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Motivation: Image Inpainting

> Problem: given a damaged image with missing pixels, how
can we fill them to obtain a plausible reconstruction?

Existing approaches:
» Exemplar-based methods [EL99]
» Diffusion-based techniques [BSCB00]
» Deep learning (CNNs [LRSWTC18], GANs [IZZE17])
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Motivation: Image Inpainting

Goal: Investigate GP as a convolutional inpainting technique

Research Questions:
(1) Can GP learn the distribution of pixels in complete images?

(2) Can GP reconstruct a single degraded image by training on
the available pixels?
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Predicting Missing Pixels with GP

Main idea: sliding window over the image, the surrounding pixels
are used to predict the central one with a GP tree
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Predicting Missing Pixels with GP

Main idea: sliding window over the image, the surrounding pixels
are used to predict the central one with a GP tree
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Supervised Learning Tasks

» Task 1: Learn the pixels’
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» Each pixel retained as correct label

» Task 2: Restore pixels in a single
damaged image

» Random pixel removal with
complete neighborhoods

> Training set: available pixels
> Test set: removed pixels
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Fitness Function

» Training set 1: Ty = |J;_, Fx, where Fi is the set of fitness
cases of an M x N image I in the MNIST sample:

Fie = {(Nijs X(ij)) - 1<i<M, 1<j<Nj}
> Training set 2: S — missing pixels, P — available pixels:
T2 ={(Nijsxij)): (b)) eP, 1<i<M, 1<j<Nj

> Fitness Function: minimize the RMSE between the training
set and the GP tree 7 prediction:

, Z(Niyxi)eT (TINiG) = X(i )2
fit(t) = 7
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Experimental Phase — Parameters

GP Parameters:
» Functional set: sin, cos, +, —, /, *, min, max, avg, +/- and pos
> Population size: 500 individuals
> Selection operator: steady-state with 3-tournament operator
» Mutation probability: py, = 0.3
> Termination criterion: 250000 fitness evaluations
» Linear scaling to clip GP output in the grayscale range [0,255]

Experimental repetitions in training phase:
» 30 runs for Task 1
» 100 runs for Task 2, for each damaged image
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Experiment 1 — MNIST Dataset

> Training set: random sample of 1 000 images from MNIST
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» Main finding: GP learns the pixels’ distribution significantly
better than the baseline (=average of surrounding pixels)
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Experiment 2 — Single Images

> Two test images: Boat and Goldhill,
both resized to 256 x 256 pixels

» Random removal of 20% of the pixels

» Enforce missing pixels with complete
neighborhoods

Goldhill

» Every two columns: first one is kept,
100 non-adjacent pixels are removed
from the second
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Fitness Distributions

> Main finding: GP is able to score lower prediction scores
than the baselines, for both neighborhoods

Goldhill best fitness distribution

Boat best fitness distribution
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» Moore neighborhood is better than Von Neumann, despite the
fact that it can use less fitness cases
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Examples of GP Reconstructions

Moore neighborhood Von Neumann neighborhood
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» Further finding: the prediction error is concentrated on the
edges of the images
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Conclusions & Future Directions

Research Question 1:

> ColnGP can successfully learn the pixels’ distribution in a
dataset of complete images, better than baseline predictors

Research Question 2:
> ColInGP can provide plausible inpainted images, with Moore
neighborhood working better than Von Neumann
Future work:
» Address the case of incomplete neighborhoods
» Consider multi-layer architectures
» Compare with state-of the art methods such as CNNs

> Apply convolutional GP to other domains (e.g. text
generation [MJMPC20])

L. Manzoni, D. Jakobovic, L. Mariot, S. Picek, M. Castelli ColnGP: Convolutional Inpainting with GP



Thank you for your
attention!

Damaged Image
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