
Exhaustive Generation of Linear Orthogonal CA

Enrico Formenti, Luca Mariot

l.mariot@utwente.nl

AUTOMATA 2023 – August 30, 2023



Coprime Polynomials

Object: pairs of binary polynomials of degree n ∈ N:

f(x) = a0 +a1x + · · ·+an−1xn−1 +xn ,

g(x) = b0 +b1x + · · ·+bn−1xn−1 +xn ,

where ai ,bi ∈ GF(2) = F2 = {0,1}

f ,g ∈ F2[x] are coprime⇔ gcd(f ,g) = 1

Applications of enumeration/counting of coprime pairs:
▶ Discrete logarithms in finite fields [C84]
▶ Decoding alternant codes [F95]
▶ Invertible Toeplitz matrices [GR11]

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Euclid’s Algorithm

Check if gcd(f ,g) = 1⇒ Euclid’s algorithm

Example: n = 4, f(x) = x4 +x2, g(x) = x4 +x3 +1

f(x) = q(x) ·g(x)+ r(x)

x4 +x2 = 1 · (x4 +x3 +1)+(x3 +x2 +1)
x4 +x3 +1 = x · (x3 +x2 +1)+(x +1)
x3 +x2 +1 = x2 · (x +1)+1
x +1 = 1 · (x +1)+0

Compact notation:

(x4 +x2,x4 +x3 +1)
1
−→ (x4 +x3 +1,x3 +x2 +1)

x
−→

(x3 +x2 +1,x +1)
x2

−−→ (x +1,1)
x+1
−−−→ (1,0)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Euclid’s Algorithm

Check if gcd(f ,g) = 1⇒ Euclid’s algorithm

Example: n = 4, f(x) = x4 +x2, g(x) = x4 +x3 +1

f(x) = q(x) ·g(x)+ r(x)

x4 +x2 = 1 · (x4 +x3 +1)+(x3 +x2 +1)
x4 +x3 +1 = x · (x3 +x2 +1)+(x +1)
x3 +x2 +1 = x2 · (x +1)+1
x +1 = 1 · (x +1)+0

Compact notation:

(x4 +x2,x4 +x3 +1)
1
−→ (x4 +x3 +1,x3 +x2 +1)

x
−→

(x3 +x2 +1,x +1)
x2

−−→ (x +1,1)
x+1
−−−→ (1,0)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Euclid’s Algorithm

Check if gcd(f ,g) = 1⇒ Euclid’s algorithm

Example: n = 4, f(x) = x4 +x2, g(x) = x4 +x3 +1

f(x) = q(x) ·g(x)+ r(x)

x4 +x2 = 1 · (x4 +x3 +1)+(x3 +x2 +1)
x4 +x3 +1 = x · (x3 +x2 +1)+(x +1)
x3 +x2 +1 = x2 · (x +1)+1
x +1 = 1 · (x +1)+0

Compact notation:

(x4 +x2,x4 +x3 +1)
1
−→ (x4 +x3 +1,x3 +x2 +1)

x
−→

(x3 +x2 +1,x +1)
x2

−−→ (x +1,1)
x+1
−−−→ (1,0)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Euclid’s Algorithm

Check if gcd(f ,g) = 1⇒ Euclid’s algorithm

Example: n = 4, f(x) = x4 +x2, g(x) = x4 +x3 +1

f(x) = q(x) ·g(x)+ r(x)

x4 +x2 = 1 · (x4 +x3 +1)+(x3 +x2 +1)
x4 +x3 +1 = x · (x3 +x2 +1)+(x +1)
x3 +x2 +1 = x2 · (x +1)+1
x +1 = 1 · (x +1)+0

Compact notation:

(x4 +x2,x4 +x3 +1)
1
−→ (x4 +x3 +1,x3 +x2 +1)

x
−→

(x3 +x2 +1,x +1)
x2

−−→ (x +1,1)
x+1
−−−→ (1,0)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Euclid’s Algorithm

