x3,x4) = x1x3 +x1x4 +x2x4
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Intuition behind the name "bent"

▶ Nonlinearity of f : minimum
Hamming distance of the truth
table of f from all linear functions

▶ "Bent" functions are the farthest
from linear ("straight") ones

▶ Related to the covering radius of
Reed-Muller codes
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Constructions of Bent Functions

Given n = 2m:
▶ Maiorana-McFarland [M73]): f : Fn

2→ F2 is defined as

f(x,y) = x ·π(y)⊕g(y)

where:
▶ π : Fm

2 → F
m
2 permutation of Fm

2
▶ g : Fm

2 → F2 any m-variable Boolean function

▶ Partial spreads [D74]: f ∈ PS− (f ∈ PS+) is defined as

supp(f) =
⋃
S∈S

(S \ {0})

supp(f) =
⋃
S∈S

S

 ,
with S a family of 2m−1 (+1) m-dimensional subspaces of Fn

2
with pairwise trivial intersection
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Hadamard Matrices

▶ Hadamard Matrix: a n×n
matrix with ±1 entries and
s.t. H ·H⊤ = In

H =


+ + + +
+ − + −

+ + − −

+ − − +

 , n = 4

▶ Necessary condition:
n = 1,2 or n = 4k

▶ Hadamard Conjecture: a
Hadamard matrix exists for
every n = 4k
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Hadamard Matrices and Bent Functions

Theorem (Dillon, 1974 [D74])

Given f : {0,1}n→ {0,1} and f̂(x) = (−1)f(x). Define the 2n ×2n

matrix H for all x,y ∈ {0,1}n as:

H(x,y) = f̂(x ⊕y)

Then, f is a bent function if and only if H is a Hadamard matrix.

Example: f(x1,x2) = x1x2

x1 x2 x1x2

0 0 0
1 0 0
0 1 0
1 1 1

H =


+ + + −

+ + − +
+ − + +
− + + +


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Hadamard Matrices from MOLS

Orthogonal Array OA(t ,N) for t MOLS of order N: N2× (t +2)
matrix where each Latin square is "linearized" as a column

L90 (1+X2)
1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

L150 (1+X +X2)
1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

L90

1
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4
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1

4
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3

4
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3

2

1

1

L150

4

3

2

2

3

4

1

4

1

2

3

3

2

1

4

1

y

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

x

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

⇒

Theorem (Bush, 1973 [B73])
Given t MOLS of order N = 2t ,
there exists a 4t2×4t2 symmetric
Hadamard matrix H

Construction:
▶ Put − only in (i, j) where i , j

and there is a column k in
the OA s.t the rows i and j
have the same symbol

▶ Put + everywhere else
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Bent Functions from any MOLS?

▶ Remark: Not all t-MOLS sets give rise to a Hadamard matrix
with the f̂(x ⊕y) structure required for a bent function!

▶ Smallest counterexample: n = 6, t = 2
n−2

2 = 4, N = 2t = 8

1 2 3 4 5 8 6 7
2 1 4 3 8 5 7 6
3 4 1 2 7 6 8 5
4 3 2 1 6 7 5 8
5 8 7 6 1 2 4 3
8 5 6 7 2 1 3 4
6 7 8 5 4 3 1 2
7 6 5 8 3 4 2 1

(a) L1

1 2 3 4 5 6 7 8
3 4 1 2 8 7 6 5
5 6 8 7 1 2 4 3
8 7 5 6 3 4 2 1
4 3 2 1 7 8 5 6
2 1 4 3 6 5 8 7
6 5 7 8 2 1 3 4
7 8 5 6 4 3 1 2

(b) L2

1 2 3 4 5 6 7 8
4 3 2 1 7 8 5 6
8 7 5 6 3 4 2 1
6 5 7 8 2 1 3 4
7 8 6 5 4 3 1 2
5 6 8 7 1 2 4 3
3 4 1 2 8 7 6 5
2 1 4 3 6 5 8 7

(c) L3

1 2 3 4 5 6 7 8
5 6 8 7 1 2 4 3
4 3 2 1 7 8 5 6
7 8 6 5 4 3 1 2
8 7 5 6 3 4 2 1
3 4 1 2 8 7 6 5
2 1 4 3 6 5 8 7
6 5 7 8 2 1 3 4

(d) L4

▶ The resulting 64×64 Hadamard matrix does not give a bent
function
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From Linear CA to Bent Functions

▶ Question: Are MOLS arising from linear CA suitable for
constructing bent functions?

