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Motivation: Image Inpainting

I Problem: given a damaged image with missing pixels, how
can we fill them to obtain a plausible reconstruction?

?
⇒

Existing approaches:
I Exemplar-based methods [EL99]
I Diffusion-based techniques [BSCB00]
I Deep learning (CNNs [LRSWTC18], GANs [IZZE17])
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Motivation: Image Inpainting

Goal: Investigate GP as a convolutional inpainting technique
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Research Questions:

(1) Can GP learn the distribution of pixels in complete images?

(2) Can GP reconstruct a single degraded image by training on
the available pixels?
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Predicting Missing Pixels with GP

Main idea: sliding window over the image, the surrounding pixels
are used to predict the central one with a GP tree
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Moore neighborhood:

Ni,j =


x(i−1,j−1) x(i−1,j) x(i−1,j+1)
x(i,j−1) ? x(i,j+1)

x(i+1,j−1) x(i+1,j) x(i+1,j+1)
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Predicting Missing Pixels with GP

Main idea: sliding window over the image, the surrounding pixels
are used to predict the central one with a GP tree
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Von Neumann neighborhood:

Ni,j =


x(i−1,j−1) x(i−1,j) x(i−1,j+1)
x(i,j−1) ? x(i,j+1)
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Supervised Learning Tasks

I Task 1: Learn the pixels’
distribution in a dataset of
complete images

I Training and Test sets: randoms
samples of MNIST

I Each pixel retained as correct label

I Task 2: Restore pixels in a single
damaged image

I Random pixel removal with
complete neighborhoods

I Training set: available pixels
I Test set: removed pixels
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Fitness Function

I Training set 1: T1 =
⋃n

k=1 Fk , where Fk is the set of fitness
cases of an M×N image Ik in the MNIST sample:

Fk = {(Ni,j ,x(i,j)) : 1 < i < M, 1 < j < N}

I Training set 2: S → missing pixels, P → available pixels:

T2 = {(Ni,j ,x(i,j)) : (i, j) ∈ P, 1 < i < M, 1 < j < N}

I Fitness Function: minimize the RMSE between the training
set and the GP tree τ prediction:

fit(τ) =

√∑
(Ni,j ,x(i,j))∈T (τ(Ni,j)−x(i,j))2

|T |

L. Manzoni, D. Jakobovic, L. Mariot, S. Picek, M. Castelli CoInGP: Convolutional Inpainting with GP



Experimental Phase – Parameters

GP Parameters:
I Functional set: sin, cos, +, −, /, ∗, min, max, avg,

√
· and pos

I Population size: 500 individuals
I Selection operator: steady-state with 3-tournament operator
I Mutation probability: pm = 0.3
I Termination criterion: 250000 fitness evaluations
I Linear scaling to clip GP output in the grayscale range [0,255]

Experimental repetitions in training phase:
I 30 runs for Task 1
I 100 runs for Task 2, for each damaged image
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Experiment 1 – MNIST Dataset

I Training set: random sample of 1 000 images from MNIST

I Main finding: GP learns the pixels’ distribution significantly
better than the baseline (=average of surrounding pixels)
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Experiment 2 – Single Images

I Two test images: Boat and Goldhill,
both resized to 256×256 pixels

I Random removal of 20% of the pixels
I Enforce missing pixels with complete

neighborhoods
I Every two columns: first one is kept,

100 non-adjacent pixels are removed
from the second

Boat

Goldhill
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Fitness Distributions

I Main finding: GP is able to score lower prediction scores
than the baselines, for both neighborhoods

Boat best fitness distribution Goldhill best fitness distribution

I Moore neighborhood is better than Von Neumann, despite the
fact that it can use less fitness cases
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Examples of GP Reconstructions

Moore neighborhood Von Neumann neighborhood

I Further finding: the prediction error is concentrated on the
edges of the images
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Conclusions & Future Directions

Research Question 1:
I CoInGP can successfully learn the pixels’ distribution in a

dataset of complete images, better than baseline predictors

Research Question 2:
I CoInGP can provide plausible inpainted images, with Moore

neighborhood working better than Von Neumann

Future work:
I Address the case of incomplete neighborhoods
I Consider multi-layer architectures
I Compare with state-of the art methods such as CNNs
I Apply convolutional GP to other domains (e.g. text

generation [MJMPC20])
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Thank you for your
attention!
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