Check if gcd(f ,g) = 1⇒ Euclid’s algorithm

Example: n = 4, f(x) = x4 +x2, g(x) = x4 +x3 +1

f(x) = q(x) ·g(x)+ r(x)

x4 +x2 = 1 · (x4 +x3 +1)+(x3 +x2 +1)
x4 +x3 +1 = x · (x3 +x2 +1)+(x +1)
x3 +x2 +1 = x2 · (x +1)+1
x +1 = 1 · (x +1)+0

Compact notation:

(x4 +x2,x4 +x3 +1)
1
−→ (x4 +x3 +1,x3 +x2 +1)

x
−→

(x3 +x2 +1,x +1)
x2

−−→ (x +1,1)
x+1
−−−→ (1,0)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Euclid’s Algorithm

Check if gcd(f ,g) = 1⇒ Euclid’s algorithm

Example: n = 4, f(x) = x4 +x2, g(x) = x4 +x3 +1

f(x) = q(x) ·g(x)+ r(x)

x4 +x2 = 1 · (x4 +x3 +1)+(x3 +x2 +1)
x4 +x3 +1 = x · (x3 +x2 +1)+(x +1)
x3 +x2 +1 = x2 · (x +1)+1
x +1 = 1 · (x +1)+0

Compact notation:

(x4 +x2,x4 +x3 +1)
1
−→ (x4 +x3 +1,x3 +x2 +1)

x
−→

(x3 +x2 +1,x +1)
x2

−−→ (x +1,1)
x+1
−−−→ (1,0)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Euclid’s Algorithm

Check if gcd(f ,g) = 1⇒ Euclid’s algorithm

Example: n = 4, f(x) = x4 +x2, g(x) = x4 +x3 +1

f(x) = q(x) ·g(x)+ r(x)

x4 +x2 = 1 · (x4 +x3 +1)+(x3 +x2 +1)
x4 +x3 +1 = x · (x3 +x2 +1)+(x +1)
x3 +x2 +1 = x2 · (x +1)+1
x +1 = 1 · (x +1)+0

Compact notation:

(x4 +x2,x4 +x3 +1)
1
−→ (x4 +x3 +1,x3 +x2 +1)

x
−→

(x3 +x2 +1,x +1)
x2

−−→ (x +1,1)
x+1
−−−→ (1,0)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



DilcuE’s Algorithm

▶ Remark: (f ,g) can be recovered from (1,0) by applying the
same sequence of quotients (1,x,x2,x +1) backward

▶ This is called DilcuE’s algorithm in [BB07]

(0,1)
x+1
−−−→ (1,x +1)

x2

−−→ (x +1,x3 +x2 +1)
x
−→

(x3 +x2 +1,x4 +x3 +1)
1
−→ (x4 +x3 +1,x4 +x2) = (f ,g)

▶ Suppose we change the last remainder to 0:

(0,x +1)
x2

−−→ (x +1,x3 +x2)
x
−→ (x3 +x2,x4 +x3 +x +1)

1
−→

(x4 +x3 +x +1,x4 +x2 +x +1) = (f ′,g′)

▶ By construction, (f ′,g′) are non-coprime with
gcd(f ′,g′) = x +1

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



DilcuE’s Algorithm

▶ Remark: (f ,g) can be recovered from (1,0) by applying the
same sequence of quotients (1,x,x2,x +1) backward

▶ This is called DilcuE’s algorithm in [BB07]

(0,1)
x+1
−−−→ (1,x +1)

x2

−−→ (x +1,x3 +x2 +1)
x
−→

(x3 +x2 +1,x4 +x3 +1)
1
−→ (x4 +x3 +1,x4 +x2) = (f ,g)

▶ Suppose we change the last remainder to 0:

(0,x +1)
x2

−−→ (x +1,x3 +x2)
x
−→ (x3 +x2,x4 +x3 +x +1)

1
−→

(x4 +x3 +x +1,x4 +x2 +x +1) = (f ′,g′)