▶ We consider only CA over Fq with q = 2l , l ∈ N
▶ The order of the Hadamard matrix must be 4t2 = 2n

▶ We need t coprime polynomials of degree b = d −1:

2lb = 2t ⇔ lb = 1+log2 t

▶ Since both l and b are integers, t = 2w for w ∈ N
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From Linear CA to Bent Functions

Theorem

Let H be the Hadamard matrix of order 22(w+1) defined by the t
LBCA F1, · · ·Ft : F

2b
q → F

b
q , and define f : Fn

2→ F2, n = 2(w +1) as:

f(x) =


0 , if x = 0

1 , if x , 0 and ∃k ∈ {1, · · · , t} s.t. Fk (x) = 0

0 , otherwise

,

Then, it holds that:
H(x,y) = f̂(x ⊕y)

and thus f is a bent function

Remark: The linearity of the CA is crucial to grant this result
(and costed us our first reject! [GMP20])
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Example

pf (X) = 1+X2

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

pg(X) = 1+X +X2

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4
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Existence and Counting

Combinatorial questions ad-
dressed in [GMP20]:
▶ Existence: for even n, does

a large enough family of
coprime polynomials exist?

▶ Counting: how many
families of this kind exist
(= number of CA-based bent
functions)?
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Summary

Part 3: A Simplified Construction
with Linear Recurring Sequences
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Linear Recurring Sequences (LRS)

▶ Sequence {xi}i∈N satisfying the following relation:

a0xi +a1xi+1 + ...+ad−1xi+d−1 = xi+d

▶ Computed by a Linear Feedback Shift Register (LFSR):

D0

Output

a0 a1

+

D1

· · ·

ad−2

+· · ·

Dk−2

ad−1

+

Dk−1

▶ Feedback polynomial:

f(X) = a0 +a1X + · · ·ad−1Xd−1 +Xd
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Linear map associated to a LRS

▶ Take the projection of all sequences satisfying the LRS
defined by f(X) onto their first 2d coordinates

▶ Obtain a d-dim subspace Sf ⊆ F
2d
q which is the kernel of the

linear map F : F2d
q → F

d
q :

F(x0, · · · ,x2d−1)i = a0xi +a1xi+1 + ...+ad−1xi+d−1 +xi+d ,

associated matrix:

MF =


a0 · · · ad−1 1 · · · · · · · · · · · · 0
0 a0 · · · ad−1 1 · · · · · · · · · 0
...
...

...
. . .

...
...
...

. . .
...

0 · · · · · · · · · · · · a0 · · · ad−1 1


▶ ... but this is exactly the global rule of a linear CA!
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Partial Spreads from Coprime Polynomials

Lemma ([GMP23])
Given f ,g ∈ Fq[X ] over Fq of degree d ≥ 1, defined as:

f(X) = a0 +a1X + · · ·+ad−1Xd−1 +Xd , (1)

g(X) = b0 +b1X + · · ·+bd−1Xd−1 +Xd , (2)

Then, the kernels of F ,G : F2d
q → F

d
q have trivial intersection if and

only if gcd(f ,g) = 1

Consequence: a family of t pairwise coprime polynomials defines
a partial spread
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Equivalence check

For degree b = 1, actually nothing new:

Lemma ([GMP23])
Our construction coincides with the class PSap when b = 1.

For degree b = 2:
▶ Computed the ranks of the associated Hadamard matrices in

binary form to check equivalence
▶ 1st Finding: none of our functions are equivalent to

Maiorana-McFarland ones
▶ 2nd Finding: many of our functions are not even equivalent to
PSap ones
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Summary

Conclusions
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Recap and Open Problems

Remarkable findings:
▶ (Complicated!) construction of bent functions via CA, Latin

Squares and Hadamard matrices [GMP20]
▶ Simplification based on kernels of LRS subspaces [GMP23]
▶ Resulting bent functions coincide with PSap for degree b = 1
▶ For b = 2, many functions are not in PSap

Open problems:
▶ Are functions from polynomials of degree b = 2 really new?
▶ Implementation of CA-based bent functions via LFSR [ML18]
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