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Part 1: Introduction to Latin squares and
orthogonal arrays



Latin Squares

Definition
A Latin square of order N is a Nx N matrix L such that every row
and every column are permutations of [N] = {1,---, N}

11342
41213
214 |3 |1
31|24
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Latin Squares: Existence and Construction

» Question: Does there exist a Latin square for all orders N e N?

» Yes: just set the first row to 1,2,---, N and build the next ones
by cyclic shifts:

o (X1, X2, , XN-1,XN) = (X2, X3, , XN, X1)

11234
21341
34|12
411123
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Orthogonal Latin Squares

Definition
Two Latin squares L1 and Ly of order N are orthogonal if their
superposition yields all the pairs (x,y) € [N] x [N].

1[13]4]2 11423 1,113,4(4,2(2,3

4121|1138 312141 4,312,211,4|3,1

214|131 411|132 2,414113,3[1,2

311124 213141 3,2|1,3|12,1|4,4
(a) Ly (b) Lz (c) (L1,L2)
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Orthogonal Latin Squares: Existence

» Question: Are there orthogonal Latin squares for all N € N?
» No: for N =2 we have only two Latin squares, and they are

not orthogonal:

2,1

1,2

» What about other orders?

Luca Mariot
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Euler’s 36 Officers Problem (

« A very curious question, which has ex-
ercised for some time the ingenuity of
many people, has involved me in the fol-
lowing studies, which seem to open a
new field of analysis, in particular the
study of combinations. The question re-
volves around arranging 36 officers to be
drawn from 6 different ranks and also
from 6 different regiments so that they
are ranged in a square so that in each
line (both horizontal and vertical) there
are 6 officers of different ranks and dif-
ferent regiments. »

L. Euler, Sur une nouvelle espéce de
quarrés magiques, 1782
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Euler’s 36 Officers Problem (2/2)

Euler did not find any solution, and set forth the following:

Conjecture

Let N =4k +2, for k e N. Then, there are no orthogonal Latin
squares of order N.

In 1900, Gaston Tarry proved (by ex-
haustive search!) Euler’s conjecture for
k =1, showing the unsolvability of the
36 officers problem
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Disproof of Euler’s Conjecture

In 1960, Bose, Shrikhande and Parker found counterexamples to
Euler’s conjecture for all k > 2
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Existence of Orthogonal Latin Squares

» In 1922, MacNeish gave a construction for all N #2 mod 4

» The existence question of orthogonal Latin squares can be
summarised as:

Theorem
Let N # 2,6. Then, there exist orthogonal Latin squares of order N J
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Mutually Orthogonal Latin Squares (MOLS)

» A set of s pairwise orthogonal Latin squares is denoted as
s-MOLS

» Forall NeN, we have that s < N—-1.

Theorem

Let N = q = p®, where p is prime and e € N. Then, there exist
(N-1)-MOLS

Construction. For all a € Fq\ {0}, define the Latin square L, as:
Lo(i.j) =i+«aj, foralli,jeF,

» Open problem: What is the maximum number of MOLS for
non-prime powers orders?

Luca Mariot
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Orthogonal Arrays

Definition
An orthogonal array OA(k, N) is a N? x k matrix where each entry

is an element from [N] = {1,---, N}, and such that by fixing any two
columns 1 <i,j < k, one gets all the possible pairs in [N] x [N]

WIN =W =|W N =
N =W = WNW N —
= WINDN =W W N =

W W WNNN ===
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Equivalence between OA and MOLS

Theorem
A set of k-MOLS of order N is equivalent to an OA(k +2,N) J

Construction (=). Given k-MOLS Ly,--- L, build a N? x k 4+ 2 array
as.:

> Fill the first two columns with all pairs of [N] x[N] in
lexicographic order

» For 1 <i<Kk,fill column i+ 2 with L; read from top left to
bottom right

Luca Mariot A survey of Latin squares, orthogonal arrays and their applications to cryptography



Part 2: Cryptographic applications of Latin
squares and orthogonal arrays



Secret Sharing Schemes (SSS)

