

The Influence of Local Search on GA with Balanced Representations

Luca Manzoni, Luca Mariot, Eva Tuba

luca.mariot@ru.nl

BIOMA 2022 - Maribor, November 18, 2022

Optimization with Balanced Representations

- Setting: feasible solutions are encoded by bitstrings composed of an equal number of 0s and 1s
- Applications: error-correcting codes, cryptography [M18, M19]

Classic Crossover on Balanced Problems

- In general, classic GA crossover operators in GA do not preserve balancedness
- Approach: employ balancedness-preserving operators [M20]

- Uniform crossover with counters to keep track of the multiplicities of zeros and ones [M98]
- copy the other value when the threshold is reached

No differences wrt order of positions to be copied [M20]

Zero-lengths Crossover (CX2)

Zero-lengths Coding: Integer vector specifying the *run lengths of zeros* between consecutive ones

Idea: uniform crossover on the zero-lengths vectors, using an *accumulator* to track the sums of the run lengths

Map-of-Ones Crossover (CX3)

Map of Ones Coding: Integer vector specifying the *positions of the* N/2 *ones* in the binary string

Idea: uniform crossover on the maps of ones, avoiding the insertion of duplicate positions in the child

Boolean Functions

- ▶ Boolean function of *n* variables: mapping $f : \{0, 1\}^n \rightarrow \{0, 1\}$
- ▶ Walsh Transform (WT): correlation of *f* with linear functions $a \cdot x = a_1 x_1 \oplus \cdots \oplus a_n x_n$

$$W_f(a) = \sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus a \cdot x}$$

Boolean functions in symmetric crypto

(a) Stream cipher

(b) Block cipher

Used in the design of low-level primitives, e.g. [C21]:

- Pseudorandom number generators (PRNG)
- S-boxes $F : \{0, 1\}^n \to \{0, 1\}^n, ...$

Boolean Functions - Cryptographic Properties

- Balancedness: TT of f has the same number of 0s and 1s
- High nonlinearity: the nonlinearity of f is given by the WT as:

• Search space size: 2^{2^n} (general), $\binom{2^n}{2^{n-1}}$ (balanced)

Performances of Balanced Crossover

n = 6 (opt = 26)

- Optimization objective: max nl(f), keep balancedness
- **Encoding**: 2^n -bit string \Rightarrow Truth table of $f : \mathbb{F}_2^n \to \mathbb{F}_2$

n = 7 (opt = 56)

:-) Balanced crossover does give an advantage over one-point :-(The advantage does not scale [M20, M21]

n = 8 (opt = 116(?))

Local Search (LS) Step

- Idea: augment the GA with a (savvy) LS step
- Basic move: swap that improves nonlinearity

- LS applied after crossover and mutation
- Efficient recomputation of the Walsh transform [M99]:

$$\Delta(a) = [(-1)^{f(y)} - (-1)^{f(z)}][(-1)^{a \cdot z} - (-1)^{a \cdot y}] ,$$
$$\Delta(a) \in \{-4, 0, +4\}$$

Research Hypotheses:

- RQ1: LS speeds up convergence to a local optimum
- RQ2: LS decreases diversity in the population

LS variants:

LS0: no LS LS1: one step of LS LS2: steepest ascent

GA Parameters:

- Instances: n = 6,7,8,9
- Fitness budget: 500000
- Breeding: Steady-state
- Population size: 50

- Tournament size: 3
- Crossovers: CX1, CX2, CX3
- Mutation rates: 0.7
- Independent Runs: 30

Main Finding: LS greatly improves convergence speed

Main Finding: Convergence speed improved by steepest ascent

Main Finding: No significant differences between LS0 and LS1

Main Finding: LS slows convergence down (but finds better solutions)

Main Finding: No significant differences on solutions' diversity

L. Mariot et al.

Main Finding: Mostly, no significant differences

L. Mariot et al.

Main Finding: LS2 starts to increase diversity

L. Mariot et al.

Main Finding: LS1 and LS2 increase diversity except for CX2

Answers to our research hypotheses:

- RH1: as expected, LS mostly increases convergence speed
- **RH2**: surprisingly, LS has no effects or increases diversity

Possible insights:

- Improve best fitness by increasing fitness budget with LS2
- High diversity might be related to the fitness landscape shape
- Use different initialization strategies?

Summing up:

- We augmented balanced GA with a LS step for the optimization of Boolean functions
- Curiously, LS makes the GA population more diverse

Future work:

- Perform Fitness Landscape Analysis to investigate the effect of different initialization strategies [J21]
- Experiments on other problems with balanced representation (orthogonal arrays [M18], Latin squares [M17], plateaued functions [M15]...)
- Compare with other approaches (e.g., GP [P16])

References

[C21] Carlet, C.: Boolean functions for cryptography and coding theory. Cambridge University Press (2021)
[J21] Jakobovic, D., Picek, S., Martins, M.S.R., Wagner, M.: Toward more efficient heuristic construction of boolean functions. Appl. Soft Comput., 107: 107327 (2021)
[M21] Manzoni, L., Mariot, L., Tuba, E.: Tip the balance: Improving exploration of balanced crossover operators by adaptive bias. In: Proceedings of CANDAR (Workshops) 2021, pp. 234–240 (2021)
[M20] Manzoni, L., Mariot, L., Tuba, E.: Balanced crossover operators in Genetic Algorithms. Swarm Evol. Comput. 54: 100646 (2020)
[M19] Mariot, L., Picek, S., Leporati, A., Jakobovic, D.: Cellular automata based S-boxes. Cryptogr. Commun. 11(1):41–62 (2019)
[M18] Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary Search of Binary Orthogonal Arrays. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.): PPSN 2018 (I). LNCS vol. 11101, pp. 121–133. Springer (2018)
[17] Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary Algorithms for the Design of Orthogonal Latin Squares based on Cellular Automata. In: Proceedings of GECCO'17, pp. 306–313 (2017)
[M15] Mariot, L., Leporati, A.: A Genetic Algorithm for Evolving Plateaued Cryptographic Boolean Functions. In: Proceedings of TPNC 2015: 33–45 (2015)
[M99] Millan, W., Clark, A.J., Dawson, E.: Boolean Function Design Using Hill Climbing Methods. In: Proceedings of ACISP 1999: 1-11 (1999)
[M98] Millan, W., Clark, J., Dawson, E.: Heuristic Design of Cryptographically Strong Balanced Boolean Functions. Proceedings of EUROCRYPT 1998, pp. 489–499 (1998)
[P16] Picek, S., Jakobovic, D., Miller, J.F., Batina, L., Cupic, M.: Cryptographic Boolean functions: One output, many design criteria. Appl. Soft Comput. 40: 635-653 (2016)

L. Mariot et al.