▶ By construction, (f ′,g′) are non-coprime with
gcd(f ′,g′) = x +1

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



DilcuE’s Algorithm

▶ Remark: (f ,g) can be recovered from (1,0) by applying the
same sequence of quotients (1,x,x2,x +1) backward

▶ This is called DilcuE’s algorithm in [BB07]

(0,1)
x+1
−−−→ (1,x +1)

x2

−−→ (x +1,x3 +x2 +1)
x
−→

(x3 +x2 +1,x4 +x3 +1)
1
−→ (x4 +x3 +1,x4 +x2) = (f ,g)

▶ Suppose we change the last remainder to 0:

(0,x +1)
x2

−−→ (x +1,x3 +x2)
x
−→ (x3 +x2,x4 +x3 +x +1)

1
−→

(x4 +x3 +x +1,x4 +x2 +x +1) = (f ′,g′)

▶ By construction, (f ′,g′) are non-coprime with
gcd(f ′,g′) = x +1

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



DilcuE’s Algorithm

▶ Remark: (f ,g) can be recovered from (1,0) by applying the
same sequence of quotients (1,x,x2,x +1) backward

▶ This is called DilcuE’s algorithm in [BB07]

(0,1)
x+1
−−−→ (1,x +1)

x2

−−→ (x +1,x3 +x2 +1)
x
−→

(x3 +x2 +1,x4 +x3 +1)
1
−→ (x4 +x3 +1,x4 +x2) = (f ,g)

▶ Suppose we change the last remainder to 0:

(0,x +1)
x2

−−→ (x +1,x3 +x2)
x
−→ (x3 +x2,x4 +x3 +x +1)

1
−→

(x4 +x3 +x +1,x4 +x2 +x +1) = (f ′,g′)

▶ By construction, (f ′,g′) are non-coprime with
gcd(f ′,g′) = x +1

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



DilcuE’s Algorithm

▶ Remark: (f ,g) can be recovered from (1,0) by applying the
same sequence of quotients (1,x,x2,x +1) backward

▶ This is called DilcuE’s algorithm in [BB07]

(0,1)
x+1
−−−→ (1,x +1)

x2

−−→ (x +1,x3 +x2 +1)
x
−→

(x3 +x2 +1,x4 +x3 +1)
1
−→ (x4 +x3 +1,x4 +x2) = (f ,g)

▶ Suppose we change the last remainder to 0:

(0,x +1)
x2

−−→ (x +1,x3 +x2)
x
−→ (x3 +x2,x4 +x3 +x +1)

1
−→

(x4 +x3 +x +1,x4 +x2 +x +1) = (f ′,g′)

▶ By construction, (f ′,g′) are non-coprime with
gcd(f ′,g′) = x +1

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



DilcuE’s Algorithm

▶ Remark: (f ,g) can be recovered from (1,0) by applying the
same sequence of quotients (1,x,x2,x +1) backward

▶ This is called DilcuE’s algorithm in [BB07]

(0,1)
x+1
−−−→ (1,x +1)

x2

−−→ (x +1,x3 +x2 +1)
x
−→

(x3 +x2 +1,x4 +x3 +1)
1
−→ (x4 +x3 +1,x4 +x2) = (f ,g)

▶ Suppose we change the last remainder to 0:

(0,x +1)
x2

−−→ (x +1,x3 +x2)
x
−→ (x3 +x2,x4 +x3 +x +1)

1
−→

(x4 +x3 +x +1,x4 +x2 +x +1) = (f ′,g′)

▶ By construction, (f ′,g′) are non-coprime with
gcd(f ′,g′) = x +1

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



DilcuE’s Algorithm

▶ Remark: (f ,g) can be recovered from (1,0) by applying the
same sequence of quotients (1,x,x2,x +1) backward

▶ This is called DilcuE’s algorithm in [BB07]

(0,1)
x+1
−−−→ (1,x +1)

x2

−−→ (x +1,x3 +x2 +1)
x
−→

(x3 +x2 +1,x4 +x3 +1)
1
−→ (x4 +x3 +1,x4 +x2) = (f ,g)

