
On the Difficulty of Constructing Permutation
Codes by Evolutionary Algorithms

Luca Mariot, Stjepan Picek, Domagoj Jakobovic, Marko
Djurasevic, Alberto Leporati

luca.mariot@ru.nl

EvoAPPS 2022 – Madrid, April 21, 2022



Combinatorial Designs

I A collection A of blocks of a finite set X satisfying particular
balancedness properties [S04]

I Example: the Fano Plane

X ={1,2,3,4,5,6,7}

A={123,145,167,246,

257,347,356}
7

1

2 4

3

6

5

I Interesting source of optimization problems for Evolutionary
Algorithms (EA), to play with different
representations [MMT20, KPMJL18, MPJL18, MPJL17]

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Permutation Codes

Definition
A Permutation Code (or Permutation Array, PA) of length n and
distance d is an m×n array such that:
I each row is a permutation of [n] = {1, · · · ,n}
I any two rows are at Hamming distance at least d

Example: a PA(6,5)

125634 142365 164523 236514 251346 316425
354612 362154 413562 426351 435126 461235
512643 534261 546132 623145 631452 645213

In other words, any two permutations in the code must disagree in
at least d positions

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Largest Possible Codes

From a coding-theoretic point of view, the main question for PA is:

What is the largest possible size M(n,d) for a PA(n,d)?

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

I Particular case: n = d, then M(n,d) = n (Latin square)
I In general, M(n,d) is bounded by the Gilbert-Varshamov and

Sphere-packing bounds:

n!∑d−1
k=0

(
n
k

)
Dk
≤M(n,d) ≤

n!∑b d−1
2 c

k=0

(
n
k

)
Dk

,

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Applications and Constructions

PA have several applications, such as:
I Error-correcting codes in powerline communications [H00]
I Diffusion layers in block ciphers [DCL00]
I Rank modulation in flash memories [JMSB08]

PT

S5S4S3S2S1 S6 S7 S8 S9 S10

π-box

⊕
Ki

CT

Available construction methods:
I Algebraic constructions (permutation polynomials, ...)
I Heuristics (branch and bound, iterative clique search, ...)

... What about Evolutionary Algorithms?

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Evolutionary Construction All-at-Once

I Straightforward approach: each individual directly
represents an m×n array of permutations

I Permutation-based GA operators (CX/PMX crossover, swap
mutation) are applied in a row-wise fashion

I Drawback: the search space is really huge! Sn,m =
(
n!
m

)
d\n 6 7 8 9 10

n−2
Sn,m 3.07 ·10140 2.31 ·10277 1.81 ·10843 1.20 ·101658 3.83 ·102978

M(n,d) 120 77 336 504 720

n−1
Sn,m 3.41 ·1036 1.91 ·10106 1.10 ·10184 3.26 ·10297 1.61 ·10453

M(n,d) 18 42 56 72 49

n
Sn,m 1.89 ·1015 1.63 ·1023 1.73 ·1034 3.01 ·1045 1.10 ·1060

M(n,d) 6 7 8 9 10

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Iterative Evolutionary Construction

Idea: incrementally optimize a single permutation at a time

1. Start from a random permutation of [n] and add it to the PA

2. Apply a permutation GA to search for a new permutation

3. When a permutation at distance ≥ d from all previous ones is
found, add it to the PA

4. If the fitness budget has not expired, go back to 2. Otherwise,
return the PA constructed so far

Advantage: search space size is much smaller

Disadvantage: greedy approach

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Fitness Functions (1/2)

We experimented with four fitness functions:

I Fitness 1: maximize sum of distances, only if they are ≥ d

fit1(p) =
∑
pi∈P

δi ·dH(p,pi), where δi =

1, if dH(p,pi) ≥ d,

0, otherwise

I Fitness 2: maximize sum of discounted distances

fit2(p)=
∑
pi∈P

δ′i ·dH(p,pi), where δ′i =

1, if dH(p,pi) ≥ d,

2dH(p,pi)−d , otherwise

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Fitness Functions (2/2)

We experimented with four fitness functions:

I Fitness 3: maximize minimum distance:

fit3(p) = min
pi∈P

{
dH(p,pi)

}
I Fitness 4: minimize number of pairs at Hamming distance < d

fit4(p) =
∣∣∣{(p,pi) : pi ∈ P, dH(p,pi) < d}

∣∣∣
Each fitness considers only the pairs formed by the current
permutation and all the previous ones in the PA

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Experimental Setting (1/2)

Random reset:
I If GA does not find a good permutation within a certain fitness

budget, some previous permutations are randomly deleted
I Removed permutations decrease through cooling policy
I Comparison with random search (RS) as inner algorithm

