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Coprime Polynomials

Object: pairs of binary polynomials of degree n ∈ N:

f(x) = a0 +a1x + · · ·+an−1xn−1 +xn ,

g(x) = b0 +b1x + · · ·+bn−1xn−1 +xn ,

where ai ,bi ∈ GF(2) = F2 = {0,1}

f ,g ∈ F2[x] are coprime⇔ gcd(f ,g) = 1

Applications of enumeration/counting of coprime pairs:
▶ Discrete logarithms in finite fields [C84]
▶ Decoding alternant codes [F95]
▶ Invertible Toeplitz matrices [GR11]
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Euclid’s Algorithm

Check if gcd(f ,g) = 1⇒ Euclid’s algorithm

Example: n = 4, f(x) = x4 +x2, g(x) = x4 +x3 +1

f(x) = q(x) ·g(x)+ r(x)

x4 +x2 = 1 · (x4 +x3 +1)+(x3 +x2 +1)
x4 +x3 +1 = x · (x3 +x2 +1)+(x +1)
x3 +x2 +1 = x2 · (x +1)+1
x +1 = 1 · (x +1)+0

Compact notation:

(x4 +x2,x4 +x3 +1)
1
−→ (x4 +x3 +1,x3 +x2 +1)

x
−→

(x3 +x2 +1,x +1)
x2

−−→ (x +1,1)
x+1
−−−→ (1,0)
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DilcuE’s Algorithm

▶ Remark: (f ,g) can be recovered from (1,0) by applying the
same sequence of quotients (1,x,x2,x +1) backward

▶ This is called DilcuE’s algorithm in [BB07]

(0,1)
x+1
−−−→ (1,x +1)

x2

−−→ (x +1,x3 +x2 +1)
x
−→

(x3 +x2 +1,x4 +x3 +1)
1
−→ (x4 +x3 +1,x4 +x2) = (f ,g)

▶ Suppose we change the last remainder to 0:

(0,x +1)
x2

−−→ (x +1,x3 +x2)
x
−→ (x3 +x2,x4 +x3 +x +1)

1
−→

(x4 +x3 +x +1,x4 +x2 +x +1) = (f ′,g′)

▶ By construction, (f ′,g′) are non-coprime with
gcd(f ′,g′) = x +1
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Counting by Bijection

In essence: we can construct a bijection between coprime and
non-coprime pairs over F2 as follows

1. Apply Euclid to (f ,g)

2. If the last remainder is 0, change it to 1. Otherwise, set it to
the second-last remainder

3. Apply DilcuE’s algorithm to the reversed quotients

Theorem ([BB07, CSWZ98, R00])
Let f ,g ∈ F2[x] of degree n be randomly chosen. Then, the
probability that gcd(f ,g) = 1 is 1

2 . Equivalently, the number of
coprime pairs is 22n−1.

This result is generalized to Fq by a 1-to-q correspondence
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Counting/enumeration with nonzero constant terms

We require now that both f and g have a nonzero constant term:

f(x) = 1+a1x + · · ·+an−1xn−1 +xn ,

g(x) = 1+b1x + · · ·+bn−1xn−1 +xn .

Problems:

1. Count all such pairs

2. Enumeration algorithm

Remark: the trick above does not work! Changing the last
remainder gives no control over the final constant terms

... Why do we want to do that?
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Orthogonal Latin Squares by Linear Cellular Automata

▶ Bipermutive Linear rule: f(x) = x1⊕a2x2⊕ · · ·⊕ad−1xd−1⊕xd

▶ Polynomial rule: Pf (X) = 1+a2X + · · ·+ad−1Xd−2 +Xd−1

Theorem ([MFL16, MGFL20])
Two bipermutive linear CA generates orthogonal Latin squares if
and only if their associated polynomials are coprime

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(a) Rule 150

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

(b) Rule 90

1
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3
3

2
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2
2

3
1

4
4

1
3

4
3

1
4

2
1

3
2

3
4

2
3

1
2

4
1

4
1

(c) Superposition

Figure: P150(X) = 1+X +X2, P90(X) = 1+X2 (coprime)
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Counting by Recurrence

s https://xkcd.com/710/

▶ Number of coprime polynomial pairs of
degree n and nonzero constant term:

a(n) = 4n−1 +a(n−1) =
4n−1−1

3
= 0,1,5,21,85, ...