▶ Suppose we change the last remainder to 0:

(0,x +1)
x2

−−→ (x +1,x3 +x2)
x
−→ (x3 +x2,x4 +x3 +x +1)

1
−→

(x4 +x3 +x +1,x4 +x2 +x +1) = (f ′,g′)

▶ By construction, (f ′,g′) are non-coprime with
gcd(f ′,g′) = x +1

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



DilcuE’s Algorithm

▶ Remark: (f ,g) can be recovered from (1,0) by applying the
same sequence of quotients (1,x,x2,x +1) backward

▶ This is called DilcuE’s algorithm in [BB07]

(0,1)
x+1
−−−→ (1,x +1)

x2

−−→ (x +1,x3 +x2 +1)
x
−→

(x3 +x2 +1,x4 +x3 +1)
1
−→ (x4 +x3 +1,x4 +x2) = (f ,g)

▶ Suppose we change the last remainder to 0:

(0,x +1)
x2

−−→ (x +1,x3 +x2)
x
−→ (x3 +x2,x4 +x3 +x +1)

1
−→

(x4 +x3 +x +1,x4 +x2 +x +1) = (f ′,g′)

▶ By construction, (f ′,g′) are non-coprime with
gcd(f ′,g′) = x +1

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



DilcuE’s Algorithm

▶ Remark: (f ,g) can be recovered from (1,0) by applying the
same sequence of quotients (1,x,x2,x +1) backward

▶ This is called DilcuE’s algorithm in [BB07]

(0,1)
x+1
−−−→ (1,x +1)

x2

−−→ (x +1,x3 +x2 +1)
x
−→

(x3 +x2 +1,x4 +x3 +1)
1
−→ (x4 +x3 +1,x4 +x2) = (f ,g)

▶ Suppose we change the last remainder to 0:

(0,x +1)
x2

−−→ (x +1,x3 +x2)
x
−→ (x3 +x2,x4 +x3 +x +1)

1
−→

(x4 +x3 +x +1,x4 +x2 +x +1) = (f ′,g′)

▶ By construction, (f ′,g′) are non-coprime with
gcd(f ′,g′) = x +1

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Counting by Bijection

In essence: we can construct a bijection between coprime and
non-coprime pairs over F2 as follows

1. Apply Euclid to (f ,g)

2. If the last remainder is 0, change it to 1. Otherwise, set it to
the second-last remainder

3. Apply DilcuE’s algorithm to the reversed quotients

Theorem ([BB07, CSWZ98, R00])
Let f ,g ∈ F2[x] of degree n be randomly chosen. Then, the
probability that gcd(f ,g) = 1 is 1

2 . Equivalently, the number of
coprime pairs is 22n−1.

This result is generalized to Fq by a 1-to-q correspondence

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Counting/enumeration with nonzero constant terms

We require now that both f and g have a nonzero constant term:

f(x) = 1+a1x + · · ·+an−1xn−1 +xn ,

g(x) = 1+b1x + · · ·+bn−1xn−1 +xn .

Problems:

1. Count all such pairs

2. Enumeration algorithm

Remark: the trick above does not work! Changing the last
remainder gives no control over the final constant terms

... Why do we want to do that?

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Orthogonal Latin Squares by Linear Cellular Automata

▶ Bipermutive Linear rule: f(x) = x1⊕a2x2⊕ · · ·⊕ad−1xd−1⊕xd

▶ Polynomial rule: Pf (X) = 1+a2X + · · ·+ad−1Xd−2 +Xd−1

Theorem ([MFL16, MGFL20])
Two bipermutive linear CA generates orthogonal Latin squares if
and only if their associated polynomials are coprime

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(a) Rule 150

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

(b) Rule 90

1
1

4
2

3
3

2
4

2
2

3
1

4
4

1
3

4
3

1
4

2
1

3
2

3
4

2
3

1
2

4
1

4
1

(c) Superposition

Figure: P150(X) = 1+X +X2, P90(X) = 1+X2 (coprime)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Counting by Recurrence

s https://xkcd.com/710/

▶ Number of coprime polynomial pairs of
degree n and nonzero constant term:

a(n) = 4n−1 +a(n−1) =
4n−1−1

3
= 0,1,5,21,85, ...

