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Cryptography

Basic Goal of Cryptography: Enable two parties (Alice and Bob, A
and B) to securely communicate over an insecure channel, even in
presence of an opponent (Oscar, O)

Alice Encryption

KE

Channel

Oscar

Decryption

KD

Bob
PT CT CT PT

I PT : plaintext
I CT : ciphertext

I KE : encryption key
I KD : decryption key
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Symmetric cryptosystems

Symmetric cryptosystems (KE = KD = K ) can be classified as:

I Stream ciphers: each symbol of PT is combined with a
symbol of a keystream, computed from K
I Grain
I Trivium
I ...

I Block ciphers: PT is divided in blocks combined with round
keys derived from K through a round function
I DES
I Rijndael (AES)
I ...
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Vernam Stream Cipher

K

PRG

z⊕
PT CT

(a) Encryption

K

PRG

z⊕
CT PT

(b) Decryption

I K : secret key

I PRG: Pseudorandom Generator

I z: keystream

I
⊕

: bitwise XOR

I PT : Plaintext

I CT : Ciphertext

Luca Mariot Cryptographic Criteria of Boolean Functions and S-Boxes



Linear Feedback Shift Registers (LFSR)

I Device computing the binary linear recurring sequence

sn+k = a + a0sn + a1sn+1 + · · ·+ ak−1sn+k−1

D0

Output

a0 a1

+

D1

· · ·

ak−2

+· · ·

Dk−2

ak−1

+

Dk−1

I Too weak as a PRG: 2k consecutive bits of keystream are
enough to recover the LFSR initialization via the
Berlekamp-Massey algorithm
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An Example of PRG: The Combiner Model

I a Boolean function f : {0,1}n→ {0,1} combines the outputs of
n LFSR [2]

LFSR 1 x1

LFSR 2 x2
...

...

f(x1,x2, · · · ,xn)

LFSR n xn

next bit

I Security of the combiner⇔ cryptographic properties of f
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Boolean Functions - Basic Definitions

Boolean function: a mapping f : Fn
2→ F2, where F2 = {0,1}

I Truth table: vector Ωf specifying f(x) for all x ∈ F2

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 1 1 0 0 0

I Algebraic Normal Form (ANF): Sum (XOR) of products (AND)
over the finite field F2

f(x1,x2,x3) = x1 ·x2⊕x1⊕x2⊕x3

I Walsh Transform: correlation with the linear functions defined
as ω ·x = ω1x1⊕ · · ·⊕ωnxn

F̂(ω) =
∑
x∈Fn

2

(−1)f(x)⊕ω·x
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Cryptographic Properties: Balancedness

I Hamming weight wH(f): number of 1s in Ωf

I A function f : Fn
2→ F2 is balanced if wH(f) = 2n−1

I Walsh characterization: f balanced⇔ F̂(0) = 0

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 1 1 0 0 0

⇓

f is balanced

I Unbalanced functions present a statistical bias that can be
exploited in attacks
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Cryptographic Properties: Algebraic Degree

I Algebraic degree d: the degree of the multivariate polynomial
representing the ANF of f

f(x1,x2,x3) = x1 ·x2⊕x1⊕x2⊕x3

⇓

f has degree d = 2

I Linear functions ω ·x = ω1x1⊕ · · ·⊕ωnxn have degree d = 1
I Boolean functions of high degree make the attack based on

Berlekamp-Massey algorithm less effective
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Cryptographic Properties: Nonlinearity

I Nonlinearity nl(f): Hamming distance of f from linear functions
I Walsh characterization:

nl(f) = 2n−1−
1
2

max
ω∈Fn

2

{∣∣∣F̂(ω)
∣∣∣}

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 1 1 0 0 0

F̂(ω) 0 0 0 0 −4 4 4 4

⇓

nl(f) = 23−1−
1
2
·4 = 2

I Functions with high nonlinearity resist fast-correlation
attacks
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Cryptographic Properties: Resiliency

I t-Resiliency: when fixing any t variables, the restriction of f
stays balanced

I Walsh characterization:

F̂(ω) = 0 ∀ω : wH(ω) ≤ t

(x1,x2,x3) 000 100 010 110 001 101 011 111
Ωf 0 1 1 1 1 0 0 0

F̂(ω) 0 0 0 0 −4 4 4 4

⇓

F(001) = −4⇒ f is NOT 1-resilient

I Resilient functions of high order t resist to correlation
attacks
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Bounds and Trade-offs

In summary, f : Fn
2→ F2 should:

I be balanced
I be resilient of high order m
I have high algebraic degree d
I have high nonlinearity nl

But most of these properties cannot be satisfied simultaneously!
I Covering Radius bound: nl ≤ 2n−1−2

n
2−1

I Siegenthaler’s bound: d ≤ n− t −1
I Tarannikov’s bound: nl ≤ 2n−1−2t+1
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Constructions of good Boolean Functions

I Number of Boolean functions of n variables: 22n

I ⇒ too huge for exhaustive search when n > 5!
I Functions used in the combiner model have n ≥ 13 variables

In practice, one usually resorts to:
I Algebraic constructions [2]

I Maiorana-McFarland construction
I Rothaus’ construction
I ...

