A survey of Latin squares, orthogonal arrays and their applications to cryptography

Luca Mariot1,2

1 Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo)
Università degli Studi Milano - Bicocca

2 Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis

luca.mariot@disco.unimib.it

Insalate di Matematica – June 28, 2016
Part 1: Introduction to Latin squares and orthogonal arrays
A Latin square of order N is a $N \times N$ matrix L such that every row and every column are permutations of $[N] = \{1, \ldots, N\}$.
Question: Does there exist a Latin square for all orders $N \in \mathbb{N}$?

Yes: just set the first row to $1, 2, \cdots, N$ and build the next ones by cyclic shifts:

$$\sigma(x_1, x_2, \cdots, x_{N-1}, x_N) = (x_2, x_3, \cdots, x_N, x_1)$$
Orthogonal Latin Squares

Definition

Two Latin squares L_1 and L_2 of order N are orthogonal if their superposition yields all the pairs $(x, y) \in [N] \times [N]$.

\begin{align*}
\begin{array}{cccc}
1 & 3 & 4 & 2 \\
4 & 2 & 1 & 3 \\
2 & 4 & 3 & 1 \\
3 & 1 & 2 & 4 \\
\end{array}
& \quad \begin{array}{cccc}
1 & 4 & 2 & 3 \\
3 & 2 & 4 & 1 \\
4 & 1 & 3 & 2 \\
2 & 3 & 4 & 1 \\
\end{array}
& \quad \begin{array}{cccc}
1,1 & 3,4 & 4,2 & 2,3 \\
4,3 & 2,2 & 1,4 & 3,1 \\
2,4 & 4,1 & 3,3 & 1,2 \\
3,2 & 1,3 & 2,1 & 4,4 \\
\end{array}
\end{align*}

(a) L_1 \quad (b) L_2 \quad (c) (L_1, L_2)
Question: Are there orthogonal Latin squares for all $N \in \mathbb{N}$?

No: for $N = 2$ we have only two Latin squares, and they are not orthogonal:

\[
\begin{array}{cc}
1 & 2 \\
2 & 1 \\
\end{array}
\quad
\begin{array}{cc}
2 & 1 \\
1 & 2 \\
\end{array}
\]

What about other orders?
Euler’s 36 Officers Problem (1/2)

« A very curious question, which has exercised for some time the ingenuity of many people, has involved me in the following studies, which seem to open a new field of analysis, in particular the study of combinations. The question revolves around arranging 36 officers to be drawn from 6 different ranks and also from 6 different regiments so that they are ranged in a square so that in each line (both horizontal and vertical) there are 6 officers of different ranks and different regiments. »

L. Euler, *Sur une nouvelle espèce de quarrés magiques*, 1782
Euler did not find any solution, and set forth the following:

Conjecture

Let $N = 4k + 2$, for $k \in \mathbb{N}$. Then, there are no orthogonal Latin squares of order N.

In 1900, Gaston Tarry proved (by exhaustive search!) Euler’s conjecture for $k = 1$, showing the unsolvability of the 36 officers problem.
In 1960, Bose, Shrikhande and Parker found counterexamples to Euler’s conjecture for all $k \geq 2$.
In 1922, MacNeish gave a construction for all $N \not\equiv 2 \mod 4$

The existence question of orthogonal Latin squares can be summarised as:

Theorem

Let $N \not\equiv 2, 6$. Then, there exist orthogonal Latin squares of order N.
Mutually Orthogonal Latin Squares (MOLS)

- A set of s pairwise orthogonal Latin squares is denoted as s-MOLS
- For all $N \in \mathbb{N}$, we have that $s \leq N - 1$.

Theorem

Let $N = q = p^e$, where p is prime and $e \in \mathbb{N}$. Then, there exist $(N - 1)$-MOLS

Construction. For all $\alpha \in \mathbb{F}_q \setminus \{0\}$, define the Latin square L_α as:

$$L_\alpha(i,j) = i + \alpha j, \quad \text{for all } i, j \in \mathbb{F}_q$$

- **Open problem**: What is the maximum number of MOLS for non-prime powers orders?
Orthogonal Arrays

Definition

An orthogonal array $OA(k, N)$ is a $N^2 \times k$ matrix where each entry is an element from $[N] = \{1, \ldots, N\}$, and such that by fixing any two columns $1 \leq i, j \leq k$, one gets all the possible pairs in $[N] \times [N]$.

