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Part 1: Introduction to Latin squares and
orthogonal arrays



Latin Squares

Definition
A Latin square of order N is a N×N matrix L such that every row
and every column are permutations of [N] = {1, · · · ,N}

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4
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Latin Squares: Existence and Construction

I Question: Does there exist a Latin square for all orders N ∈N?
I Yes: just set the first row to 1,2, · · · ,N and build the next ones

by cyclic shifts:

σ(x1,x2, · · · ,xN−1,xN) = (x2,x3, · · · ,xN ,x1)

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3
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Orthogonal Latin Squares

Definition
Two Latin squares L1 and L2 of order N are orthogonal if their
superposition yields all the pairs (x,y) ∈ [N]× [N].

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

(a) L1

1 4 2 3

3 2 4 1

4 1 3 2

2 3 4 1

(b) L2

1,1 3,4 4,2 2,3

4,3 2,2 1,4 3,1

2,4 4,1 3,3 1,2

3,2 1,3 2,1 4,4

(c) (L1,L2)
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Orthogonal Latin Squares: Existence

I Question: Are there orthogonal Latin squares for all N ∈ N?
I No: for N = 2 we have only two Latin squares, and they are

not orthogonal:

1 2

2 1

2 1

1 2

1,2 2,1

2,1 1,2

I What about other orders?
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Euler’s 36 Officers Problem (1/2)

« A very curious question, which has ex-

ercised for some time the ingenuity of

many people, has involved me in the fol-

lowing studies, which seem to open a

new field of analysis, in particular the

study of combinations. The question re-

volves around arranging 36 officers to be

drawn from 6 different ranks and also

from 6 different regiments so that they

are ranged in a square so that in each

line (both horizontal and vertical) there

are 6 officers of different ranks and dif-

ferent regiments. »

L. Euler, Sur une nouvelle espèce de

quarrés magiques, 1782
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Euler’s 36 Officers Problem (2/2)

Euler did not find any solution, and set forth the following:

Conjecture
Let N = 4k +2, for k ∈ N. Then, there are no orthogonal Latin
squares of order N.

In 1900, Gaston Tarry proved (by ex-
haustive search!) Euler’s conjecture for
k = 1, showing the unsolvability of the
36 officers problem
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Disproof of Euler’s Conjecture

In 1960, Bose, Shrikhande and Parker found counterexamples to
Euler’s conjecture for all k ≥ 2
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Existence of Orthogonal Latin Squares

I In 1922, MacNeish gave a construction for all N . 2 mod 4
I The existence question of orthogonal Latin squares can be

summarised as:

Theorem
Let N , 2,6. Then, there exist orthogonal Latin squares of order N
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Mutually Orthogonal Latin Squares (MOLS)

I A set of s pairwise orthogonal Latin squares is denoted as
s-MOLS

I For all N ∈ N, we have that s ≤ N−1.

Theorem
Let N = q = pe , where p is prime and e ∈ N. Then, there exist
(N−1)-MOLS

Construction. For all α ∈ Fq \ {0}, define the Latin square Lα as:

Lα(i, j) = i+αj, for all i, j ∈ Fq

I Open problem: What is the maximum number of MOLS for
non-prime powers orders?
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Orthogonal Arrays

Definition
An orthogonal array OA(k ,N) is a N2×k matrix where each entry
is an element from [N] = {1, · · · ,N}, and such that by fixing any two
columns 1 ≤ i, j ≤ k , one gets all the possible pairs in [N]× [N]

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1
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Equivalence between OA and MOLS

Theorem
A set of k -MOLS of order N is equivalent to an OA(k +2,N)

Construction (⇒). Given k -MOLS L1, · · ·Lk , build a N2×k +2 array
as:

I Fill the first two columns with all pairs of [N]× [N] in
lexicographic order

I For 1 ≤ i ≤ k , fill column i+2 with Li read from top left to
bottom right
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Part 2: Cryptographic applications of Latin
squares and orthogonal arrays



Secret Sharing Schemes (SSS)

I Secret sharing scheme: a procedure enabling a dealer to
share a secret S among a set P of n players

I (k ,n) threshold schemes: at least k players out of n are
required to recover S [Shamir79].

