

UNIVERSITY OF TWENTE.

Self-Orthogonal CA

Luca Mariot, Federico Mazzone

1.mariot@utwente.nl

Automata 2025 - Lille, 1 July 2025

Latin Squares

Definition

A Latin square of order N is a $N \times N$ matrix L such that every row and every column are permutations of $[N] = \{1, \dots, N\}$

Mutually Orthogonal Latin Squares (MOLS)

Definition

Two Latin squares L_1 and L_2 of order N are *orthogonal* if their superposition yields all the pairs $(x, y) \in [N] \times [N]$.

n pairwise orthogonal Latin squares are denoted as n-MOLS (**Mutually Orthogonal Latin Squares**)

Applications of *n*-MOLS to Secret Sharing

(k,n) Threshold Secret Sharing Scheme: a dealer shares a secret S among n players so that at least k players out of n are required to recover S [S79]

Remark: (2, n)-scheme \Leftrightarrow set of n-MOLS [S04]

Luca Mariot Self-Orthogonal CA

Cellular Automata

▶ Vectorial functions $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ with *uniform* (shift-invariant) coordinates [MPLJ19]

Example:
$$q = 2$$
, $n = 6$, $d = 3$, $f(s_i, s_{i+1}, s_{i+2}) = s_i \oplus s_{i+1} \oplus s_{i+2}$

No Boundary CA – NBCA

Periodic Boundary CA - PBCA

► Each cell updates its state $s \in \{0,1\}$ by evaluating a local rule $f: \{0,1\}^d \to \{0,1\}$ on itself and the d-1 cells on its right

Latin Squares through Bipermutive CA (1/2)

Bipermutive CA: local rule f is defined as

$$f(x_1,\dots,x_d) = x_1 + \varphi(x_2,\dots,x_{d-1}) + x_d$$

• $\varphi: \mathbb{F}_q^{d-2} \to \mathbb{F}_q$: generating function of f [LM13]

Lemma ([MFL16])

A (no-boundary) CA $F: \mathbb{F}_q^{2(d-1)} \to \mathbb{F}_q^d$ with bipermutive rule $f: \mathbb{F}_q^d \to \mathbb{F}_q$ generates a Latin square of order $N = q^{d-1}$

Latin Squares through Bipermutive CA (2/2)

- ► Example: CA $F : \mathbb{F}_2^4 \to \mathbb{F}_2^2$, $f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$ (Rule 150)
- ► Encoding: $00 \mapsto 1, 10 \mapsto 2, 01 \mapsto 3, 11 \mapsto 4$

(a) Rule 150 on 4 bits

(b) Latin square L_{150}

Linear CA

Local rule: linear combination of the neighborhood cells

$$f(x_1,\cdots,x_d)=a_1x_1+\cdots+a_dx_d\ ,\ a_i\in\mathbb{F}_q$$

Associated polynomial:

$$f\mapsto p_f(X)=a_1+a_2X+\cdots+a_dX^{d-1}$$

► $(n-d+1)\times n$ transition matrix [ML18]:

$$M_{F} = \begin{pmatrix} a_{1} & \cdots & a_{d} & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & a_{1} & \cdots & a_{d} & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & a_{1} & \cdots & a_{d} \end{pmatrix}, x \mapsto M_{F} x^{\top}$$

Remark: a linear rule is bipermutive iff $a_1, a_d \neq 0$

Sylvester Matrices

Two linear bipermutive CA with rules $f, g : \mathbb{F}_q^d \to \mathbb{F}_q$ generate orthogonal Latin squares iff the following matrix is invertible:

$$M_{F,G} = \begin{pmatrix} a_1 & \cdots & a_d & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & a_1 & \cdots & a_d & 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & a_1 & \cdots & a_d \\ b_1 & \cdots & b_d & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & b_1 & \cdots & b_d & 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & b_1 & \cdots & b_d \end{pmatrix}$$

▶ ... but this is the **Sylvester matrix** of the two polynomials p_f, p_g , and $det(M_{F,G} \neq 0 \Leftrightarrow \gcd(p_f, p_g) = 1$ [GKZ08]

MOLS from Linear Bipermutive CA (LBCA)

Theorem ([MGLF20])

A set of t linear bipermutive CA $F_1, \dots F_t : \mathbb{F}_q^{2(d-1)} \to \mathbb{F}_q^{d-1}$ generates a family of t-MOLS of order $N = q^{d-1}$ if and only if their associated polynomials are pairwise coprime

Figure:
$$P_{150}(X) = 1 + X + X^2$$
, $P_{90}(X) = 1 + X^2$ (coprime)

(2, n)-Secret Sharing from CA MOLS

Construction:

- 1. First two columns: all pairs (x, y) in lexicographic order
- 2. List the *i*-th Latin square in the (i+2)-th column

Dealing phase:

- 1. Use column 1 for the secret S and randomly sample a row R where A(R,1) = S
- 2. The share for P_i is A(R, i+1) for $i \in [n]$

Recovery phase:

 Any subset of two players can uniquely identify the row

Self-Orthogonal CA

Definition

A bipermutive CA $F: \mathbb{F}_q^{2(d-1)} \to \mathbb{F}_q^{d-1}$ is *self-orthogonal* if its Latin square L_F is orthogonal to its transpose L_F^{\top} .

