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Combinatorial Designs

I A collection A of blocks of a finite set X satisfying particular
balancedness properties [S04]

I Example: the Fano Plane

X ={1,2,3,4,5,6,7}

A={123,145,167,246,

257,347,356}
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I Interesting source of optimization problems for Evolutionary
Algorithms (EA), to play with different
representations [MMT20, KPMJL18, MPJL18, MPJL17]
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Permutation Codes

Definition
A Permutation Code (or Permutation Array, PA) of length n and
distance d is an m×n array such that:
I each row is a permutation of [n] = {1, · · · ,n}
I any two rows are at Hamming distance at least d

Example: a PA(6,5)

125634 142365 164523 236514 251346 316425
354612 362154 413562 426351 435126 461235
512643 534261 546132 623145 631452 645213

In other words, any two permutations in the code must disagree in
at least d positions
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Largest Possible Codes

From a coding-theoretic point of view, the main question for PA is:

What is the largest possible size M(n,d) for a PA(n,d)?

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

I Particular case: n = d, then M(n,d) = n (Latin square)
I In general, M(n,d) is bounded by the Gilbert-Varshamov and

Sphere-packing bounds:
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Applications and Constructions

PA have several applications, such as:
I Error-correcting codes in powerline communications [H00]
I Diffusion layers in block ciphers [DCL00]
I Rank modulation in flash memories [JMSB08]
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Available construction methods:
I Algebraic constructions (permutation polynomials, ...)
I Heuristics (branch and bound, iterative clique search, ...)

... What about Evolutionary Algorithms?
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Evolutionary Construction All-at-Once

I Straightforward approach: each individual directly
represents an m×n array of permutations

I Permutation-based GA operators (CX/PMX crossover, swap
mutation) are applied in a row-wise fashion

I Drawback: the search space is really huge! Sn,m =
(
n!
m

)
d\n 6 7 8 9 10

n−2
Sn,m 3.07 ·10140 2.31 ·10277 1.81 ·10843 1.20 ·101658 3.83 ·102978

M(n,d) 120 77 336 504 720

n−1
Sn,m 3.41 ·1036 1.91 ·10106 1.10 ·10184 3.26 ·10297 1.61 ·10453

M(n,d) 18 42 56 72 49

n
Sn,m 1.89 ·1015 1.63 ·1023 1.73 ·1034 3.01 ·1045 1.10 ·1060

M(n,d) 6 7 8 9 10
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Iterative Evolutionary Construction

Idea: incrementally optimize a single permutation at a time

1. Start from a random permutation of [n] and add it to the PA

2. Apply a permutation GA to search for a new permutation

3. When a permutation at distance ≥ d from all previous ones is
found, add it to the PA

4. If the fitness budget has not expired, go back to 2. Otherwise,
return the PA constructed so far

Advantage: search space size is much smaller

Disadvantage: greedy approach
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Fitness Functions (1/2)

We experimented with four fitness functions:

I Fitness 1: maximize sum of distances, only if they are ≥ d

fit1(p) =
∑
pi∈P

δi ·dH(p,pi), where δi =

1, if dH(p,pi) ≥ d,

0, otherwise

I Fitness 2: maximize sum of discounted distances

fit2(p)=
∑
pi∈P

δ′i ·dH(p,pi), where δ′i =

1, if dH(p,pi) ≥ d,

2dH(p,pi)−d , otherwise
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Fitness Functions (2/2)

We experimented with four fitness functions:

I Fitness 3: maximize minimum distance:

fit3(p) = min
pi∈P

{
dH(p,pi)

}
I Fitness 4: minimize number of pairs at Hamming distance < d

fit4(p) =
∣∣∣{(p,pi) : pi ∈ P, dH(p,pi) < d}

∣∣∣
Each fitness considers only the pairs formed by the current
permutation and all the previous ones in the PA
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Experimental Setting (1/2)

Random reset:
I If GA does not find a good permutation within a certain fitness

budget, some previous permutations are randomly deleted
I Removed permutations decrease through cooling policy
I Comparison with random search (RS) as inner algorithm

Combinations tested:
I EA1: EA without random reset
I EA2: EA with random reset
I RS1: RS without random reset
I RS2: RS with random reset
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Experimental settings (2/2)

Common Parameters:
I Problem instances: 6 ≤ n ≤ 10, d = n,n−1,n−2
I Termination condition: 107 fitness evaluations
I Each experiment is repeated over 30 independent runs

GA Parameters:
I Selection operator: steady-state with 3-tournament operator
I Population size: 1000 individuals
I Mutation probabilities: pm = 0.3

d\n 6 7 8 9 10

n−2
Sn,m 3.07 ·10140 2.31 ·10277 1.81 ·10843 1.20 ·101658 3.83 ·102978

M(n,d) 120 77 336 504 720

n−1
Sn,m 3.41 ·1036 1.91 ·10106 1.10 ·10184 3.26 ·10297 1.61 ·10453

M(n,d) 18 42 56 72 49

n
Sn,m 1.89 ·1015 1.63 ·1023 1.73 ·1034 3.01 ·1045 1.10 ·1060

M(n,d) 6 7 8 9 10
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Results for n = 9
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Figure: Largest code size achieved by all methods across the problem
instances with n = 9 and d = n−2,n−1.
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Results for n = 10
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Figure: Largest code size achieved by all methods across the problem
instances with n = 10 and d = n−2,n−1.
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Findings & Discussion

Main findings:
I For n = d, EA and RS always reach the maximum size m = n
I Both EA and RS scale badly as n grows (maximum sizes

obtained far from known upper bounds on M(n,d)
I EA and RS behave similarly, except on n = 10
I Surprisingly, fit3 is the best performing fitness

Possible explanations:
I Relatively small size of the local search space
I Exceptional difficulty for EA to find a good solution might be

related to the graph-theoretic interpretation of the problem
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Conclusions and Future Works

Conclusions:
I We applied permutation-based GA to construct permutation

codes in an incremental way
I Results show that this problem is exceptionally difficult for EA,

and in most instance it behaves as RS

Future work:
I Experiment with larger instances
I Exploit the Max-Clique interpretation of the problem [MBS16]
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