▶ Corresponds to OEIS A002450

▶ Generalized for any finite field Fq in [MGFL20] (but
enumeration not addressed)

L. Mariot, M. Gadouleau, E. Formenti, and A. Leporati.

Mutually orthogonal latin squares based on cellular au-

tomata. Des. Codes Cryptogr. 88(2):391–411 (2020)
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Problem Structure

Strategy: characterize the sequences of quotients that gives only
(1,1) coprime pairs when starting from the remainders (1,0)

Three parts of the problem:

q1→

degrees︷︸︸︷
xd1 +

middle terms︷                          ︸︸                          ︷
q1,d1−1xd1−1 + · · ·+q1,1x+

constant terms︷︸︸︷
s1

q2→ xd2 +q2,d2−1xd2−1 + · · ·+q2,1x + s2

...→
... +

... + · · ·+
... +

...

qk → xdk +qk ,dk−1xdk−1 + · · ·+qk ,1x + sk

Notation: ri , ri+1→ consecutive remainders produced by Euclid’s
algorithm at step i. Step i+1:

ri(x) = qi+1(x)ri+1(x)+ ri+2(x)
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Finite State Automaton of Remainders

▶ (ci ,ci+1)→ constant terms of ri and ri+1

▶ Xi+1→ constant term of qi+1

▶ δ((ci ,ci+1),Xi+1)→ next pair (ci+1,ci+2)

(ci ,ci+1) Xi+1 δ((ci ,ci+1),Xi+1)
(1,1) 0 (1,1)
(1,1) 1 (1,0)
(1,0) 0 (0,1)
(1,0) 1 (0,1)
(0,1) 0 (1,0)
(0,1) 1 (1,1)

Remark: the pair (0,0) never occurs

11

1001

1

0

0/1

0

1

⇒ the sequences of constant terms form a regular language
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The Language of Constant Terms Sequences

11

10

⇑

01

1

0

0/1

0

1

Inverse FSA

▶ The FSA is the de Bruijn graph over the
set {11,10,01}

▶ The FSA is permutative: for DilcuE’s,
simply reverse the arrows

▶ Initial state: 10
▶ Final state: 11 (but we can use 10)

Regular Expression of the Language:

L = (0(0+1)+(10∗1(0+1)))∗
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Enumeration/counting of Constant Terms Sequences

▶ Enumeration: visit the FSA graph with DFS up to depth n
▶ Counting: exploit algebraic language theory

Transform L = (0(0+1)+(10∗1(0+1)))∗ as follows:
▶ 0,1⇒ X
▶ +, · ⇒+, ·

▶ ∗⇒ 1
1−X

Generating Function:
∞∑

n=0

an ·Xn =
1−X

1−X −2X2
,

Closed Form:

an =
2n +2 · (−1)n

3
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Sequences of quotients’ degrees

Second part: Characterize the degrees of the quotients

Example: n = 4, {1,x,x2,x,1}

(0,1)
1
−→ (1,1)

x
−→ (1,x +1)

x2

−−→ (x +1,x3 +x2 +1)
x
−→

(x3 +x2 +1,x4 +x3 +1)
1
−→ (x4 +x3 +1,x4 +x2 +1)

Sum of degrees: 1+2+1 = 4

Question: what are the combinations of ordered sums of n?