1,1	2,2	3,3	4,4
2,2	1,1	4,4	3,3
3,3	4,4	1,1	2,2
4,4	3,3	2,2	1,1

1,1	4,3	2,4	3,2
3,4	2,2	4,1	1,3
4,2	1,4	3,3	2,1
2,3	3,1	1,2	4,4

(b) L₁₅₀

- Applications: anonymous secret sharing, quantum error correcting codes [BS98, KM22]
- Question: give a characterization of self-orthogonal CA

Computer Search

Performed exhaustive search up to d = 6

d	#BCA	#SOCA	#LIN/AFF	Polynomials
3	4	2	2	$1+X+X^2$
4	16	4	4	$1+X+X^3$, $1+X^2+X^3$
5	256	8	8	$ \begin{array}{c} 1 + X + X^4, 1 + X^2 + X^4 \\ 1 + X^3 + X^4, 1 + X + X^2 + X^3 + X^4 \end{array} $
6	65 336	16	16	$ 1 + X + X^{5}, 1 + X^{2} + X^{5} 1 + X^{3} + X^{5}, 1 + X^{4} + X^{5} 1 + X + X^{2} + X^{3} + X^{5} 1 + X + X^{2} + X^{4} + X^{5} 1 + X + X^{3} + X^{4} + X^{5} 1 + X^{2} + X^{3} + X^{4} + X^{5} $

Empirical Findings:

- Only some linear BCA are SO
- ► All linear BCA described by irreducible polynomials are SO

Characterization of the Linear Case

▶ The transpose CA F^{\top} : $\mathbb{F}_q^{2(d-1)} \to \mathbb{F}_q^{d-1}$ is defined as:

$$F^{\top}(x||y) = F(y||x)$$

▶ **Idea:** compose the matrix M_F with the permutation matrix

$$M_{S} = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 & 0 & \dots & 0 & 0 \end{pmatrix}.$$

Transition Matrix of Transpose CA

▶ the transition matrix for F^{\top} is thus:

$$M_{F^{\top}} = M_F \cdot M_S = \begin{pmatrix} a_d & 0 & \dots & \dots & 0 & a_1 & \dots & \dots & a_{d-1} \\ a_{d-1} & a_d & \dots & \dots & 0 & 0 & a_1 & \dots & a_{d-2} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ a_2 & a_3 & \dots & \dots & a_d & 0 & 0 & \dots & a_1 \end{pmatrix}.$$

- Next step: check the superposed matrix $M_{F,F^{\top}} = \begin{pmatrix} M_F \\ M_{F^{\top}} \end{pmatrix}$
- ▶ We are interested in understanding when $M_{F,F^{\top}}$ is invertible

Superposed matrix

► Form of $M_{F,F^{\top}}$:

$$M_{F,F^{\top}} = \begin{pmatrix} M_F \\ M_{F^{\top}} \end{pmatrix} = \begin{pmatrix} a_1 & \dots & \dots & a_d & 0 & 0 & \dots & \dots & 0 \\ 0 & a_1 & \dots & \dots & a_d & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & a_1 & \dots & \dots & \dots & a_d \\ a_d & 0 & \dots & \dots & 0 & a_1 & \dots & \dots & a_{d-1} \\ a_{d-1} & a_d & \dots & \dots & 0 & 0 & a_1 & \dots & a_{d-2} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \ddots & \vdots \\ a_2 & a_3 & \dots & \dots & a_d & 0 & 0 & \dots & a_1 \end{pmatrix}$$

Necessary and sufficient condition:

Lemma

The LBCA $F: \mathbb{F}_q^{2(d-1)} \to \mathbb{F}_q^{d-1}$ is self-orthogonal if and only if the matrix $M_{F,F^{\top}}$ is invertible.

Characterization with polynomials

 $ightharpoonup M_{F,F^{\top}}$ is no longer a Sylvester matrix, but a **circulant** matrix

Theorem ([LN94])

The map $\Phi: (c_1, \ldots, c_n) \mapsto c(X) = c_1 + \ldots + c_n X^{n-1} \mod X^n - 1$ is an isomorphism between the ring of $n \times n$ circulant matrices on \mathbb{F}_q and the quotient polynomial ring $R_P = \mathbb{F}_q[X]/(X^n - 1)$.

