

Design of S-boxes Defined with CA Rules CF 2017 / Mal-loT – Siena

Stjepan Picek¹, Luca Mariot², Bohan Yang¹, Domagoj Jakobovic³, Nele Mentens¹

¹ KU Leuven, imec-COSIC, Belgium

² DISCo, Università degli Studi Milano - Bicocca, Italy

³ University of Zagreb, Croatia

luca.mariot@disco.unimib.it

May 15, 2017

Introduction

- S-boxes are crucial components in block ciphers
- Cellular Automata (CA) represent an interesting framework for designing S-boxes
- Most known example of CA-based S-box: χ transform, used for instance in Keccak [Keccak11]
- Goal: Find CA rules which induce S-boxes with good cryptographic and implementation properties

Boolean Functions and S-boxes

- **Boolean function**: a mapping $f: \mathbb{F}_2^n \to \mathbb{F}_2$, where $\mathbb{F}_2 = \{0, 1\}$
- (n,m) function (or S-box): a vectorial Boolean function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$
- Each output coordinate of F is described by a coordinate function $F_i: \mathbb{F}_2^n \to \mathbb{F}_2$
- ▶ Component function: given $v \in \mathbb{F}_2^m \setminus \{0\}$ and $x \in \mathbb{F}_2^n$,

$$v \cdot F = v_1 \cdot F_1(x) \oplus \cdots \oplus v_m \cdot F_m(x)$$

where \cdot is the logical AND while \oplus is the XOR

Cryptographic Properties of (n, m)-Functions (1/2)

- **Balancedness**: for each output $y \in \mathbb{F}_2^m$, exactly 2^{n-m} input values map to y under F
- ▶ Balanced (n, n)-functions \Leftrightarrow bijective S-boxes
- Walsh Transform of F:

$$W_F(a,v) = \sum_{x \in \mathbb{F}_2^m} (-1)^{v \cdot F(x) \oplus a \cdot x}, \ a \in \mathbb{F}_2^n, \ v \in \mathbb{F}_2^m \setminus \{\underline{0}\}.$$

Nonlinearity: minimum Hamming distance of F from all affine functions:

$$N_F = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n, \ v \in \mathbb{F}_2^m \setminus \{0\}} \left| W_F(a, v) \right|.$$

Cryptographic Properties of (n, m)-Functions (2/2)

F is δ-Differential Uniform iff:

$$|\{x \in \mathbb{F}_2^n : F(x \oplus a) \oplus F(x) = b\}| \le \delta, \ \forall a \in \mathbb{F}_2^n \setminus \{\underline{0}\}, \ b \in \mathbb{F}_2^m$$

- Algebraic Degree: maximum algebraic degree of the component functions of F
- The Branch Number of F is defined as

$$b_F = \min_{a,b \neq a} (HW(a \oplus b) + HW(F(a) \oplus F(b)))$$

where HW denotes the Hamming weight

Cellular Automata (CA)

▶ A (n,n)-function F defined by a local rule $f: \mathbb{F}_2^{\delta} \to \mathbb{F}_2$ with $\delta < n$. such that

$$F(x_1,\dots,x_n)=(f(x_1,\dots,x_{\delta}),f(x_2,\dots,x_{\delta+1}),\dots,f(x_n,\dots,x_{\delta-1}))$$

 \triangleright The local rule is applied to the neighborhood of size δ of each input cell with periodic boundary conditions

Example:
$$n = 8$$
, $\delta = 3$, $f(x_i, x_{i+1}, x_{i+2}) = x_i \oplus x_{i+1} \oplus x_{i+2}$

1 1 0 0 0 0 1 0 1

Parallel update

☐ Global rule F

The Keccak χ transform

- Local rule: $f(x_1, x_2, x_3) = x_1 XOR((NOT(x_2ANDx_3)))$
- Invertible (balanced) for every odd size *n* of the CA [Daemen94]
- ▶ Used in Keccak with n = 5, resulting in an S-box with $N_F = 8$ and $\delta = 8$ [Keccak11]

Problem Statement

- ▶ Goal: Find CA of length *n* and local rule of size $\delta = n$ having cryptographic properties equal to or better than those of other real-world S-boxes (e.g. Keccak [Keccak11], ...)
- \triangleright Considered S-boxes sizes: from n=4 to n=8
- ▶ With CA, exhaustive search is possible up to n = 5
- But we are also interested in implementation properties!
- ➤ ⇒ Using tree encoding, exhaustive search is already unfeasible for n=4
- We adopted an evolutionary heuristic Genetic Programming

Genetic Programming (GP)

- Optimization method inspired by evolutionary principles, introduced by Koza [Koza93]
- Each candidate solution (individual) is represented by a tree
 - Terminal nodes: input variables
 - Internal nodes: Boolean operators (AND, OR, NOT, XOR, ...)
- New solutions are created through genetic operators like tree crossover and subtree mutation applied to a population of candidate solutions
- Optimization is performed by evaluating the new candidate solutions wrt a fitness function

