

Building Correlation Immune Functions from Sets of MOCA

Luca Mariot, Luca Manzoni

l.mariot@utwente.nl

AUTOMATA 2023 - 31 August 2023

Correlation Immune Boolean Functions in Crypto

- ▶ Boolean function: mapping $f : \{0, 1\}^n \rightarrow \{0, 1\}$
- Correlation Immunity of order t: output of f is statistically independent from any subset of at most t inputs

Applications in crypto:

- Combine the output of n LFSR for stream encryption [C21]
- CA-based pseudorandom number generators [L13, F14]

Countermeasures for Side-Channel Analysis

Idea: attack a cipher by exploiting physical leakages in its implementation

https://commons.wikimedia.org/wiki/File:Differential_power_analysis.svg

 CI functions are used for masking countermeasures in SCA [C12, K14]

Luca Mariot, Luca Manzoni

Boolean Functions - Basic Representations

- Truth table: a 2^n -bit vector Ω_f specifying f(x) for all $x \in \{0, 1\}^n$
 (x_1, x_2, x_3) 000
 100
 010
 101
 011
 111

 Ω_f 0
 1
 0
 1
 0
 1
 0
- ► Algebraic Normal Form (ANF): Sum (XOR) of products (AND) $f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3 \oplus x_2 x_3$
- ▶ Walsh Transform: correlation with linear functions $a \cdot x$, $W(f,a) = \sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus a \cdot x}$ for all $a \in \{0,1\}^n$

Luca Mariot, Luca Manzoni

Building Correlation Immune Functions from Sets of MOCA

Correlation Immunity: Walsh Characterization

• *f* is *t*-correlation immune iff $W_f(a) = 0$ for all *a* s.t.

 $1 \le HW(a) \le t$, where HW is the Hamming weight of a [X88]

Example: t = 2, $f(x) = x_1 \oplus x_2 \oplus x_3$

(x_1, x_2, x_3)	000	100	010	110	001	101	011	111
Ω_f	0	1	1	0	1	0	0	1
$\hat{F}(\omega)$	0	0	0	0	0	0	0	8
	-		1	ļ				·

f is 2-order correlation immune

► Relevance in side-channel: t-order CI functions ⇒ Boolean masking resistant to SCA attacks of order t

Orthogonal Arrays (OA)

(N,k,s,t) Orthogonal Array: N×k matrix A such that each t-uple occurs λ = N/s^t times in each N×t submatrix.

Each 3-bit vector $\Rightarrow (x_1, x_2, x_3) \in \{0, 1\}^3$ appears once in the submatrix with columns 1, 3, 4

Applications in statistics, coding theory, cryptography

Correlation Immunity: OA Characterization

Support of f: sets of input vectors x that map to 1 under f

	Truti	h tab	le			
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	f(x)	S	uppc	ort
0	0	0	0	<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3
0	0	1	1	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
1	0	0	1	1	1	1
1	0	1	0		11	
1	1	0	0	OA	(4.3.	2.2)
1	1	1	1	•	(.,.,,	_, _)

Theorem ([C92])

 $f : \{0,1\}^n \to \{0,1\}$ is t-order $CI \Leftrightarrow$ Support of f is an OA(N,n,2,t), with N = |Supp(f)|

Luca Mariot, Luca Manzoni

Cellular Automata

One-dimensional Cellular Automaton (CA): a discrete parallel computation model composed of a finite array of n cells

Example: n = 6, d = 3, $f(s_i, s_{i+1}, s_{i+2}) = s_i \oplus s_{i+1} \oplus s_{i+2}$ (rule 150)

► Each cell updates its state $s \in \{0, 1\}$ by evaluating a local rule $f : \{0, 1\}^d \rightarrow \{0, 1\}$ on itself and the d - 1 cells on its right

Definition

A Latin square is a $n \times n$ matrix where all rows and columns are permutations of $[n] = \{1, \dots, n\}$. Two Latin squares are *orthogonal* if their superposition yields all the pairs $(x, y) \in [n] \times [n]$.