So, we can check self-orthogonality by checking that $p_f(X)$ is a *unit* of the quotient ring R_P :

Theorem

The LBCA $F: \mathbb{F}_q^{2(d-1)} \to \mathbb{F}_q^{d-1}$ with rule $f: \mathbb{F}_q^d \to \mathbb{F}_q$ and associated polynomial $p_f(X) \in \mathbb{F}_q[X]$ is self-orthogonal if and only if $\gcd(p_f(X), X^n - 1) = 1$, where n = 2(d-1).

More results in the case q = 2

Irreducibility is indeed a sufficient condition:

Lemma

A binary LBCA $F: \mathbb{F}_2^{2(d-1)} \to \mathbb{F}_2^{d-1}$ defined by $f: \mathbb{F}_2^d \to \mathbb{F}_2$ such that $p_f(X)$ is irreducible is self-orthogonal.

Further, for some diameters *d* there is a simpler condition:

Lemma

Let $d=2^t+1$ for $t\in\mathbb{N}$. Then, a LBCA $F:\mathbb{F}_2^{2(d-1)}\to\mathbb{F}_2^{d-1}$ defined by $f:\mathbb{F}_2^d\to\mathbb{F}_2$ is self-orthogonal if and only if $p_f(1)\neq 0$.

▶ In practice: if $d = 2^t + 1$, just check the *parity* of the coefficients $c_1, \dots c_d$ of the polynomial

Conclusions and Future Works

Upon a closer look:

- Circulant matrices are actually periodic linear CA! [BCMM98, ION83]
- Thus: checking self-orthogonality of a linear NBCA is equivalent to checking invertibility of the corresponding PBCA

Future directions:

- Do there exist nonlinear self-orthogonal CA?
- Investigate applications to anonymous secret sharing and quantum ECC [BS98, KM22]
- Study the dynamics of iterated self-orthogonal maps and the construction of bent functions [M23, GMP23]

References

- [BCMM98] D. Bini, G.M.D. Corso, G. Manzini, L. Margara: Inversion of Circulant Matrices over Zm. In: Proceedings of ICALP'98, pp. 719-730. Springer (1998)
- BCMM98] C. Blundo, D.R. Stinson: Anonymous secret sharing schemes. Discret. Appl. Math. 77(1):13-28 (1997)
- [GMP23] M. Gadouleau, L. Mariot, S. Picek. Bent functions in the partial spread class generated by linear recurring sequences. Des. Codes Cryptogr. 91(1):63–82 (2023)
- [a] [GKZ08] I.M. Gelfand, M. Kapranov, A. Zelevinsky: Discriminants, resultants, and multidimensional determinants. Springer Science & Business Media (2008)
- [KM22] A. Kumar, S. Maitra: Resolvable block designs in construction of approximate real MUBs that are sparse. Cryptogr. Commun. 14(3):527–549 (2022)
- [ION83] M. Ito, N. Osato, M. Nasu: Linear cellular automata over Zm. J. Comput. Syst. Sci. 27(1):125-140 (1983)
- [LM13] A. Leporati, L. Mariot: 1-Resiliency of Bipermutive Cellular Automata Rules. In: Proceedings of AUTOMATA 2013: 110-123 (2013)
- [LN94] R. Lidl, H. Niederreiter: Introduction to finite fields and their applications. Cambridge University Press (1994)
- [M23] L. Mariot: Enumeration of maximal cycles generated by orthogonal cellular automata. Nat. Comput. 22(3):477-491 (2023)
- [MGLF20] L. Mariot, M. Gadouleau, E. Formenti, and A. Leporati. Mutually orthogonal latin squares based on cellular automata. Des. Codes Cryotogr. 88(2):391–411 (2020)
- [MPLJ9] L. Mariot, S. Picek, A. Leporati, and D. Jakobovic. Cellular automata based S-boxes. Cryptography and Communications 11(1): 41-62 (2019)
- [ML18] L. Mariot, A. Leporati: A cryptographic and coding-theoretic perspective on the global rules of cellular automata. Nat. Comput. 17(3):487-498 (2018)
- [MFL16] L. Mariot, E. Formenti, A. Leporati: Constructing Orthogonal Latin Squares from Linear Cellular Automata. In: Exploratory papers of AUTOMATA 2016 (2016)
- [S79] A. Shamir: How to share a secret. Commun. ACM 22(11):612-613 (1979)
- [S04] D.R. Stinson: Combinatorial designs. Springer (2004)