» Secret sharing scheme: a procedure enabling a dealer to
share a secret S among a set P of n players
» (k,n) threshold schemes: at least k players out of n are
required to recover S [Shamir79].
Example: (2,3)—scheme

Setup Recovery

@ —@—r @ ®

B)y—p  P—(&)
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Applications of SSS

» Corporate digital signatures
» Key recovery systems
» Example: DNSSEC root key shared with a (5,7)-scheme
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(2,n)-Schemes through n-MOLS

Setup Phase
1. The dealer D chooses arow S € {1,---,N} as the secret

112134 112134 112314
4 13|21 34|12 211143
211143 4 13|21 31412
34|12 211143 41321
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(2,n)-Schemes through n-MOLS

Setup Phase

1. The dealer D chooses arow S € {1,---,N} as the secret

112134 11234 112|314
413|121 314|112 211143
=2|1|4|3|] =243 |2|1| =2 3|4]|1]2
34|12 211143 41321

Luca Mariot

Example: (2,3)-scheme, S =3
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(2,n)-Schemes through n-MOLS

Setup Phase
2. D randomly selects a column je {1,---,N}

) J
1123 1|2 1 4
4132 3|4 2 3
—{2]1|4 - 43 3 2
3|41 2|1 4 1

Luca Mariot

Example: S=3,j« 2
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(2,n)-Schemes through n-MOLS

Setup Phase
3. The value of Li(S,j) for i € [N] is the share of P;

| J J
11234 10234 1(2|3]4
41321 3412 211(4]3
2|43 5 4|B)2]1] -3|@)1]2
3|4 |1]2 21|43 413|211

Example: (2,3)-scheme, S=3,j«2,B1=1,B,=3,B3=4
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(2,n)-Schemes through n-MOLS

Recovery Phase

4. Since L;, Lk are orthogonal, (B;, Bx) uniquely identify (S, )

| J
11234 1|2 1 4
41321 3|4 2 3
2| 4|3] - 4|3 3 2
3|4 |1]2 2|1 4 1

Luca Mariot

Example: (2,3)-scheme, B =1, B, =3 = (3,2)
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(2,n)-Schemes through n-MOLS

Recovery Phase

4. Since L;, Lk are orthogonal, (B;, Bx) uniquely identify (S, )

J J
11234 1|2 12 4
41321 3|4 2 | 1 3
2(1]4|3] - 4|3 3 |(a) 2
3|4 |1]2 2|1 43 1

Luca Mariot

Example: (2,3)-scheme, B, =3, B3 =4 = (3,2)
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(2,n)-Schemes through n-MOLS

Recovery Phase

4. Since L;, Lk are orthogonal, (B;, Bx) uniquely identify (S, )

| J
11234 1|2 12 4
41321 3|4 2 | 1 3
- 2|(1)] 4|3 4|3 3 |(a) 2
3|4 |1]2 2|1 43 1

Luca Mariot

Example: (2,3)-scheme, By =1, B3 =4 = (3,2)
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(2,n)-Schemes through n-MOLS

Security

5. Knowledge of a single B; leaves S completely undetermined

1

1

3
2
4

Wi~

N | W&~

2

3
®
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®
3
2

3
4
2

2
3
4
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Example: (2,3)-scheme, By =1, = S =777
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(2,n)-Schemes through n-MOLS

Security

5. Knowledge of a single B; leaves S completely undetermined

1 3|4 1]12|(3)]4 1 4
4 2 | 1 ®)|4]1]2 2 3
2 4|3 4((3) 21 3 2
3 1]2 21|43 4 1

Luca Mariot

Example: (2,3)-scheme, B, =3, = S =777
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(2,n)-Schemes through n-MOLS

Security

5. Knowledge of a single B; leaves S completely undetermined

1 3|4 1]2 1]2 (4)
4 2|1 3|4 2 | 1 3
2 43 43 3|(@) 2
3 1]2 2| 1 (4)| 3 1

Luca Mariot

Example: (2,3)-scheme, B =4, = S =777
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Part 3: Orthogonal Latin squares through
Cellular Automata



One-Dimensional Cellular Automata (CA)

Definition

One-dimensional CA: quadruple (A, n,r,f) where A is the finite set
of states, n € N is the number of cells on a one-dimensional array,
r e N is the radius and f : A2"t1 — A is the local rule.

