

CoInGP: Convolutional Inpainting with GP

Domagoj Jakobovic, Luca Manzoni, <u>Luca Mariot</u>, Stjepan Picek, Mauro Castelli

l.mariot@tudelft.nl

GECCO 2021, 10-14 July 2021

Motivation: Image Inpainting

Problem: given a damaged image with missing pixels, how can we fill them to obtain a plausible reconstruction?

Existing approaches:

- Exemplar-based methods [EL99]
- Diffusion-based techniques [BSCB00]
- Deep learning (CNNs [LRSWTC18], GANs [IZZE17])

Goal: Investigate GP as a convolutional inpainting technique

Research Questions:

- (1) Can GP learn the distribution of pixels in complete images?
- (2) Can GP reconstruct a single degraded image by training on the available pixels?

Predicting Missing Pixels with GP

Main idea: sliding window over the image, the surrounding pixels are used to predict the central one with a GP tree

Moore neighborhood:

$$V_{i,j} = \begin{pmatrix} x_{(i-1,j-1)} & x_{(i-1,j)} & x_{(i-1,j+1)} \\ x_{(i,j-1)} & ? & x_{(i,j+1)} \\ x_{(i+1,j-1)} & x_{(i+1,j)} & x_{(i+1,j+1)} \end{pmatrix}$$

Predicting Missing Pixels with GP

Main idea: sliding window over the image, the surrounding pixels are used to predict the central one with a GP tree

Von Neumann neighborhood:

$$\mathbf{V}_{i,j} = \begin{pmatrix} \mathbf{X}_{(i-1,j-1)} & \mathbf{X}_{(i-1,j)} & \mathbf{X}_{(i-1,j+1)} \\ \mathbf{X}_{(i,j-1)} & ? & \mathbf{X}_{(i,j+1)} \\ \mathbf{X}_{(i+1,j-1)} & \mathbf{X}_{(i+1,j)} & \mathbf{X}_{(i+1,j+1)} \end{pmatrix}$$

Supervised Learning Tasks

- Task 1: Learn the pixels' distribution in a dataset of complete images
- Training and Test sets: randoms samples of MNIST
- Each pixel retained as correct label
- Task 2: Restore pixels in a single damaged image
- Random pixel removal with complete neighborhoods
- Training set: available pixels
- Test set: removed pixels

0	0	0	0	0	0	0	0	D	٥	0	0	0	0	0	0
1	L	١	۱	١	7	1	(/	1	۱	1	1	۱	1	1
2	າ	2	2	ð	J	2	2	ዲ	2	2	2	2	2	2	2
З	3	3	3	3	3	3	3	3	3	3	З	3	3	3	з
4	4	٤	ч	4	4	4	ч	#	4	4	4	9	Ч	4	4
5	5	5	5	5	s	5	5	5	5	5	5	5	5	5	5
6	G	6	6	6	в	6	6	ь	6	4	6	6	6	6	6
¥	7	7	٦	7	7	ч	7	2	η	7	7	7	7	7	7
8	С	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	٩	9	9	9	9	٩	9	٩	٩	٩	9	9	9	9	9

Fitness Function

▶ **Training set 1**: $T_1 = \bigcup_{k=1}^n F_k$, where F_k is the set of fitness cases of an $M \times N$ image I_k in the MNIST sample:

$$F_k = \{ (N_{i,j}, x_{(i,j)}) : 1 < i < M, 1 < j < N \}$$

▶ **Training set 2**: $S \rightarrow$ missing pixels, $P \rightarrow$ available pixels:

$$T_2 = \{ (N_{i,j}, x_{(i,j)}) : (i,j) \in P, \ 1 < i < M, \ 1 < j < N \}$$

Fitness Function: minimize the RMSE between the training set and the GP tree τ prediction:

$$fit(\tau) = \sqrt{\frac{\sum_{(\mathcal{N}_{i,j}, \mathbf{X}_{(i,j)}) \in \mathcal{T}} (\tau(\mathcal{N}_{i,j}) - \mathbf{X}_{(i,j)})^2}{|\mathcal{T}|}}$$

GP Parameters:

- Functional set: sin, cos, +, -, /, *, min, max, avg, $\sqrt{\cdot}$ and pos
- Population size: 500 individuals
- Selection operator: steady-state with 3-tournament operator
- Mutation probability: $p_m = 0.3$
- Termination criterion: 250 000 fitness evaluations
- Linear scaling to clip GP output in the grayscale range [0,255]

Experimental repetitions in training phase:

- 30 runs for Task 1
- 100 runs for Task 2, for each damaged image

Experiment 1 – MNIST Dataset

Training set: random sample of 1 000 images from MNIST

 Main finding: GP learns the pixels' distribution significantly better than the baseline (=average of surrounding pixels)

L. Manzoni, D. Jakobovic, L. Mariot, S. Picek, M. Castelli

ColnGP: Convolutional Inpainting with GP

Experiment 2 – Single Images

- Two test images: Boat and Goldhill, both resized to 256 × 256 pixels
- Random removal of 20% of the pixels
- Enforce missing pixels with complete neighborhoods
- Every two columns: first one is kept, 100 non-adjacent pixels are removed from the second

Main finding: GP is able to score lower prediction scores than the baselines, for both neighborhoods

Moore neighborhood is better than Von Neumann, despite the fact that it can use less fitness cases

Examples of GP Reconstructions

Moore neighborhood

Further finding: the prediction error is concentrated on the edges of the images

Von Neumann neighborhood

Research Question 1:

 CoInGP can successfully learn the pixels' distribution in a dataset of complete images, better than baseline predictors

Research Question 2:

 CoInGP can provide plausible inpainted images, with Moore neighborhood working better than Von Neumann

Future work:

- Address the case of incomplete neighborhoods
- Consider *multi-layer architectures*
- Compare with state-of the art methods such as CNNs
- Apply convolutional GP to other domains (e.g. text generation [MJMPC20])

Thank you for your attention!

[BSCB00] Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of SIGGRAPH 2000: 417-424 (2000) [[EL99] Efros, A.A., Leung, T.K.: Texture Synthesis by Non-parametric Sampling. In: Proceedings of ICCV 1999: 1033-1038 (1999) [IZZE17] Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. In: Proceedings of CVPR 2017: 5967-5976 (2017) [LRSWTC18] Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image Inpainting for Irregular Holes Using Partial Convolutions. In: Proceedings of ECCV (11) 2018: 89-105 (2018) [MJMPC20] Manzoni, L., Jakobovic, D., Mariot, L., Picek, S., Castelli, M.: Towards an evolutionary-based approach for natural language processing. In: Proceedings of GECCO 2020: 985-993 (2020)