- k-MOLS: set of k pairwise orthogonal Latin squares
- *k*-MOLS are equivalent to $OA(n^2, k, n, 2)$

Latin Squares through Bipermutive CA (1/2)

Bipermutive CA: denoting $\mathbb{F}_2 = \{0, 1\}$, local rule *f* is defined as

$$f(x_1,\cdots,x_d)=x_1\oplus\varphi(x_2,\cdots,x_{d-1})\oplus x_d$$

• $\varphi : \mathbb{F}_2^{d-2} \to \mathbb{F}_2$: generating function of *f*

Lemma ([E93, M16])

A CA $F : \mathbb{F}_2^{2(d-1)} \to \mathbb{F}_2^d$ with bipermutive rule $f : \mathbb{F}_2^d \to \mathbb{F}_2$ generates a Latin square of order $N = 2^{d-1}$

Luca Mariot, Luca Manzoni

Building Correlation Immune Functions from Sets of MOCA

Latin Squares through Bipermutive CA (2/2)

- ► Example: CA $F : \mathbb{F}_2^4 \to \mathbb{F}_2^2$, $f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$ (Rule 150)
- Encoding: $00 \mapsto 1, 10 \mapsto 2, 01 \mapsto 3, 11 \mapsto 4$

k-Mutually Orthogonal Cellular Automata (MOCA): *k* bipermutive CA *F*, *G* generating a set of *k*-MOLS

Example with Linear CA: Rules 90-150

- ▶ Bipermutive Linear rule: $f(x) = x_1 \oplus a_2 x_2 \oplus \cdots \oplus a_{d-1} x_{d-1} \oplus x_d$
- Polynomial rule: $P_f(X) = 1 + a_2X + \dots + a_{d-1}X^{d-2} + X^{d-1}$

Theorem ([M20])

Two bipermutive linear rules generates OCA if and only if their associated polynomials are coprime

De Bruijn graphs and bipermutative labelings

Definition

A labeling $I : E \to S$ for the de Bruijn graph $G_{m,n} = (V, E)$ over the set *S* is *bipermutative* if, for any vertex $v \in V$, the labels on the ingoing and outgoing edges of *v* form a permutation of *S*.

Example: $S = \{0, 1\}, m = n = 2, l_1((v_1, v_2), (u_1, u_2)) = v_1 \oplus u_2$

OCA as Orthogonal Labelings

Definition

Two bipermutative labelings l_1, l_2 are *orthogonal* for $G_{m,n}$ over *S* if, for each pair $(x, y) \in S^n \times S^n$, there is *exactly one* path in $G_{m,n}$ of length *n* labelled by (x, y) under the superposed labeling $l_1.l_2$.

Example: $S = \{0, 1\}, m = n = 2, l_{90} = v_1 \oplus u_2, l_{150} = v_1 \oplus u_1 \oplus u_2$

$(v_1, v_2) \rightarrow (u_1, u_2)$	I_1	I_2
$00 \rightarrow 00$	0	0
$10 \rightarrow 00$	1	1
$01 \rightarrow 10$	0	1
$11 \rightarrow 10$	1	0
$00 \rightarrow 01$	1	1
$10 \rightarrow 01$	0	0
$01 \rightarrow 11$	1	0
$11 \rightarrow 11$	0	1

Construction of CI functions from MOCA

Procedure:		Rule 150				$ \begin{pmatrix} L_{90}L_{150} \\ \hline 1 \\ 1 \end{bmatrix} $					L ₁₅₀	
									0	0	0	0
1. Input: <i>k</i> -MOCA	1	4	3	2		2	4		1	1	1	1
$F_1, \cdots, F_k : \mathbb{F}_2^{2b} \to \mathbb{F}_2^{b}$ of	2	2	4	4		3	3		0	1	0	1
diameter $d = b + 1$	2	3	4	•		4	2		1	0	1	0
0 Construct the est of	4	1	2	3		2	2		1	0	1	0
	2	2	-1	4		1	3		0	1	0	1
<i>k</i> -MOLS over [2 ⁵] using	3	2		4		4	4		1	1	1	1
the algorithms					•)	3	1	\Rightarrow	0	0	0	0
from [M17, M18]		A =			$A = \langle$	3	4		0	1	1	1
3 "I inearize" the k-MOLS						4	1		1	0	0	0
in a $2^b \times k \cap A$	1	2	3	4		1	2		0	0	1	0
	•			•		2	3		1	1	0	1
4. Convert each entry in	2	1	4	3		4	3		1	1	0	1
the OA in binary	3	4	1	2		3	2		0	0	1	0
5 Output: the binary array	Δ	3	2	1		2	1		1	0	0	0
			-		I (1	4		0	1	1	1

