Radboud University

New Directions in Al-based Cryptography

Luca Mariot https://lucamariot.org

Dagstuhl Seminar - Intelligent Security 11 October 2022

AI Methods for Symmetric Cryptography

Symmetric ciphers require several low-level primitives, such as:

(a) Pseudorandom Generators

(b) Boolean functions and S-boxes

1	3	4	2					
4	2	1	3					
2	4	3	1					
3	1	2	4		1	4	2	3
:---	:---	:---	:---					
4	2	4	1					
4	1	3	2					
2	1	4						

(c) Latin Squares and Orthogonal Arrays

Al approach for symmetric crypto

- "Traditional" approach: ad-hoc and algebraic constructions
- "AI" approach: support the designer using AI methods:
- Optimization (Evolutionary algorithms, swarm intelligence...)

- Computational models (cellular automata, neural networks...)

\[

\]

1	0	0	1	1	0

Genetic Algorithms (GA) \& Genetic Programming (GP)

- Black-box optimization of a fitness function [L15]
- Work on a coding of the solutions
- GA Encoding: bitstrings
- GP Encoding: trees

Use of EA in symmetric cryptography

Design of primitives as combinatorial optimization problems, examples [C21, M22]:

- Boolean functions $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ for stream ciphers

- S-Boxes $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ for block ciphers

Possible advantages of using EA for this search [P16, M19b]:

- Diversity of solutions, due to the "blindness" of EA
- Flexibility of EA (optimizing several properties at once

Cellular Automata

- One-dimensional Cellular AutomatA (CA):

Example: $n=6, d=3, f\left(s_{i}, s_{i+1}, s_{i+2}\right)=s_{i} \oplus s_{i+1} \oplus s_{i+2}$

No Boundary CA

Periodic Boundary CA

- Each cell updates its state $s \in\{0,1\}$ by applying a local rule $f:\{0,1\}^{d} \rightarrow\{0,1\}$ to itself and the $d-1$ cells on its right

Cellular Automata and Cryptography

Goal: investigate how CA can be used in the design of cryptographic primitives [W86, L13]

Why CA?

1. Security from Complexity
2. Efficient Implementation

Real world CA-Based Crypto: Keçak χ S-box

- Local rule: $\chi\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \oplus\left(1 \oplus\left(x_{2} \cdot x_{3}\right)\right)$ (rule 210)
- Invertible for every odd size n of the CA

- Used as a PBCA with $n=5$ in Keccak [B11]

CA S-boxes found by GP

Idea: evolve a CA rule that defines an S-box, optimizing:

- crypto properties (nonlinearity, differential uniformity) [M19a]
- implementation properties (area, latency)

- Up to size 7×7 : results on par or slightly better than the state of the art (Keccak, PRESENT, Piccolo, ...) [P17]

New Direction 1:
 Evolve constructions of crypto primitives

Evolving Constructions of Boolean functions with GP

Predefined functions:

f_{0}	1001
f_{1}	1010

v_{0}	0101
v_{1}	0011

- Idea: Do not evolve primitives directly, but rather their mathematical constructions [C22]
- Use Boolean minimizers to interpret the constructions
- Research Question: Does GP obtain previously known constructions or new ones?

Output: | 1010 | 1001 | 0101 | 1001 |
| :--- | :--- | :--- | :--- |
| | | | |

New Direction 2:
 Evolutionary-based distinguishers

Differential Cryptanalysis

- Idea: chosen plaintext attack, see how differences propagate to the ciphertext

- Goal: Compute differential probability of $\Delta \rightarrow \Delta^{*}$
- Distinguishing attack: given (x, x^{\prime}), classify if it is a random or real pair
- Tool: Difference Distribution Table (DDT)

Deep learning-based differential distinguishers

- A. Gohr (CRYPTO 2019): train a CNN as a differential distinguisher
- Better accuracy than pure distinguishers on SPECK32/64

- Problem: learned models are hardly interpretable!

[^0]
New Direction 2: GP-based distinguishers

- Idea: Replace convolutional layers with convolutional GP [J21]

- Research Question: Is "convolutional" GP able to reach CNN performances, and yield models easier to interpret?