Example: (2,3)–scheme

S = B2

B1

B3

Setup

P1

P2

P3

P2 B2

B3

B1P1

P3

Recovery
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Applications of SSS

I Corporate digital signatures
I Key recovery systems
I Example: DNSSEC root key shared with a (5,7)–scheme
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(2,n)-Schemes through n-MOLS

Setup Phase

1. The dealer D chooses a row S ∈ {1, · · · ,N} as the secret

1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1
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(2,n)-Schemes through n-MOLS

Setup Phase

1. The dealer D chooses a row S ∈ {1, · · · ,N} as the secret

1 2 3 4

4 3 2 1

2→ 1 4 3

3 4 1 2

1 2 3 4

3 4 1 2

4→ 3 2 1

2 1 4 3

1 2 3 4

2 1 4 3

3→ 4 1 2

4 3 2 1

Example: (2,3)-scheme, S = 3
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(2,n)-Schemes through n-MOLS

Setup Phase

2. D randomly selects a column j ∈ {1, · · · ,N}

1 2
↓

3 4

4 3 2 1

2→ 1 4 3

3 4 1 2

1 2
↓

3 4

3 4 1 2

4→ 3 2 1

2 1 4 3

1 2
↓

3 4

2 1 4 3

3→ 4 1 2

4 3 2 1

Example: S = 3, j← 2
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(2,n)-Schemes through n-MOLS

Setup Phase

3. The value of Li(S, j) for i ∈ [N] is the share of Pi

1 2
↓

3 4

4 3 2 1

2→ 1 4 3

3 4 1 2

1 2
↓

3 4

3 4 1 2

4→ 3 2 1

2 1 4 3

1 2
↓

3 4

2 1 4 3

3→ 4 1 2

4 3 2 1

Example: (2,3)-scheme, S = 3, j← 2, B1 = 1, B2 = 3, B3 = 4
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(2,n)-Schemes through n-MOLS

Recovery Phase

4. Since Li ,Lk are orthogonal, (Bi ,Bk ) uniquely identify (S, j)

1 2
↓

3 4

4 3 2 1

2→ 1 4 3

3 4 1 2

1 2
↓

3 4

3 4 1 2

4→ 3 2 1

2 1 4 3

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

Example: (2,3)-scheme, B1 = 1, B2 = 3⇒ (3,2)
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(2,n)-Schemes through n-MOLS

Recovery Phase

4. Since Li ,Lk are orthogonal, (Bi ,Bk ) uniquely identify (S, j)

1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

1 2
↓

3 4

3 4 1 2

4→ 3 2 1

2 1 4 3

1 2
↓

3 4

2 1 4 3

3→ 4 1 2

4 3 2 1

Example: (2,3)-scheme, B2 = 3, B3 = 4⇒ (3,2)
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(2,n)-Schemes through n-MOLS

Recovery Phase

4. Since Li ,Lk are orthogonal, (Bi ,Bk ) uniquely identify (S, j)

1 2
↓

3 4

4 3 2 1

2→ 1 4 3

3 4 1 2

1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

1 2
↓

3 4

2 1 4 3

3→ 4 1 2

4 3 2 1

Example: (2,3)-scheme, B1 = 1, B3 = 4⇒ (3,2)
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(2,n)-Schemes through n-MOLS

Security

5. Knowledge of a single Bi leaves S completely undetermined

1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

Example: (2,3)-scheme, B1 = 1,⇒ S =???
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(2,n)-Schemes through n-MOLS

Security

5. Knowledge of a single Bi leaves S completely undetermined

1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

Example: (2,3)-scheme, B2 = 3,⇒ S =???
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(2,n)-Schemes through n-MOLS

Security

5. Knowledge of a single Bi leaves S completely undetermined

1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

Example: (2,3)-scheme, B3 = 4,⇒ S =???
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Part 3: Orthogonal Latin squares through
Cellular Automata



One-Dimensional Cellular Automata (CA)

Definition
One-dimensional CA: quadruple 〈A ,n, r , f〉 where A is the finite set
of states, n ∈ N is the number of cells on a one-dimensional array,
r ∈ N is the radius and f : A2r+1→ A is the local rule.