Example: A ={0,1},n=28, r=1, f(xq,%2,X3) = x1 ® X2 ® x3 (Rule 150)

~[o[1[1[0]0] - []o[o[o[o[1[o[1]

%/_/
1 f(1.1,0)=1@180 Parallel update |} Global rule F

0] [1]ofo[1]1]o]

Remark: No boundary conditions = The array “shrinks”
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Latin Squares through Bipermutive CA (1/2)

» |dea: determine which CA induce orthogonal Latin squares
> Bipermutive CA: local rule f : F5™*' — Fy is defined as

f(X1, -+, Xer11) = X1 ®g(Xa, "+ , Xor) ® Xor 11

Lemma

Let (Fq,2m,r,f) be a bipermutive CA with 2rim. Then, the CA
generates a Latin square of order N = 2™

X L(x,y)
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Latin Squares through Bipermutive CA (2/2)

» Example: CA (Fp,4,1,f), f(x1,X2,X3) = X1 ® X2 ® X3 (Rule 150)
» Encoding: 00—~ 1,10~ 2,01+ 3,11 — 4

Q{%Iﬂ_}mom 0[0l0[1] [Ol0[1M
0[1] [110] 11432
[110[0]0] (A10[170] [TO[O[1] ([O[1[d
[110] 0[] 00 2 13|41
0[1]0]0] [O 0] [0[1]0[1] [0 1
oo° [l o] 411123
1[A10[0) AA[E0 A[E0A AAAN 312|114
[0[1] [110]

50 on 4 bits (b) Latin square Lisg

—_

(a) Rule
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» Local rule: linear combination of the neighborhood cells

f(X1,-+, Xor41) = @1 X1 @ -®apr1Xor41 , @ €Fq

» Associated polynomial:
fo o(X) = ar +a X+ + a1 X

» Global rule: mx (m+-2r) 2r-diagonal transition matrix

ai 32r+1 0 0
MF: 0 ai aori1 0 0
0 0 ai oo doriyq

X = (X1, ,Xp) > Mgx"
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Orthogonal Latin Squares by Linear CA

Theorem

Let F =(Fq.2m,r,f) and G = (Fq,2m,r,g), be linear CA. The Latin
squares induced by F and G are orthogonal if and only if P¢(X)
and Py(X) are coprime

114]3]|2 1123 |4 1,114,2|3,3|2,4
21341 2114|838 2,2|3,1/4,4(1,3
411|123 31412 43(1,412,1(3,2
312 |14 4 13|21 3,412,3/1,2(4,1

(a) Rule 150 (b) Rule 90 (c) Superposition

Figure : Pyso(X) =14 X + X2, Pgo(X) = 1+ X2 (coprime)
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Proof (idea)

The two Latin squares are orthogonal iff the following Sylvester
matrix is invertible:

ai - asryq 0 0
0 ai 32r+1 0 0
M:(M,F): 0 0 aj asr+1
Mg b1 b2r+1 0 0
0 by -+ baygpqr 0 oo e e 0
0 0 by baor 1

» Resultant of f,g: Res(f,g) = det(M)
» Res(f,g) #0 & gcd(f,g) =1
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Open problems

Problem 1: Count (and build) pairs of coprime polynomials of
degree n over Fg:

» (g—1)-to-1 correspondence when ay € Fq [Benjamin07], but
for bipermutive CA we need a; # 0!

» Experiments on g = 2 relate to the OEIS A002450 sequence:

471

a(n) =0,1,5,21,85,... = a(n) = —

Problem 2: Extend the construction to orthogonal Latin
hypercubes

» First step: find under which conditions bipermutive CA
generate Latin hypercubes
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