Combinations tested:
I EA1: EA without random reset
I EA2: EA with random reset
I RS1: RS without random reset
I RS2: RS with random reset

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Experimental settings (2/2)

Common Parameters:
I Problem instances: 6 ≤ n ≤ 10, d = n,n−1,n−2
I Termination condition: 107 fitness evaluations
I Each experiment is repeated over 30 independent runs

GA Parameters:
I Selection operator: steady-state with 3-tournament operator
I Population size: 1000 individuals
I Mutation probabilities: pm = 0.3

d\n 6 7 8 9 10

n−2
Sn,m 3.07 ·10140 2.31 ·10277 1.81 ·10843 1.20 ·101658 3.83 ·102978

M(n,d) 120 77 336 504 720

n−1
Sn,m 3.41 ·1036 1.91 ·10106 1.10 ·10184 3.26 ·10297 1.61 ·10453

M(n,d) 18 42 56 72 49

n
Sn,m 1.89 ·1015 1.63 ·1023 1.73 ·1034 3.01 ·1045 1.10 ·1060

M(n,d) 6 7 8 9 10

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Results for n = 9

fit1 fit2 fit3 fit4
Fitness function

70

75

80

85

90

Co
de

 si
ze

(a) 9,7

fit1 fit2 fit3 fit4
Fitness function

19

20

21

22

23

24

25

26

Co
de

 si
ze

(b) 9,8

Figure: Largest code size achieved by all methods across the problem
instances with n = 9 and d = n−2,n−1.

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Results for n = 10

fit1 fit2 fit3 fit4
Fitness function

75

80

85

90

95

100

105

Co
de

 si
ze

(a) 10,8

fit1 fit2 fit3 fit4
Fitness function

20

22

24

26

28

30

Co
de

 si
ze

(b) 10,9

Figure: Largest code size achieved by all methods across the problem
instances with n = 10 and d = n−2,n−1.

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Findings & Discussion

Main findings:
I For n = d, EA and RS always reach the maximum size m = n
I Both EA and RS scale badly as n grows (maximum sizes

obtained far from known upper bounds on M(n,d)
I EA and RS behave similarly, except on n = 10
I Surprisingly, fit3 is the best performing fitness

Possible explanations:
I Relatively small size of the local search space
I Exceptional difficulty for EA to find a good solution might be

related to the graph-theoretic interpretation of the problem

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



Conclusions and Future Works

Conclusions:
I We applied permutation-based GA to construct permutation

codes in an incremental way
I Results show that this problem is exceptionally difficult for EA,

and in most instance it behaves as RS

Future work:
I Experiment with larger instances
I Exploit the Max-Clique interpretation of the problem [MBS16]

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms



References

[DCL00] De la Torre, D., Colbourn, C., Ling, A.: An application of permutation arrays to block ciphers. Congressus
Numerantium pp. 5–8 (2000)

[H00] Han Vinck, A.: Coded modulation for powerline communications. AEU Int. J. Eletron. Commun. 54(1), 45–49
(2000)

[JMSB08] Jiang, A., Mateescu, R., Schwartz, M., Bruck, J.: Rank modulation for flash memories. In: Kschischang,
F.R., Yang, E. (eds.): Proceedings of ISIT 2008, pp. 1731–1735 (2008)

[KPMJL18] Knezevic, K., Picek, S., Mariot, L., Jakobovic, D., Leporati, A.: The design of (almost) disjunct matrices
by evolutionary algorithms. In: Fagan, D., Mart’in-Vide C., O’Neill, M., Vega-Rodríguez, M.A. (eds.): TPNC 2018.
LNCS vol. 11324, pp. 152–163. Springer (2018)

[MMT20] Manzoni, L., Mariot, L., Tuba, E.: Balanced crossover operators in Genetic Algorithms. Swarm Evol.
Comput. 54: 100646 (2020)

[M18] Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary Search of Binary Orthogonal Arrays. In: Auger,
A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.): PPSN 2018 (I). LNCS vol. 11101,
pp. 121–133. Springer (2018)

[MPJL17] Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary Algorithms for the Design of Orthogonal
Latin Squares based on Cellular Automata. In: Proceedings of GECCO’17, pp. 306–313 (2017)

[MBS16] Montemanni, R., Barta, J., Smith, D.H.: Graph colouring and branch and bound approaches for

permutation code algorithms. In: Rocha, À., Correia, A.M.R., Adeli, H., Reis, L.P., Teixeira, M.M. (eds.):
WorldCIST’16. AISC, vol. 444, pp. 223–232 (2016)

[S04] Stinson, D. R.: Combinatorial designs. Springer (2004)

L. Mariot et al. On the Difficulty of Constructing Permutation Codes by Evolutionary Algorithms