▶ Corresponds to OEIS A002450

▶ Generalized for any finite field Fq in [MGFL20] (but
enumeration not addressed)

L. Mariot, M. Gadouleau, E. Formenti, and A. Leporati.

Mutually orthogonal latin squares based on cellular au-

tomata. Des. Codes Cryptogr. 88(2):391–411 (2020)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Problem Structure

Strategy: characterize the sequences of quotients that gives only
(1,1) coprime pairs when starting from the remainders (1,0)

Three parts of the problem:

q1→

degrees︷︸︸︷
xd1 +

middle terms︷                          ︸︸                          ︷
q1,d1−1xd1−1 + · · ·+q1,1x+

constant terms︷︸︸︷
s1

q2→ xd2 +q2,d2−1xd2−1 + · · ·+q2,1x + s2

...→
... +

... + · · ·+
... +

...

qk → xdk +qk ,dk−1xdk−1 + · · ·+qk ,1x + sk

Notation: ri , ri+1→ consecutive remainders produced by Euclid’s
algorithm at step i. Step i+1:

ri(x) = qi+1(x)ri+1(x)+ ri+2(x)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Problem Structure

Strategy: characterize the sequences of quotients that gives only
(1,1) coprime pairs when starting from the remainders (1,0)

Three parts of the problem:

q1→

degrees︷︸︸︷
xd1 +

middle terms︷                          ︸︸                          ︷
q1,d1−1xd1−1 + · · ·+q1,1x+

constant terms︷︸︸︷
s1

q2→ xd2 +q2,d2−1xd2−1 + · · ·+q2,1x + s2

...→
... +

... + · · ·+
... +

...

qk → xdk +qk ,dk−1xdk−1 + · · ·+qk ,1x + sk

Notation: ri , ri+1→ consecutive remainders produced by Euclid’s
algorithm at step i. Step i+1:

ri(x) = qi+1(x)ri+1(x)+ ri+2(x)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Problem Structure

Strategy: characterize the sequences of quotients that gives only
(1,1) coprime pairs when starting from the remainders (1,0)

Three parts of the problem:

q1→

degrees︷︸︸︷
xd1 +

middle terms︷                          ︸︸                          ︷
q1,d1−1xd1−1 + · · ·+q1,1x+

constant terms︷︸︸︷
s1

q2→ xd2 +q2,d2−1xd2−1 + · · ·+q2,1x + s2

...→
... +

... + · · ·+
... +

...

qk → xdk +qk ,dk−1xdk−1 + · · ·+qk ,1x + sk

Notation: ri , ri+1→ consecutive remainders produced by Euclid’s
algorithm at step i. Step i+1:

ri(x) = qi+1(x)ri+1(x)+ ri+2(x)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Finite State Automaton of Remainders

▶ (ci ,ci+1)→ constant terms of ri and ri+1

▶ Xi+1→ constant term of qi+1

▶ δ((ci ,ci+1),Xi+1)→ next pair (ci+1,ci+2)

(ci ,ci+1) Xi+1 δ((ci ,ci+1),Xi+1)
(1,1) 0 (1,1)
(1,1) 1 (1,0)
(1,0) 0 (0,1)
(1,0) 1 (0,1)
(0,1) 0 (1,0)
(0,1) 1 (1,1)

Remark: the pair (0,0) never occurs

11

1001

1

0

0/1

0

1

⇒ the sequences of constant terms form a regular language

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



The Language of Constant Terms Sequences

11

10

⇑

01

1

0

0/1

0

1

Inverse FSA

▶ The FSA is the de Bruijn graph over the
set {11,10,01}

▶ The FSA is permutative: for DilcuE’s,
simply reverse the arrows

▶ Initial state: 10
▶ Final state: 11 (but we can use 10)

