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INTRO TO 
CYBERSECURITY



THE CIA TRIAD OF SECURITY

When building a secure system, we focus on three aspects [1]:

Confidentiality

Data are protected 
from unauthorized 

access/use

Integrity

Data have not been 
altered by 

unauthorized parties

Availability

Data are available 
to authorized parties 

when needed



THREAT MODELING

• Threat: potential violation of a 
security goal

• Attack: intentional violation of 
a security goal

• Security: protection from 
attacks vs. cost

Security is economics!



ACHIEVING SECURITY

Prevention
• Cryptography
• Intrusion Protection

Prevention

DetectionAnalysis
Detection
• Intrusion Detection
• Malware DetectionAnalysis

• Forensics
• Incident Response



AI FOR SECURITY

Challenges:

• New vulnerabilities, new attack vectors

• Reducing human intervention

Prevention

DetectionAnalysis

Approach: ‘‘Smarter’’ Security

• Automate the design process

• Use AI techniques (e.g. Evolutionary 
Computing) for the automation

AI

AI

AI



CRYPTOGRAPHY



CRYPTOGRAPHY

WHAT IS CRYPTOGRAPHY?

Κρυπτός (kryptós)

Hide, conceal
γράφειν (gráphein)

write

Historically: the art of hiding the meaning of messages, with the goal of 
protecting their confidentiality



THE CIA TRIAD IN CRYPTOGRAPHY

In cryptography, the ‘‘A’’ is usually replaced by Authenticity:

Confidentiality

Data are protected 
from unauthorized 

access/use

Integrity

Data have not been 
altered by 

unauthorized parties

Authenticity

Data have been 
created by the 
intended party

Encryption schemes Authentication codes, Digital signatures



SYMMETRIC-KEY ENCRYPTION SCENARIO

Alice BobOscar

ChannelEncryption Decryption
m

c c

k

m

k

m: plaintext message c: ciphertext messagek: encryption/decryption key



SYMMETRIC-KEY ENCRYPTION SCENARIO

• The same key k is used both for encryption 
and decryption [6]

• The scheme is ‘‘secure’’ as long as Oscar 
does not know k

• Requires sharing k before communicating

• Here, we just assume Alice and Bob shared k 
somehow



KERCHOFFS’S PRINCIPLE (1883)

‘‘The encryption/decryption 
system must not be kept 
secret, and can be stolen by 
the enemy without causing 
any problem.’’

• The encryption scheme is known to 
the attacker [7]

• Security relies only on the secrecy of 
the encryption key



STREAM CIPHERS - ENCRYPTION

• Idea: Alice encode all messages as stream 
of bits, 

• A Pseudo Random Generator (PRG) is 
used to generate a pad             of the 
same length of the message [6]

• The seed of the PRG is the key

• Encryption: Bitwise XOR between 
message and pad

seed

PRG

pad

ciphertext

XOR
plaintext



LINEAR FEEDBACK SHIFT REGISTERS (LFSR)

• A device computing a linear recurring sequence (LRS)

• Problem: very weak as a cryptographic PRG [6]



IMPROVING LFSR – COMBINER MODEL FOR PRG

• Idea: use n LFSRs instead of one [4]

• LFSRs outputs combined using a 
Boolean function: 

• Security of the PRG: cryptographic 
properties of 



BOOLEAN FUNCTIONS

• A mapping                                 represented by a truth table

• The function must satisfy some properties to resist specific attacks [4]:

• Balancedness (equal number of 0s and 1s)

• High Nonlinearity (Hamming distance from linear functions)

• High algebraic degree, etc. ...



EVOLUTIONARY 
ALGORITHMS FOR 
BOOLEAN FUNCTIONS



OPTIMIZATION PROBLEM

• Given           , how do we fill the table so that    is balanced and highly nonlinear?  

• The truth table has size      so there are       combinations 

• For concrete security, we need 

• But exhaustive search is already unfeasible for           !