I Heuristic techniques
I Simulated Annealing [3]
I Evolutionary Algorithms [6]
I ...
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Special classes of functions

Special classes of functions:

I Bent functions: F̂(ω) = ±2
n
2 for all ω

I Reach covering radius bound for n even (maximum
nonlinearity)

I Unfortunately, they are unbalanced: F̂(0) = ±2
n
2

I Plateaued functions: F̂(ω) ∈ {−2λ,0,2λ} for all ω
I Can be balanced
I Reach both Siegenthaler’s and Tarannikov’s bounds
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Block Ciphers: Substitution-Permutation Network

Round function of a SPN cipher:

PT

S5S4S3S2S1 S6 S7 S8 S9 S10

π-box

⊕
Ki

CT

I Si : Fn
2→ F

n
2 are S-boxes providing confusion [8]

I Security of confusion layer⇔ cryptographic properties of Si
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S-Boxes: General definitions

I A Substitution Box (S-box) is a mapping F : Fn
2→ F

m
2 defined

by m coordinate functions fi : Fn
2→ F2

I The component functions v ·F : Fn
2→ F2 for v ∈ Fm

2 of F are
the linear combinations of the fi

f1 f2 f3 f4 f5 f6

(1,0,1,0,1,0) ·F = f1⊕ f3⊕ f5

⇓ F : Fn
2 → F

m
2

x2x1 x3 x4 x5 x6 x7 x8

I In SPN ciphers, one uses S-boxes with m = n
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Balancedness and Algebraic Degree

Balancedness:
I F : Fn

2→ F
m
2 balanced if |F−1(y)|= 2n−m for all y ∈ Fm

2
I F is balanced⇔ all its component functions v ·F are balanced
I Balanced functions with m = n are bijective S-boxes

Algebraic degree:
I Degree of the ANF of F over Fm

2
I Equal to the maximum degree of all coordinate functions
I S-boxes of high degree thwart higher-order differential attacks
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Nonlinearity

I Walsh transform for component v ·F :

F̂(v ,ω) =
∑
x∈Fn

2

(−1)v ·F(x)⊕ω·x

I Nonlinearity for component v ·F :

nl(v ·F) = 2n−1−
1
2

max
ω∈Fn

2

{∣∣∣F̂(v ,ω)
∣∣∣}

I The nonlinearity of a S-box F is defined as the minimum
nonlinearity among all its component functions

I S-boxes with high nonlinearity allow to resist to linear
cryptanalysis attacks
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Differential Uniformity

I delta difference table of F wrt a,b:

DF (a,b) =
{
x ∈ Fn

2 : F(x)⊕F(x ⊕a) = b
}
.

I Given δF (a,b) = |DF (a,b)|, the differential uniformity of F is:

δF = max
a ∈ {0,1}n∗
b ∈ {0,1}m

δF (a,b).

I S-boxes with low differential uniformity are able to resist
differential cryptanalysis attacks
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Bounds and Special Classes

For nonlinearity:
I Covering Radius Bound (m < n): nl(F) ≤ 2n−1−2

n
2−1

I Bent functions reach this bound (n even)
I Sidelnikov-Chabaud-Vaudenay Bound (m = n):

nl(F) ≤ 2n−1−2
n−1

2

I Almost Bent functions (AB) reach this bound (n odd)

Bounds for differential uniformity:
I For m < n: δF ≥ 2n−m

I Bent functions reach this bound (n even)
I For m = n: δF ≥ 2

I Almost Perfect Nonlinear functions (APN) reach this bound
(AB⇒ APN)

I Exist for even and odd n
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Rijndael S-box [5]

I Size 8×8 (works on bytes)
I Composition of an affine transformation and a nonlinear

transformation
I Nonlinear transformation: Inversion in F28

F(x) =

x−1 , if x , 0

0 , if x = 0

I Nonlinearity: 112, Differential uniformity: 4
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Keccak χ S-box

I Cellular Automaton invertible for every odd size n [4]
I : Local rule: χ(xi ,xi+1,xi+2) = xi ⊕ (1⊕ (xi+1 ·xi+2))

I Used as a 5×5 S-box in the Keccak specification of SHA-3
standard [1]

I Nonlinearity: 32, Differential uniformity: 8
I Other CA S-boxes with optimal properties found in [7]
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Conclusions

I Boolean functions and S-boxes play a fundamental role in the
design of symmetric ciphers

I The design of Boolean functions and S-boxes with good
properties is a hard optimization problem

I Several other topics not covered here (see [2]:
I Affine equivalence relation
I Other properties (algebraic immunity, ...)
I Relationship with error-correcting codes (Reed-Muller codes)
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