Regular Expression of the Language:

L = (0(0+1)+(10∗1(0+1)))∗

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Enumeration/counting of Constant Terms Sequences

▶ Enumeration: visit the FSA graph with DFS up to depth n
▶ Counting: exploit algebraic language theory

Transform L = (0(0+1)+(10∗1(0+1)))∗ as follows:
▶ 0,1⇒ X
▶ +, · ⇒+, ·

▶ ∗⇒ 1
1−X

Generating Function:
∞∑

n=0

an ·Xn =
1−X

1−X −2X2
,

Closed Form:

an =
2n +2 · (−1)n

3

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Sequences of quotients’ degrees

Second part: Characterize the degrees of the quotients

Example: n = 4, {1,x,x2,x,1}

(0,1)
1
−→ (1,1)

x
−→ (1,x +1)

x2

−−→ (x +1,x3 +x2 +1)
x
−→

(x3 +x2 +1,x4 +x3 +1)
1
−→ (x4 +x3 +1,x4 +x2 +1)

Sum of degrees: 1+2+1 = 4

Question: what are the combinations of ordered sums of n?

⇒ compositions of n ∈ N

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Quotients’ degrees as compositions of n

▶ Representation: n−1 boxes that can be either "+" or ","

1

n−1︷        ︸︸        ︷
□1□ . . .□1□1

▶ Example: 1,1+1,1→ 1+2+1 (n = 4)
���4+0

2+1+1 1+2+1 1+1+2

3+1 2+2 (1+3)

1+1+1+1

▶ We remove the top of the poset
▶ Enumeration: generate all binary

strings of length 1 < k < n
▶ Counting:

(
n−1
k−1

)
▶ Remaining coefficients of the

quotients are free

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Enumeration Algorithm

Remark: once we fix the length of the sequence, the three
elements (constant terms, degrees, middle terms) are independent

So for enumeration, given n ∈ N:

For each composition comp of n (except n+0) do:
▶ Generate all quotients’ sequences of comp (2n−k )
▶ For each quotients’ sequence seq do:

▶ For each constant term sequence of length |seq| do:
▶ Add the constant terms to the quotients
▶ Apply DilcuE’s from (1,0) by applying seq

And for counting, we reobtain the formula 4n−1−1
3 from:

n∑
k=2

2n−k ·

(
n−1
k −1

)
·
2k +2 · (−1)k

3

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Conclusions and Future Work

Summing up:
▶ Enumeration of binary coprime polynomials is more

complicated when both constant terms are nonzero
▶ We divided the problem in two enumeration tasks:

▶ sequences of constant terms (⇒ regular language)
▶ sequences of degrees (⇒ compositions)

Future directions:
▶ Generalize to polynomials over any finite field Fq

▶ Generalize to m-tuples of pairwise coprime polynomials
▶ Applications to cryptography and coding

theory [GMP20, GM20, M21]

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Summary

Thank you!

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Appendix: Orthogonal Latin Squares (OLS)

Definition
A Latin square is a n×n matrix where all rows and columns are
permutations of [n] = {1, · · · ,n}. Two Latin squares are orthogonal
if their superposition yields all the pairs (x,y) ∈ [n]× [n].

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4

1
1

3
4

4
2

2
3

4
3

2
2

1
4

3
1

2
4

4
1

3
3

1
2

3
2

1
3

2
1

4
4

▶ k pairwise OLS are denoted as k -MOLS (Mutually
Orthogonal Latin Squares)

▶ k -MOLS are equivalent OA(n2,k ,n,2)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Appendix: Cellular Automata

▶ One-dimensional Cellular Automaton (CA): a discrete parallel
computation model composed of a finite array of n cells

Example: n = 6, d = 3, ω= 0, f(si ,si+1,si+2) = si ⊕si+1 ⊕si+2 (rule 150)

