Constructing Orthogonal Latin Squares from Linear CA

Luca Mariot1,2, Enrico Formenti2, Alberto Leporati1

1 Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo)
Università degli Studi Milano - Bicocca

2 Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis

AUTOMATA 2016 – Zurich, June 15–17, 2016
One-Dimensional Cellular Automata (CA)

Definition

One-dimensional CA: quadruple $\langle A, n, r, f \rangle$ where A is the finite set of states, $n \in \mathbb{N}$ is the number of cells on a one-dimensional array, $r \in \mathbb{N}$ is the radius and $f : A^{2r+1} \to A$ is the local rule.

Example: $A = \{0, 1\}, n = 8, r = 1, f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$ (Rule 150)

Remark: No boundary conditions \Rightarrow The array “shrinks”
Secret Sharing Schemes (SSS)

- **Secret sharing scheme**: a procedure enabling a dealer to share a secret S among a set \mathcal{P} of n players.
- **(k, n) threshold schemes**: at least k players out of n are required to recover S [Shamir79].

Example: $(2, 3)$–scheme

\[S = B_1 B_2 B_3 \]

Setup
- $B_1 \rightarrow P_1$
- $B_2 \rightarrow P_2$
- $B_3 \rightarrow P_3$

Recovery
- $P_1 \rightarrow B_1$
- $P_2 \rightarrow B_2$
- $P_3 \rightarrow B_3$

Luca Mariot

Constructing Orthogonal Latin Squares from Linear CA
SSS based on Cellular Automata: Why?

Twofold motivation:

- **Theoretical**: access structures arising from SSS where CA are used in a “natural” and simple way
- **Practical**: CA-based threshold schemes ⇒ Efficient (parallel) implementation of threshold schemes

Remark: All the published CA-based SSS [Mariot14, DelRey05] provide a sequential threshold access structure (the shares need to be adjacent)

Question: Can \((k, n)\)-schemes be realised through CA?
Definition

A Latin square of order N is a $N \times N$ matrix L such that every row and every column are permutations of $[N] = \{1, \cdots, N\}$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Orthogonal Latin Squares

Definition

Two Latin squares L_1 and L_2 of order n are orthogonal if their superposition yields all the pairs $(x, y) \in [N] \times [N]$.

\[
\begin{array}{cccc}
1 & 3 & 4 & 2 \\
4 & 2 & 1 & 3 \\
2 & 4 & 3 & 1 \\
3 & 1 & 2 & 4 \\
\end{array}
\quad
\begin{array}{cccc}
1 & 4 & 2 & 3 \\
3 & 2 & 4 & 1 \\
4 & 1 & 3 & 2 \\
2 & 3 & 4 & 1 \\
\end{array}
\quad
\begin{array}{cccc}
1,1 & 3,4 & 4,2 & 2,3 \\
4,3 & 2,2 & 1,4 & 3,1 \\
2,4 & 4,1 & 3,3 & 1,2 \\
3,2 & 1,3 & 2,1 & 4,4 \\
\end{array}
\]

(a) L_1 (b) L_2 (c) (L_1, L_2)

A set of n pairwise orthogonal Latin squares is denoted as n-MOLS.
(2, n)-Schemes through n-MOLS

Setup Phase

1. The dealer D chooses a row $S \in \{1, \cdots, N\}$ as the secret
Setup Phase

1. The dealer D chooses a row $S \in \{1, \cdots, N\}$ as the secret

Example: $(2, 3)$-scheme, $S = 3$
Setup Phase

2. \(D \) randomly selects a column \(j \in \{1, \ldots, N\} \)

Example: \(S = 3, j \leftarrow 2 \)
(2, n)-Schemes through n-MOLS

Setup Phase

3. The value of $L_i(S,j)$ for $i \in [N]$ is the share of P_i

Example: (2, 3)-scheme, $S = 3$, $j \leftarrow 2$, $B_1 = 1$, $B_2 = 3$, $B_3 = 4$
(2, n)-Schemes through n-MOLS

Recovery Phase

4. Since L_i, L_k are orthogonal, (B_i, B_k) uniquely identify (S, j)

Example: (2, 3)-scheme, $B_1 = 1$, $B_2 = 3 \Rightarrow (3, 2)$
(2, n)-Schemes through n-MOLS

Recovery Phase

4. Since L_i, L_k are orthogonal, (B_i, B_k) uniquely identify (S, j)

Example: $(2, 3)$-scheme, $B_2 = 3$, $B_3 = 4 \Rightarrow (3, 2)$
(2, n)-Schemes through n-MOLS

Recovery Phase

4. Since L_i, L_k are orthogonal, (B_i, B_k) uniquely identify (S, j)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

\rightarrow

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Example: $(2, 3)$-scheme, $B_1 = 1$, $B_3 = 4 \Rightarrow (3, 2)$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\rightarrow

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Latin Squares through Bipermutive CA (1/2)

- **Idea:** determine which CA induce orthogonal Latin squares
- **Bipermutive CA:** local rule f is defined as
 \[f(x_1, \cdots, x_{2r+1}) = x_1 \oplus g(x_2, \cdots, x_{2r}) \oplus x_{2r+1} \]

Lemma

Let $\langle \mathbb{F}_2, 2m, r, f \rangle$ be a bipermutive CA with $2r|m$. Then, the CA generates a Latin square of order $N = 2^m$.

Luca Mariot

Constructing Orthogonal Latin Squares from Linear CA
Example: CA $\langle F_2, 4, 1, f \rangle$, $f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$ (Rule 150)

Encoding: 00 \mapsto 1, 10 \mapsto 2, 01 \mapsto 3, 11 \mapsto 4

(a) Rule 150 on 4 bits

(b) Latin square L_{150}
Linear CA

- Local rule: linear combination of the neighborhood cells

\[f(x_1, \ldots, x_{2r+1}) = a_1 x_1 \oplus \cdots \oplus a_{2r+1} x_{2r+1}, \quad a_i \in \mathbb{F}_2 \]

- Associated polynomial:

\[f \mapsto \varphi(X) = a_1 + a_2 X + \cdots + a_{2r+1} X^{2r} \]

- Global rule: \(m \times (m + 2r) \) 2r-diagonal transition matrix

\[
M_F = \begin{pmatrix}
 a_1 & \cdots & a_{2r} & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
 0 & a_1 & \cdots & a_{2r} & 0 & \cdots & \cdots & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 0 & \cdots & 0 & a_1 & \cdots & a_{2r}
\end{pmatrix}
\]

\[x = (x_1, \ldots, x_n) \mapsto M_F x^\top \]
Orthogonal Latin Squares by Linear CA

Theorem

Let $F = \langle F_2, 2m, r, f \rangle$ and $G = \langle F_2, 2m, r, g \rangle$, be linear CA. The Latin squares induced by F and G are orthogonal if and only if $P_f(X)$ and $P_g(X)$ are coprime.

Figure: $P_{150}(X) = 1 + X + X^2$, $P_{90}(X) = 1 + X^2$ (coprime)
Conclusions and Future Developments

Summing up:

▶ A $(2, n)$-scheme can be realised by n linear CA whose associated polynomials are pairwise coprime
▶ Setup: evolution of the n CA starting from a configuration whose left half is the secret, while right half are random bits
▶ Recovery: inversion of a Sylvester matrix

Future directions:

▶ Count (and build!) pairs of coprime polynomials
▶ Generalise to higher thresholds (via orthogonal hypercubes)