GP Tree Encoding - Example

Fitness Function

- Main cryptographic properties: balancedness (BAL = 0 if F is balanced, -1 otherwise), nonlinearity N_F and δ -uniformity δ_F
- \triangleright Implementation properties: weight w_i defined by GE measure (# of equivalent NAND gates)
 - NAND and NOR gates: w_i = 1
 - ➤ XOR gate: w_i = 2
 - ► *IF* gate: $w_l = 2.33$
 - ► *NOT* gate: $w_l = 0.667$
 - area penalty: weighted sum of all operators in a solution
- Fitness function used:

$$fitness(F) = BAL + \Delta_{BAL,0}(N_F + (2^n - \delta_F)) + 1/area_penalty$$
 where $\Delta_{BAL,0} = 1$ if F is balanced, 0 otherwise

Experimental Setup

- Problem instance / CA size: n = 4 up to n = 8
- Maximum tree depth: equal to n
- Genetic operators: simple tree crossover, subtree mutation
- Population size: 500
- Stopping criterion: 500000 fitness evaluations
- Parameters determined by initial tuning phase on n = 5 case

Results – Crypto Properties

n	N_F	deg _F	deg_F^{-1}	$\delta_{ extsf{ iny F}}$	b _F	Rule
4×4	4	3	3	4	2	$IF(((x_4 NOR x_2) XOR x_1), x_3, x_2)$
5×5	8	2	3	8	2	$((x_3 NOR NOT(x_5)) XOR x_2)$
5×5	8	2	3	4	2	$((x_5 NAND (x_3 XORx_1)) XOR x_2)$
5×5	12	2	3	2	2	$(IF(x_2, x_3, x_5) XOR(x_1 NAND NOT(x_4)))$

- for n = 4 and n = 5, we obtained CA rules inducing S-boxes with optimal crypto properties
- for n > 5, GP finds S-boxes with optimal cryptographic properties up to n = 7, but with too high implementation costs

A Posteriori Analysis – Implementation Properties, n = 4

Table: Power is in nW, area in GE, and latency in ns. DPow: dynamic power, LPow: cell leakage power

Size	4×4	Rule	PRESENT [Present07]					
DPow.	470.28	4 LPow:	430.608	3 Area:	22.67	Latency:0.27		
Size	4×4 Rule Piccolo [Piccolo11]					lo11]		
DPow.	222.48	2LPow:	215.718	3 Area:	12	Latency:0.25		
Size	4×4	Rule	tule IF(((v3 NOR v1) XOR v0), v2, v1)					
DPow.	242.52	LPow:	337.47	Area:	16.67	Latency:0.14		

A Posteriori Analysis – Implementation Properties, n = 5

Table: Power is in nW, area in GE, and latency in ns. DPow: dynamic power, LPow: cell leakage power

Size	5×5	Rule	Keccak [Keccak11]					
DPow.	321.68	4 LPow:	299.725	Area:	17	Latency:0.14		
Size	5×5	Rule	((v	2 NOR	NOT(v4	-)) XOR v1)		
DPow.	324.84	9 LPow:	308.418	Area:	17	Latency:0.14		
Size	5×5	Rule	((v4 l	NAND	(v2 XOR	v0)) XOR v1)		
DPow.	446.78	2 LPow:	479.33	Area:	24.06	Latency:0.2		
Size	5×5	Rule	(IF(v1, v	2, v4) >	KOR (v0	NAND NOT(v3)))		
DPow.	534.01	5 LPow:	493.528	Area:	26.67	Latency:0.17		

Example of Optimal CA S-box found by GP

Conclusions

- We used Genetic Programming to evolve CA rules generating S-boxes with good cryptographic properties and low implementation cost
- From the cryptographic standpoint, GP is able to find S-boxes with optimal properties up to size n=7
- For the implementation cost, the best evolved S-boxes are similar to those already published in the literature up to n=5(e.g. Keccak)
- For n > 5, the implementation cost gets worse

Future Work

- The main avenue for future research is to improve the implementation costs of the solution evolved by GP
- A couple of ideas to achieve this goal:
 - Use power analysis with an a priori approach (include it in th fitness)
 - Use switching technique (different CA rules are used on different input variables)
- Other future direction: improve cryptographic properties for the n > 5 case

References

- [Present07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw, Y. Seurin, and C. Vikkelsoe. 2007. PRESENT: An Ultra-Lightweight Block Cipher. CHES 2007: 450-466.
- [Daemen94] Joan Daemen, Rene Govaerts, and Joos Vandewalle. 1994. Invertible shift-invariant transformations on binary arrays. Appl. Math. Comput. 62, 2 (1994), 259 – 277
- [Koza93] J. R. Koza: Genetic programming on the programming of computers by means of natural selection. Complex adaptive systems, MIT Press 1993
- [Piccolo11] K. Shibutani, T. Isobe, H. Hiwatari, Ai Mitsuda, T.Akishita, T. Shirai: Piccolo: An Ultra-Lightweight Blockcipher. CHES 2011: 342-357