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Coprime Polynomials

Object: pairs of binary polynomials of degree n ∈ N:

f(x) = a0 +a1x + · · ·+an−1xn−1 +xn ,

g(x) = b0 +b1x + · · ·+bn−1xn−1 +xn ,

where ai ,bi ∈ GF(2) = F2 = {0,1}

f ,g ∈ F2[x] are coprime⇔ gcd(f ,g) = 1

Applications cryptography and coding theory:
▶ Discrete logarithms in finite fields [C84]
▶ Decoding alternant codes [F95]
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Euclid’s Algorithm

Check if gcd(f ,g) = 1⇒ Euclid’s algorithm

Example: n = 3, f(x) = x3 +x2 +x +1, g(x) = x3 +1

f(x) = q(x) ·g(x)+ r(x)

x3 +x2 +x +1 = 1 · (x3 +1)+(x2 +x)
x3 +1 = (x +1) · (x2 +x)+(x +1)
x2 +x = x · (x +1)+0

Compact notation:
(x3+x2+x +1,x3+1)

1
−→ (x3+1,x2+x)

x+1
−−−→ (x2+x,x +1)

x
−→ (x +1,0)

gcd(f ,g) = x +1⇒ (f ,g) not coprime
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DilcuE’s Algorithm

▶ Remark: (f ,g) can be recovered from (x +1,0) with the same
quotients in reverse order

▶ Called DilcuE’s algorithm by Benjamin and Bennett [BB07]

(x +1,0)
x
−→

(x2 +x,x +1)
x+1
−−−→ (x3 +1,x2 +x)

1
−→

(x3 +x2 +x +1,x3 +1) = (f ,g)

▶ Suppose we change the last remainder from 0 to 1:

(x +1,1)
x
−→ (x2 +x +1,x +1)

x+1
−−−→ (x3 +x2,x2 +x +1)

1
−→

(x3 +x +1,x3 +x2) = (f ′,g′)

▶ By construction, (f ′,g′) are coprime
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Counting by Bijection

In essence: bijection for coprime/non-coprime pairs over F2:

1. Apply Euclid to (f ,g)

2. If the last remainder is 0, change it to 1. Otherwise, set it to
the second-last remainder

3. Apply DilcuE’s algorithm to the reversed quotients

Theorem ([BB07, R00])
Let f ,g ∈ F2[x] of degree n be randomly chosen. Then, the
probability that gcd(f ,g) = 1 is 1

2 .

In other words: the number of coprime pairs is 22n−1
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Enter the complication

We require now that both f and g have a nonzero constant term:

f(x) = 1+a1x + · · ·+an−1xn−1 +xn ,

g(x) = 1+b1x + · · ·+bn−1xn−1 +xn .

Problems:

1. Count all such pairs

2. Enumeration algorithm

Remark: the trick above does not work!

non-coprime↔ coprime

(x3 +x2 +x +1,x3 +1)↔ (x3 +x +1,x3 +x2 (+0))

... Why do we want to do that?
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n-MOLS by Cellular Automata

▶ Bipermutive Linear rule: f(x) = x1⊕a1x2⊕ · · ·⊕an−1xn−1⊕xn
▶ Associated Polynomial: Pf (X) = 1+a1X + · · ·+an−1Xn−1+Xn

Theorem ([MGFL20])
n bipermutive linear CA generates a set of n-MOLS if and only if
their associated polynomials are pairwise coprime

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(a) Rule 150

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

(b) Rule 90

1
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3
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1

3
2

3
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2
3

1
2

4
1
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1

(c) Superposition

Figure: P150(X) = 1+X +X2, P90(X) = 1+X2 (coprime)
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Secret Sharing Schemes (SSS)

▶ (k ,n)–Secret sharing scheme share a secret S among n
players, so that at least k of them are required to recover S

▶ (2,n)–schemes⇔ families of n-MOLS

Example: (2,3)–scheme

S = B2

B1

B3

Setup

P1

P2

P3

P2 B2

B3

B1P1

P3

Recovery
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Asking for clues (7 years ago...)

Luca

Dear Arthur, what do you
think of this complication?

Arthur Benjamin

Dear Luca, off the top of
my head, there are q2 −1
equivalence classes, all of
which are co-prime except
one? But I may be wrong.

?
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One MONTH later...

... He was indeed right! But took me several weeks to prove it

Sadly, the clue was not enough to solve the counting problem
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Counting by Recurrence

s https://xkcd.com/710/

▶ Number of coprime polynomial pairs of
degree n and nonzero constant term:

a(n) = 4n−1 +a(n−1) =
4n−1−1

3
= 0,1,5,21,85, ...