Example: A = {0,1},n = 8, r = 1, f(x1,x2,x3) = x1⊕x2⊕x3 (Rule 150)

0

↓ f(1,1,0) = 1⊕1⊕0

110· · · 0 0 · · ·

1 0 0 1 1 0

⇓Parallel update Global rule F

01 0 0 0 1 0 1

Remark: No boundary conditions⇒ The array “shrinks”
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Latin Squares through Bipermutive CA (1/2)

I Idea: determine which CA induce orthogonal Latin squares
I Bipermutive CA: local rule f : F2r+1

q → Fq is defined as

f(x1, · · · ,x2r+1) = x1⊕g(x2, · · · ,x2r)⊕x2r+1

Lemma
Let 〈Fq,2m, r , f〉 be a bipermutive CA with 2r |m. Then, the CA
generates a Latin square of order N = 2m

x y

· · · · · · · · · · · · · · · · · · · · ·

L(x,y)

m

m m

L(x,y)

y

x
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Latin Squares through Bipermutive CA (2/2)

I Example: CA 〈F2,4,1, f〉, f(x1,x2,x3) = x1⊕x2⊕x3 (Rule 150)
I Encoding: 00 7→ 1,10 7→ 2,01 7→ 3,11 7→ 4

0 0 0 0
0 0

0 0 1 0
1 1

0 0 0 1
0 1

0 0 1 1
1 0

1 0 0 0
1 0

1 0 1 0
0 1

1 0 0 1
1 1

1 0 1 1
0 0

0 1 0 0
1 1

0 1 1 0
0 0

0 1 0 1
1 0

0 1 1 1
0 1

1 1 0 0
0 1

1 1 1 0
1 0

1 1 0 1
0 0

1 1 1 1
1 1

(a) Rule 150 on 4 bits

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(b) Latin square L150
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Linear CA

I Local rule: linear combination of the neighborhood cells

f(x1, · · · ,x2r+1) = a1x1⊕ · · ·⊕a2r+1x2r+1 , ai ∈ Fq

I Associated polynomial:

f 7→ ϕ(X) = a1 +a2X + · · ·+a2r+1X2r

I Global rule: m× (m+2r) 2r-diagonal transition matrix

MF =


a1 · · · a2r+1 0 · · · · · · · · · · · · 0
0 a1 · · · a2r+1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 a1 · · · a2r+1


x = (x1, · · · ,xn) 7→MFx>
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Orthogonal Latin Squares by Linear CA

Theorem
Let F = 〈Fq,2m, r , f〉 and G = 〈Fq,2m, r ,g〉, be linear CA. The Latin
squares induced by F and G are orthogonal if and only if Pf (X)
and Pg(X) are coprime

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(a) Rule 150

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

(b) Rule 90

1,1 4,2 3,3 2,4

2,2 3,1 4,4 1,3

4,3 1,4 2,1 3,2

3,4 2,3 1,2 4,1

(c) Superposition

Figure : P150(X) = 1+X +X2, P90(X) = 1+X2 (coprime)
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Proof (idea)

The two Latin squares are orthogonal iff the following Sylvester
matrix is invertible:

M =

(
MF
MG

)
=



a1 · · · a2r+1 0 · · · · · · · · · · · · 0
0 a1 · · · a2r+1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 a1 · · · a2r+1

b1 · · · b2r+1 0 · · · · · · · · · · · · 0
0 b1 · · · b2r+1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 b1 · · · b2r+1


I Resultant of f ,g: Res(f ,g) = det(M)

I Res(f ,g) , 0⇔ gcd(f ,g) = 1
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Open problems

Problem 1: Count (and build) pairs of coprime polynomials of
degree n over Fq:

I (q−1)-to-1 correspondence when a1 ∈ Fq [Benjamin07], but
for bipermutive CA we need a1 , 0!

I Experiments on q = 2 relate to the OEIS A002450 sequence:

a(n) = 0,1,5,21,85, ...⇒ a(n) =
4n −1

3

Problem 2: Extend the construction to orthogonal Latin
hypercubes
I First step: find under which conditions bipermutive CA

generate Latin hypercubes
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