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 \\
1 & 3 & 3 & 3 \\
2 & 1 & 2 & 3 \\
2 & 2 & 3 & 1 \\
2 & 3 & 1 & 2 \\
3 & 1 & 3 & 2 \\
3 & 2 & 1 & 3 \\
3 & 3 & 2 & 1 \\
\end{array}
\]
Equivalence between OA and MOLS

Theorem

A set of k-MOLS of order N is equivalent to an OA($k + 2, N$)

Construction (\Rightarrow). Given k-MOLS $L_1, \cdots L_k$, build a $N^2 \times k + 2$ array as:

- Fill the first two columns with all pairs of $[N] \times [N]$ in lexicographic order
- For $1 \leq i \leq k$, fill column $i + 2$ with L_i read from top left to bottom right
Part 2: Cryptographic applications of Latin squares and orthogonal arrays
Secret Sharing Schemes (SSS)

- **Secret sharing scheme**: a procedure enabling a dealer to share a secret S among a set P of n players.
- **(k,n) threshold schemes**: at least k players out of n are required to recover S [Shamir79].

Example: $(2,3)$–scheme

$$S = B_1 \rightarrow P_1 \rightarrow \begin{cases} P_2 \rightarrow B_2 \rightarrow P_3 \rightarrow B_3 \rightarrow P_1 \rightarrow B_1 \rightarrow \end{cases}$$
Applications of SSS

- Corporate digital signatures
- Key recovery systems
- Example: DNSSEC root key shared with a (5,7)–scheme

Short Sharp Science
Cutting-edge science, cut up

Not-so-secret seven hold keys to the internet
15:36 27 July 2010

Gareth Morgan, technology editor

It's like something out of a Templar's mystical ritual: seven key holders are each assigned to guard a part of a key, and in times of great crisis, five of them must come together for the key's power to be unleashed and save the day. But this is no fantasy tale, it's the latest attempt to safeguard the internet.

The plan was drawn up by the Internet domain name watchdog ICAAN as a means to protect the internet in the event of a major attack on its infrastructure. The complete key can be used to reboot the systems at the heart of the internet which direct users to the genuine websites.

The BBC reports that UK-based businessman Paul Kans is one of the key holders. He was given a smartcard which contains part of the root key needed to initiate the reboot, and plans to store it in a tamper-proof bag in a secure deposit box.

Other key holders include US-based security researcher Dan Kaminsky, who has previously uncovered flaws in the internet directory Domain Name System (DNS).

You may have heard the rumor that swirled briefly last month about an Internet "kill switch" that could power down the Web in the case of a critical cyber attack. Those rumors turned out to be largely overblown, but it turns out there are now seven individuals out there holding keys to the Internet. In the aftermath of a catastrophic cyber attack, these members of a "chain of trust" will be responsible for rebooting the Web.

The seven members of this holy order of cyber security hail from around the world and recently received their keys while locked deep in a U.S. bunker. But the team isn't military in nature. The Internet safety program is overseen by

Luca Mariot
A survey of Latin squares, orthogonal arrays and their applications to cryptography
(2, n)-Schemes through n-MOLS

Setup Phase

1. The dealer D chooses a row $S \in \{1, \cdots, N\}$ as the secret

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1 \\
2 & 1 & 4 & 3 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1 \\
\end{array}
\]
(2, n)-Schemes through n-MOLS

Setup Phase

1. The dealer D chooses a row $S \in \{1, \cdots, N\}$ as the secret

Example: (2, 3)-scheme, $S = 3$
(2, n)-Schemes through n-MOLS

Setup Phase

2. \(D \) randomly selects a column \(j \in \{1, \ldots, N\} \)

Example: \(S = 3, j \leftarrow 2 \)
(2, n)-Schemes through n-MOLS

Setup Phase

3. The value of $L_i(S,j)$ for $i \in [N]$ is the share of P_i

Example: (2, 3)-scheme, $S = 3$, $j \leftarrow 2$, $B_1 = 1$, $B_2 = 3$, $B_3 = 4$
(2, n)-Schemes through n-MOLS

Recovery Phase

4. Since L_i, L_k are orthogonal, (B_i, B_k) uniquely identify (S, j)

Example: (2, 3)-scheme, $B_1 = 1$, $B_2 = 3 \implies (3, 2)$
Recovery Phase

4. Since L_i, L_k are orthogonal, (B_i, B_k) uniquely identify (S, j)

Example: $(2, 3)$-scheme, $B_2 = 3$, $B_3 = 4 \Rightarrow (3, 2)$
(2, n)-Schemes through n-MOLS

Recovery Phase

4. Since L_i, L_k are orthogonal, (B_i, B_k) uniquely identify (S, j)

Example: $(2, 3)$-scheme, $B_1 = 1, B_3 = 4 \Rightarrow (3, 2)$
(2, n)-Schemes through n-MOLS

Security

5. Knowledge of a single B_i leaves S completely undetermined

Example: (2,3)-scheme, $B_1 = 1$, $\Rightarrow S = ???$
Security

5. Knowledge of a single B_i leaves S completely undetermined

Example: $(2,3)$-scheme, $B_2 = 3$, $\Rightarrow S = ???$
(2, n)-Schemes through n-MOLS

Security

5. Knowledge of a single B_i leaves S completely undetermined

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Example: (2,3)-scheme, $B_3 = 4$, $\Rightarrow S = ???$
Part 3: Orthogonal Latin squares through Cellular Automata
One-Dimensional Cellular Automata (CA)

Definition

One-dimensional CA: quadruple \(\langle A, n, r, f \rangle \) where \(A \) is the finite set of states, \(n \in \mathbb{N} \) is the number of cells on a one-dimensional array, \(r \in \mathbb{N} \) is the radius and \(f : A^{2r+1} \to A \) is the local rule.