⇒ compositions of n ∈ N
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Quotients’ degrees as compositions of n

▶ Representation: n−1 boxes that can be either "+" or ","

1

n−1︷        ︸︸        ︷
□1□ . . .□1□1

▶ Example: 1,1+1,1→ 1+2+1 (n = 4)
���4+0

2+1+1 1+2+1 1+1+2

3+1 2+2 (1+3)

1+1+1+1

▶ We remove the top of the poset
▶ Enumeration: generate all binary

strings of length 1 < k < n
▶ Counting:

(
n−1
k−1

)
▶ Remaining coefficients of the

quotients are free
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Enumeration Algorithm

Remark: once we fix the length of the sequence, the three
elements (constant terms, degrees, middle terms) are independent

So for enumeration, given n ∈ N:

For each composition comp of n (except n+0) do:
▶ Generate all quotients’ sequences of comp (2n−k )
▶ For each quotients’ sequence seq do:

▶ For each constant term sequence of length |seq| do:
▶ Add the constant terms to the quotients
▶ Apply DilcuE’s from (1,0) by applying seq

And for counting, we reobtain the formula 4n−1−1
3 from:

n∑
k=2

2n−k ·

(
n−1
k −1

)
·
2k +2 · (−1)k

3

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Conclusions and Future Work

Summing up:
▶ Enumeration of binary coprime polynomials is more

complicated when both constant terms are nonzero
▶ We divided the problem in two enumeration tasks:

▶ sequences of constant terms (⇒ regular language)
▶ sequences of degrees (⇒ compositions)

Future directions:
▶ Generalize to polynomials over any finite field Fq

▶ Generalize to m-tuples of pairwise coprime polynomials
▶ Applications to cryptography and coding

theory [GMP20, GM20, M21]
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Summary

Thank you!
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Appendix: Orthogonal Latin Squares (OLS)

Definition
A Latin square is a n×n matrix where all rows and columns are
permutations of [n] = {1, · · · ,n}. Two Latin squares are orthogonal
if their superposition yields all the pairs (x,y) ∈ [n]× [n].

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4

1
1

3
4

4
2

2
3

4
3

2
2

1
4

3
1

2
4

4
1

3
3

1
2

3
2

1
3

2
1

4
4

▶ k pairwise OLS are denoted as k -MOLS (Mutually
Orthogonal Latin Squares)

▶ k -MOLS are equivalent OA(n2,k ,n,2)
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Appendix: Cellular Automata

▶ One-dimensional Cellular Automaton (CA): a discrete parallel
computation model composed of a finite array of n cells

Example: n = 6, d = 3, ω= 0, f(si ,si+1,si+2) = si ⊕si+1 ⊕si+2 (rule 150)

1 0 0 1

f(1,0,0) = 1

01 0 0 0 1

No Boundary CA – NBCA

01 0 1 0 0

f(1,1,0) = 0

01 0 0 0 1 1 0

Periodic Boundary CA – PBCA

▶ Each cell updates its state s ∈ {0,1} by applying a local rule
f : {0,1}d → {0,1} to itself, the ω cells on its left and the
d −1−ω cells on its right
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Latin Squares through Bipermutive CA (1/2)

▶ Bipermutive CA: denoting F2 = {0,1}, local rule f is defined as

f(x1, · · · ,xd) = x1⊕φ(x2, · · · ,xd−1)⊕xd

▶ φ : Fd−2
2 → F2: generating function of f

Lemma ([MGFL20])

A CA F : F
2(d−1)
2 → Fd

2 with bipermutive rule f : Fd
2 → F2 generates a

Latin square of order N = 2d−1

x y

L(x,y)

d −1

d −1 d −1

L(x,y)

y

x
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Latin Squares through Bipermutive CA (2/2)

▶ Example: CA F : F4
2→ F

2
2, f(x1,x2,x3) = x1⊕x2⊕x3 (Rule 150)

▶ Encoding: 00 7→ 1,10 7→ 2,01 7→ 3,11 7→ 4

0 0 0 0
0 0

0 0 1 0
1 1

0 0 0 1
0 1

0 0 1 1
1 0

1 0 0 0
1 0

1 0 1 0
0 1

1 0 0 1
1 1

1 0 1 1
0 0

0 1 0 0
1 1

0 1 1 0
0 0

0 1 0 1
1 0

0 1 1 1
0 1

1 1 0 0
0 1

1 1 1 0
1 0

1 1 0 1
0 0

1 1 1 1
1 1

(a) Rule 150 on 4 bits

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(b) Latin square L150

Mutually Orthogonal Cellular Automata (MOCA): set of k
bipermutive CA generating k -MOLS
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