1 0 0 1

f(1,0,0) = 1

01 0 0 0 1

No Boundary CA – NBCA

01 0 1 0 0

f(1,1,0) = 0

01 0 0 0 1 1 0

Periodic Boundary CA – PBCA

▶ Each cell updates its state s ∈ {0,1} by applying a local rule
f : {0,1}d → {0,1} to itself, the ω cells on its left and the
d −1−ω cells on its right

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Latin Squares through Bipermutive CA (1/2)

▶ Bipermutive CA: denoting F2 = {0,1}, local rule f is defined as

f(x1, · · · ,xd) = x1⊕φ(x2, · · · ,xd−1)⊕xd

▶ φ : Fd−2
2 → F2: generating function of f

Lemma ([MGFL20])

A CA F : F
2(d−1)
2 → Fd

2 with bipermutive rule f : Fd
2 → F2 generates a

Latin square of order N = 2d−1

x y

L(x,y)

d −1

d −1 d −1

L(x,y)

y

x

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



Latin Squares through Bipermutive CA (2/2)

▶ Example: CA F : F4
2→ F

2
2, f(x1,x2,x3) = x1⊕x2⊕x3 (Rule 150)

▶ Encoding: 00 7→ 1,10 7→ 2,01 7→ 3,11 7→ 4

0 0 0 0
0 0

0 0 1 0
1 1

0 0 0 1
0 1

0 0 1 1
1 0

1 0 0 0
1 0

1 0 1 0
0 1

1 0 0 1
1 1

1 0 1 1
0 0

0 1 0 0
1 1

0 1 1 0
0 0

0 1 0 1
1 0

0 1 1 1
0 1

1 1 0 0
0 1

1 1 1 0
1 0

1 1 0 1
0 0

1 1 1 1
1 1

(a) Rule 150 on 4 bits

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(b) Latin square L150

Mutually Orthogonal Cellular Automata (MOCA): set of k
bipermutive CA generating k -MOLS

Luca Mariot Exhaustive Generation of Linear Orthogonal CA



References

[BB07] Benjamin, A.T., Bennett, C.D.: The probability of relatively prime polynomials. Mathematics Magazine
80(3): 196-202 (2007).

[C84] Coppersmith, D.: Fast evaluation of logarithms in fields of characteristic two. IEEE Trans. Inf. Theory 30(4):
587-593 (1984)

[CSWZ98] Corteel, S. Savage, C.D., Wilf, H.S., Zeilberger,D.: A pentagonal number sieve. Journal of
Combinatorial Theory, Series A 82: 186-192 (1998)

[F95] Fitzpatrick, P.: On the key equation. IEEE Trans. Inf. Theory 41(5): 1290-1302 (1995)

[GM20] Gadouleau, M., Mariot, L.: Latin Hypercubes and Cellular Automata. Proceedings of Automata 2020, pp.
139-151 (2020)

[GMP20] Gadouleau, M., Mariot, L., Picek, S.: Bent Functions from Cellular Automata. IACR Cryptol. ePrint Arch.
2020: 1272 (2020)9)

[GR11] Ghorpade, S. R., Ram, S.: Block companion Singer cycles, primitive recursive vector sequences, and
coprime polynomial pairs over finite fields. Finite Fields Their Appl. 17(5): 461-472 (2011)

[M21] Mariot, L.: Hip to Be (Latin) Square: Maximal Period Sequences from Orthogonal Cellular Automata. In:
Proceedings of CANDAR 2021, pp. 29-37 (2021)

[MFL16] Mariot, L., Formenti, E., Leporati, A.: Constructing Orthogonal Latin Squares from Linear Cellular
Automata. In: Exploratory papers of AUTOMATA 2016. CoRR abs/1610.00139 (2016)

[MGFL20] Mariot, L., Gadouleau, M. Formenti, E., Leporati A.: Mutually orthogonal latin squares based on cellular
automata. Des. Codes Cryptogr. 88(2):391–411 (2020)

[R00] Reifegerste, A.: On an involution concerning pairs of polynomials in F2 . J. Combin. Theory Ser. A 90,
216-220 (2000)

Luca Mariot Exhaustive Generation of Linear Orthogonal CA


