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Optimization with Balanced Representations

I Setting: feasible solutions are encoded by bitstrings
composed of an equal number of 0s and 1s

I Applications: error-correcting codes,
cryptography [M18, M19]
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(b) Orthogonal Arrays
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(c) Latin Squares

L. Mariot et al. The Influence of Local Search on GA with Balanced Representations



Classic Crossover on Balanced Problems

01 0 0 1 0 1 1p2

m χ point

#0 = 4, #1 = 4

#0 = 4, #1 = 4

0 1 0 1 0 1 1 0p1
χ
⇒

0 1 0 1 1 0 1 1 c1

1 0 0 0 0 1 1 0 c2

#0 = 3, #1 = 5

#0 = 5, #1 = 3

Unbalanced! 7

I In general, classic GA crossover operators in GA do not
preserve balancedness

I Approach: employ balancedness-preserving operators [M20]
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Counter-based crossover (CX1)

I Uniform crossover with counters to keep track of the
multiplicities of zeros and ones [M98]

I copy the other value when the threshold is reached

10 0 1 0 1 1 0p1

χ⇒
1 0 0 0 1 0 1 1p2

1 1 0 0 1 1 0 0 c

count[1] = 4 fill with 0

I No differences wrt order of positions to be copied [M20]
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Zero-lengths Crossover (CX2)

Zero-lengths Coding: Integer vector specifying the run lengths of
zeros between consecutive ones

01 0 0 1 0 1 1

0 3 1 0 0

Idea: uniform crossover on the zero-lengths vectors, using an
accumulator to track the sums of the run lengths

01 1 0 1 1 0 0

0c 1 1 0 2
balance
sum of 0

⇓

χ

0 1111p1 0 3 1 0 0 p2
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Map-of-Ones Crossover (CX3)

Map of Ones Coding: Integer vector specifying the positions of
the N/2 ones in the binary string

01 0 0 1 0 1 1

1 5 7 8

Idea: uniform crossover on the maps of ones, avoiding the
insertion of duplicate positions in the child

10 0 0 1 0 1 1

2c 5 7 8
cannot copy

from p1 here

⇓

χ

7642p1 1 5 7 8 p2
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Boolean Functions

I Boolean function of n variables: mapping f : {0,1}n→ {0,1}
I Walsh Transform (WT): correlation of f with linear functions

a ·x = a1x1⊕ · · ·⊕anxn

Wf (a) =
∑

x∈{0,1}n
(−1)f(x)⊕a·x

Example: n = 3 variables

(x1,x2,x3) f(x) Wf (a)

000 0 0
001 1 -4
010 1 0
011 0 4
100 1 0
101 0 4
110 1 0
111 0 4
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Boolean functions in symmetric crypto

K

PRNG

z⊕
PT CT

(a) Stream cipher

PT
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π-box

⊕
Ki

CT

(b) Block cipher

Used in the design of low-level primitives, e.g. [C21]:
I Pseudorandom number generators (PRNG)
I S-boxes F : {0,1}n→ {0,1}n, ...
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Boolean Functions - Cryptographic Properties

I Balancedness: TT of f has the same number of 0s and 1s
I High nonlinearity: the nonlinearity of f is given by the WT as:

nl(f) = 2n−1−
1
2

max
a∈Fn

2

{∣∣∣Wf (a)
∣∣∣}

Ex: f balanced, nl(f) = 23−1− 1
2 ·4 = 2

(x1,x2,x3) f(x) Wf (a)

000 0 0
001 1 -4
010 1 0
011 0 4
100 1 0
101 0 4
110 1 0
111 0 4

I Search space size: 22n
(general),

(
2n

2n−1

)
(balanced)
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Performances of Balanced Crossover

I Optimization objective: max nl(f), keep balancedness
I Encoding: 2n-bit string⇒ Truth table of f : Fn

2→ F2

n = 6 (opt = 26) n = 7 (opt = 56) n = 8 (opt = 116(?)

:-) Balanced crossover does give an advantage over one-point

:-( The advantage does not scale [M20, M21]
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Local Search (LS) Step

I Idea: augment the GA with a (savvy) LS step
I Basic move: swap that improves nonlinearity

10 1 0 1 0 0 1

f(x) = x1 ⊕x2 ⊕x3 (nl = 0)

⇒ 0 1 0 0 1 0 1 1

f(x) = x1 ⊕x1x2 ⊕x3 (nl = 2)

I LS applied after crossover and mutation
I Efficient recomputation of the Walsh transform [M99]:

∆(a) = [(−1)f(y)− (−1)f(z)][(−1)a·z − (−1)a·y ] ,

∆(a) ∈ {−4,0,+4}
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Experimental Settings

Research Hypotheses:
I RQ1: LS speeds up convergence to a local optimum
I RQ2: LS decreases diversity in the population

LS variants:
I LS0: no LS I LS1: one step of LS I LS2: steepest ascent

GA Parameters:
I Instances: n = 6,7,8,9
I Fitness budget: 500000
I Breeding: Steady-state
I Population size: 50

I Tournament size: 3
I Crossovers: CX1, CX2, CX3
I Mutation rates: 0.7
I Independent Runs: 30
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Results Convergence n = 6

Main Finding: LS greatly improves convergence speed
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Results Convergence n = 7

Main Finding: Convergence speed improved by steepest ascent
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Results Convergence n = 8

Main Finding: No significant differences between LS0 and LS1
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Results Convergence n = 9

Main Finding: LS slows convergence down (but finds better
solutions)
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Results on Diversity n = 6

Main Finding: No significant differences on solutions’ diversity
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Results on Diversity n = 7

Main Finding: Mostly, no significant differences
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Results on Diversity n = 8

Main Finding: LS2 starts to increase diversity
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Results on Diversity n = 9

Main Finding: LS1 and LS2 increase diversity except for CX2
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Key Take Aways

Answers to our research hypotheses:
I RH1: as expected, LS mostly increases convergence speed
I RH2: surprisingly, LS has no effects or increases diversity

Possible insights:
I Improve best fitness by increasing fitness budget with LS2
I High diversity might be related to the fitness landscape shape
I Use different initialization strategies?
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Conclusions and Future Works

Summing up:
I We augmented balanced GA with a LS step for the

optimization of Boolean functions
I Curiously, LS makes the GA population more diverse

Future work:
I Perform Fitness Landscape Analysis to investigate the effect

of different initialization strategies [J21]
I Experiments on other problems with balanced representation

(orthogonal arrays [M18], Latin squares [M17], plateaued
functions [M15]...)

I Compare with other approaches (e.g., GP [P16])
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