EVOLUTIONARY ALGORITHMS (EA)

• Optimization algorithms loosely based 
on evolutionary principles

• Genetic Algorithms (GA): introduced by 
John Holland (1975)

• GA genotype: fixed-length bitstrings

• phenotype: truth table of    [5]



THE EA LOOP



SELECTION

• Roulette-Wheel: selection probability 
proportional to individual’s fitness

• Tournament: select the fittest individual 
from a random sample of t individuals



CROSSOVER

• Idea: recombine the genes of two parents (Exploitation)

GA Example: One-Point Crossover

• Problem: how dow we ensure balancedness for cryptography?

• We could optimize it in the fitness function...



BALANCED CROSSOVER

• Idea: use counters to keep track of the numbers of 1s in the child [9, 13]

GA Example: Counter-based Crossover

• If we start from balanced parents, we get balanced children



MUTATION

• Idea: introduce new ‘‘genetic material’’ in the offspring (Exploration)

GA Example: Bit-flip mutation

• For balancedness: randomly swap some bits instead of flipping them



GENETIC PROGRAMMING (GP)

• Idea: evolve computer programs to 
solve specific tasks

• GP Genotype: a syntactic tree

• Leaf nodes: input variables
• Internal nodes: operators (e.g. AND,

OR, NOT, XOR, ...)

• Phenotype: evaluate the tree for all 
possible assignments of the leaf nodes



GP CROSSOVER & MUTATION

Subtree Crossover

Subtree Mutation

• In general: not possible to preserve the 
balancedness of the Boolean function

• Nevertheless: GP usually fares better 
than (balanced) GA [10, 12, 14, 15]

• Other approaches: use GP to combine 
existing functions with high nonlinearity 
[3, 10]



NETWORK INTRUSION 
DETECTION



INTRUSION DETECTION

• Intrusion Detection System: Monitoring 
for attacks

• Attack: attempt to compromise 
confidentiality, integrity, or availability 

• Several types of IDS:

• Monitor source: network, application, 
server, ...

• Analysis type: signatures, rules, 
machine learning, ...



NETWORK INTRUSION DETECTION (NIDS)

• Recognize 
attacks

• Reporting

• Blocking

• Attack vectors

• Vulnerabilities• Traffic

Moni-
toring

Analysis

DetectionResponse



SIGNATURE-BASED NIDS

• Traditional type of NIDS: signature-based [16]

• Leverages pattern detection of known attacks (e.g., with Regular Expressions)



SIGNATURE-BASED NIDS

Common problems:

• Signatures from known attacks required

• Signature updates required

• Scalability issues, complexity and attack 
frequency

• Unable to detect unknown attacks



ANOMALY-BASED NIDS

• Idea: focus on benign traffic only [16]

• Learn a model of “normal” network traffic

• Assumptions:

• Mainly benign training data
• Unknown attacks differ from benign 

data

• Requires careful feature engineering

Easy example: spot the 
anomalous fish



ANOMALY-BASED NIDS

Features:

1. Size
2. Accessories
3. …

Relevant 
anomaly

Anomaly?

Anomaly?

Another example: who is not Homer?



ANOMALY-BASED NIDS

• Risk: detection of irrelevant 
anomalies as attacks (false 
positives)

• Choice of features is crucial

• Attacks are deviations from 
normality

• Various techniques: SVM, KDE, 
evolutionary algorithms…



ANOMALY-BASED NIDS 
WITH GENETIC 
PROGRAMMING



SYMBOLIC REGRESSION WITH GP

• Problem: use GP to find a symbolic expression that minimizes the errors in 
approximating a given set of data points



KERNEL DENSITY ESTIMATION FOR NIDS

• Problem: given a dataset of “normal” 
network packets, identify anomalies

• Possible approach: use kernel density 
estimation (KDE) [2]

• Given training points                           , 
estimate the density at    as:

     where       is a kernel function (e.g., 
     a Gaussian distribution



GENETIC PROGRAMMING FOR NIDS

• KDE is expensive to compute at query time

• Need to compute                                         for 
every new network packet 

• Idea: use GP to learn a surrogate    that 
approximates well the density [2]: 

• Symbolic regression problem:



SUMMARY



CONCLUDING THOUGHTS

• EA are quite versatile to solve different 
problems in cybersecurity

• Examples seen here:

• Cryptography
• Network Intrusion Detection

• Many other applications!

• Side-channel analysis [17]
• Adversarial learning [18]
• …



THANKS!
QUESTIONS?
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