Example: \(A = \{0, 1\}, n = 8, r = 1, f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3 \) (Rule 150)

\[
\begin{array}{cccccccc}
\cdots & 0 & 1 & 1 & 0 & 0 & \cdots \\
\downarrow f(1, 1, 0) = 1 \oplus 1 \oplus 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & \uparrow \text{Parallel update} & \downarrow \text{Global rule } F \\
& & 1 & 0 & 0 & 1 & 1 & 0 \\
\end{array}
\]

Remark: No boundary conditions \(\Rightarrow \) The array “shrinks”
Latín Squares through Bipermutive CA (1/2)

- **Idea:** determine which CA induce orthogonal Latin squares
- **Bipermutive CA:** local rule $f : \mathbb{F}_q^{2r+1} \rightarrow \mathbb{F}_q$ is defined as

 $$f(x_1, \cdots, x_{2r+1}) = x_1 \oplus g(x_2, \cdots, x_{2r}) \oplus x_{2r+1}$$

Lemma

Let $\langle \mathbb{F}_q, 2m, r, f \rangle$ be a bipermutive CA with $2r|m$. Then, the CA generates a Latin square of order $N = 2^m$.

Luca Mariot

A survey of Latin squares, orthogonal arrays and their applications to cryptography
Example: CA $\langle F_2, 4, 1, f \rangle$, $f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$ (Rule 150)

Encoding: 00 \mapsto 1, 10 \mapsto 2, 01 \mapsto 3, 11 \mapsto 4

(a) Rule 150 on 4 bits

(b) Latin square L_{150}
Linear CA

- Local rule: linear combination of the neighborhood cells

\[f(x_1, \cdots, x_{2r+1}) = a_1 x_1 \oplus \cdots \oplus a_{2r+1} x_{2r+1}, \ a_i \in \mathbb{F}_q \]

- Associated polynomial:

\[f \mapsto \varphi(X) = a_1 + a_2 X + \cdots + a_{2r+1} X^{2r} \]

- Global rule: \(m \times (m + 2r) \) 2r-diagonal transition matrix

\[
M_F = \begin{pmatrix}
a_1 & \cdots & a_{2r+1} & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & a_1 & \cdots & a_{2r+1} & 0 & \cdots & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & a_1 & \cdots & a_{2r+1}
\end{pmatrix}
\]

\[x = (x_1, \cdots, x_n) \mapsto M_F x^\top \]
Orthogonal Latin Squares by Linear CA

Theorem

Let $F = \langle F_q, 2m, r, f \rangle$ and $G = \langle F_q, 2m, r, g \rangle$, be linear CA. The Latin squares induced by F and G are orthogonal if and only if $P_f(X)$ and $P_g(X)$ are coprime.

(a) Rule 150

(b) Rule 90

(c) Superposition

Figure: $P_{150}(X) = 1 + X + X^2$, $P_{90}(X) = 1 + X^2$ (coprime)
Proof (idea)

The two Latin squares are orthogonal iff the following Sylvester matrix is invertible:

\[M = \begin{pmatrix} M_F \\ M_G \end{pmatrix} = \begin{pmatrix} a_1 & \cdots & a_{2r+1} & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & a_1 & \cdots & a_{2r+1} & 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \\ b_1 & \cdots & b_{2r+1} & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & b_1 & \cdots & b_{2r+1} & 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ b_1 & \cdots & b_{2r+1} & 0 & \cdots & \cdots & \cdots & \cdots & 0 \end{pmatrix} \]

\[\text{Resultant of } f, g: \text{Res}(f, g) = \det(M) \]

\[\text{Res}(f, g) \neq 0 \iff \gcd(f, g) = 1 \]
Open problems

Problem 1: Count (and build) pairs of coprime polynomials of degree n over \mathbb{F}_q:

- $(q - 1)$-to-1 correspondence when $a_1 \in \mathbb{F}_q$ [Benjamin07], but for bipermutive CA we need $a_1 \neq 0$!
- Experiments on $q = 2$ relate to the OEIS A002450 sequence:

$$a(n) = 0, 1, 5, 21, 85, ... \Rightarrow a(n) = \frac{4^n - 1}{3}$$

Problem 2: Extend the construction to *orthogonal Latin hypercubes*

- First step: find under which conditions bipermutive CA generate Latin hypercubes