New Direction 3:
 Evolutionary approach to adversarial examples

Adversarial Examples in DNN

- DNN known to be vulnerable to adversarial examples (AE)
- Idea: perturb a valid example to mess the DNN's classification

Classification: Panda

Noise perturbation

Classification: Gibbon

- Perturbation moves the example beyond the decision boundary of a DNN

[^1]
Evolutionary Construction of AE

- Perturbations for AE can be minimal
- One-pixel attack: Modify just one pixel in a valid example

- Pixel selection done with Evolutionary Algorithms

[^2]
New Direction 2: LON Analysis of Loss Landscapes

- Idea: use fitness landscape analysis on the space of AE
- Approach: continuous variant of Local Optima Networks

Research Questions:

- Is it possible to improve EA-based one-pixel attacks?
- Gain insights to build more robust DNN?

[^3]
Summary

Where we arrived so far:

- Evolutionary algorithms and CA give interesting alternatives for the design of symmetric primitives
- Flexibility of optimization objectives

Looking at the future:

- Plenty of open problems in the design research thread, but...
... mainly of mathematical interest
- Leverage on the interpretability of evolutionary models for cybersecurity applications

References

[B11] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche: The Keccak reference. (January 2011)
[C21] C. Carlet: Boolean functions for cryptography and coding theory. Cambridge University Press (2021)
[C22] C. Carlet, M. Djurasevic, D. Jakobovic, L. Mariot, S. Picek: Evolving constructions for balanced, highly nonlinear boolean functions. Proceedings of GECCO 2022, pp. 1147-1155 (2022)
[J21] D. Jakobovic, L. Manzoni, L. Mariot, S. Picek, M. Castelli: ColnGP: convolutional inpainting with genetic programming. Proceedings of GECCO 2021, pp. 795-803 (2021)
[L13] A. Leporati and L. Mariot: 1-Resiliency of Bipermutive Cellular Automata Rules. Proceedings of Automata 2013, pp. 110-123 (2013)
[L15] S. Luke. Essentials of Metaheuristics. Lulu, 2015. 2nd ed.
[M22] L. Mariot, D. Jakobovic, T. Bäck, J. Hernandez-Castro: Artificial Intelligence for the Design of Symmetric Cryptographic Primitives. Security and Artificial Intelligence 2022, pp. 3-24 (2022)
[M19a] L. Mariot, S. Picek, A. Leporati, and D. Jakobovic. Cellular automata based S-boxes. Cryptography and Communications 11(1):41-62 (2019)
[M19b] L. Mariot, D. Jakobovic, A. Leporati, S. Picek: Hyper-bent Boolean Functions and Evolutionary Algorithms. Proceedings of EuroGP 2019, pp. 262-277 (2019)
[P16] S. Picek, D. Jakobovic, J.F. Miller, L. Batina, M. Cupic: Cryptographic Boolean functions: One output, many design criteria. Appl. Soft Comput. 40: 635-653 (2016)
[P17] S. Picek, L. Mariot, B. Yang, D. Jakobovic, N. Mentens: Design of S-boxes defined with cellular automata rules. Conf. Computing Frontiers 2017: 409-414 (2017)
[W86] S. Wolfram. Cryptography with cellular automata. In CRYPTO '85, pp. 429-432 (1986)

[^0]: ${ }^{1}$ Image credits: A. Benamira et al., A Deeper Look at Machine Learning-Based Cryptanalysis, EUROCRYPT 2021

[^1]: ${ }^{2}$ Example credits: I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and Harnessing Adversarial Examples, ICLR 2015

[^2]: ${ }^{3}$ Image credit: J. Su et al., One Pixel Attack for Fooling Deep Neural Networks. IEEE Trans. Evol. Comput 23(5):828-840 (2019)

[^3]: ${ }^{4}$ Image credit: J. Adair et al., Local Optima Networks for Continuous Fitness Landscapes. In: GECCO'21 (Companion), pp.1407-1414. ACM (2019)