Lemma

The output array is an $OA(2^b, kb, 2, 2)$.

Computational Search Results

- Consequence: k-MOCA generate supports of Boolean functions with n = kb variables with CI order at least 2
- Exhaustive search of 3-MOCA with d = 4, 5, d = b + 1
- Checked CI order with Walsh Transform

Table: Classification of correlation immune functions generated by 3-MOCA of diameter $d \in \{4, 5\}$.

d	#3-MOCA	n	WH	CI	#CI	Min <i>w_H</i>
4	2	9	64	3	2	20
5	36	12	256	3	27	24
5	36	12	256	4	9	24

Main finding: all functions are at least 3-CI

Wrapping up:

- We proved that k-MOCA generate correlation immune functions of order at least 2
- Experimentally, we noticed that k-MOCA functions actually have order at least 3

Future directions:

- Theoretically: are there MOCA that give CI functions with t = 2?
- Practically: reduce the Hamming weight of the functions, using evolutionary algorithms [M21]

References

- [C92] P. Camion, C. Carlet, P. Charpin, N. Sendrier: On Correlation-Immune Functions. Proceedings of CRYPTO 1991, pp. 86-100 (1992)
- [C21] C. Carlet: Boolean functions for cryptography and coding theory. Cambridge University Press (2021)
- [C12] C. Carlet, J.-L. Danger, S. Guilley, H. Maghrebi: Leakage Squeezing of Order Two. Proceedings of INDOCRYPT 2012, pp. 120-139 (2012)
- [E93] Eloranta, K.: Partially Permutive Cellular Automata. Nonlinearity 6(6), 1009–1023 (1993)
- [F14] E. Formenti, K. Imai, B. Martin, J.-B. Yunès: Advances on Random Sequence Generation by Uniform Cellular Automata. Computing with New Resources 2014: 56-70 (2014)
- [K14] S. Karmakar, D.R. Chowdhury: Leakage squeezing using cellular automata and its application to scan attack. J. Cell. Autom. 9(5-6) (2014) 417–436
- [L13] A. Leporati and L. Mariot: 1-Resiliency of Bipermutive Cellular Automata Rules. Proceedings of Automata 2013, pp. 110-123 (2013)
- [M21] L. Mariot: Deriving Smaller Orthogonal Arrays from Bigger Ones with Genetic Algorithm. CoRR abs/2111.13047 (2021)
- [M20] L. Mariot, M. Gadouleau, E. Formenti, A. Leporati: Mutually orthogonal latin squares based on cellular automata. Des. Codes Cryptogr. 88(2): 391-411 (2020)
- [M18] L. Mariot, A. Leporati: Inversion of Mutually Orthogonal Cellular Automata. Proceedings of ACRI 2018, pp. 364-376 (2018)
- [M17] L. Mariot, E. Formenti, A. Leporati: Enumerating Orthogonal Latin Squares Generated by Bipermutive Cellular Automata. Proceedings of AUTOMATA 2017, pp. 151-164 (2017)
- [M16] L. Mariot, E. Formenti, A. Leporati: Constructing Orthogonal Latin Squares from Linear Cellular Automata. In: Exploratory papers of AUTOMATA 2016 (2016)
- [X88] G.-Z. Xiao, J. L. Massey: A spectral characterization of correlation-immune combining functions. IEEE Trans. Inf. Theory 34(3): 569-571 (1988)

Building Correlation Immune Functions from Sets of MOCA