▶ Corresponds to OEIS A002450

▶ Generalized for any finite field Fq in [MGFL20] (but
enumeration not addressed)

L. Mariot, M. Gadouleau, E. Formenti, and A. Leporati.

Mutually orthogonal latin squares based on cellular au-

tomata. Des. Codes Cryptogr. 88(2):391–411 (2020)
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Problem Structure

Strategy: characterize the sequences of quotients that gives only
(1,1) coprime pairs when starting from the remainders (1,0)

Three parts of the problem:

q1→

degrees︷︸︸︷
xd1 +

middle terms︷                          ︸︸                          ︷
q1,d1−1xd1−1 + · · ·+q1,1x+

constant terms︷︸︸︷
s1

q2→ xd2 +q2,d2−1xd2−1 + · · ·+q2,1x + s2

...→
... +

... + · · ·+
... +

...

qk → xdk +qk ,dk−1xdk−1 + · · ·+qk ,1x + sk

Notation: ri , ri+1→ consecutive remainders produced by Euclid’s
algorithm at step i. Step i+1:

ri(x) = qi+1(x)ri+1(x)+ ri+2(x)
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Finite State Automaton of Remainders

ri(x) = qi+1(x)ri+1(x)+ ri+2(x)

▶ (ci ,ci+1)→ constant terms of ri and ri+1

▶ si+1→ constant term of qi+1

▶ δ((ci ,ci+1),si+1)→ next pair (ci+1,ci+2)

(ci ,ci+1) si+1 δ((ci ,ci+1),si+1)
(1,1) 0 (1,1)
(1,1) 1 (1,0)
(1,0) 0 (0,1)
(1,0) 1 (0,1)
(0,1) 0 (1,0)
(0,1) 1 (1,1)

Remark: the pair (0,0) never occurs

11

1001

1

0

0/1

0

1
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The Regular Language of Constant Terms Sequences

11

10

⇑

01

1

0

0/1

0

1

Inverse FSA

▶ The FSA is permutative: for DilcuE’s,
simply reverse the arrows

▶ Initial state: 10
▶ Final state: 11 (but we can use 10)

Regular Expression of the Language:

L = (0(0+1)+(10∗1(0+1)))∗

Luca Mariot Counting Coprime Polynomials over Finite Fields 14/21



Enumeration/counting of Constant Terms Sequences

▶ Enumeration: generate all words of length k [M97]
▶ Counting: exploit algebraic language theory

Transform L = (0(0+1)+(10∗1(0+1)))∗ in a FPS as follows:
▶ 0,1⇒ X
▶ +, · ⇒+, ·

▶ ∗⇒ 1
1−X

Generating Function:
∞∑

k=0

ak ·Xk =
1−X

1−X −2X2
,

Closed Form:

ak =
2k +2 · (−1)k

3
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Sequences of quotients’ degrees

Second part: Characterize the degrees of the quotients

Example: n = 4, {1,x,x2,x,1}

(1,0)
1
−→ (1,1)

x
−→ (x +1,1)

x2

−−→ (x3 +x2 +1,x +1)
x
−→

(x4 +x3 +1,x3 +x2 +1)
1
−→ (x4 +x2 +1,x4 +x3 +1)

Sum of degrees: 1+2+1 = 4, k = 3

Question: what are the combinations of ordered sums of n?

⇒ compositions of n ∈ N
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Quotients’ degrees as compositions of n

▶ Representation: n−1 boxes that can be either "+" or ","

1

n−1︷        ︸︸        ︷
□1□ . . .□1□1

▶ Example: 1,1+1,1→ 1+2+1 (n = 4, k = 3)
���4+0

2+1+1 1+2+1 1+1+2

3+1 2+2 (1+3)

1+1+1+1

▶ We remove the top of the poset
▶ Enumeration: generate all binary

strings of length n with k 1s
▶ Counting:

(
n−1
k−1

)
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Enumeration Algorithm

▶ Third part: middle terms are free
▶ once k is fixed, all three parts are independent

So for enumeration, given n ∈ N:

For each composition comp of n of length k (except k = 0) do:
▶ Generate all quotients’ sequences of comp (2n−k )
▶ For each quotients’ sequence seq do:

▶ For each constant term sequence of length k do:
▶ Add the constant terms to the quotients
▶ Apply DilcuE’s from (1,0) by applying seq

And for counting, we reobtain the formula 4n−1−1
3 from:

n∑
k=2

2n−k︸︷︷︸
middle

·

(
n−1
k −1

)
︸ ︷︷ ︸
degrees

·
2k +2 · (−1)k

3︸            ︷︷            ︸
constant
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▶ Generate all quotients’ sequences of comp (2n−k )
▶ For each quotients’ sequence seq do:

▶ For each constant term sequence of length k do:
▶ Add the constant terms to the quotients
▶ Apply DilcuE’s from (1,0) by applying seq

And for counting, we reobtain the formula 4n−1−1
3 from:

n∑
k=2

2n−k︸︷︷︸
middle

·

(
n−1
k −1

)
︸ ︷︷ ︸
degrees

·
2k +2 · (−1)k

3︸            ︷︷            ︸
constant
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Conclusions and Future Work

Summing up:
▶ Enumeration more complicated with nonzero constant terms
▶ We divided the problem in three tasks:

1. sequences of constant terms (⇒ regular language)
2. sequences of degrees (⇒ compositions)
3. sequences of middle terms (⇒ free)

▶ Results informally published in [FM22]

Future directions:
▶ Generalize to any finite field Fq and to m-tuples of polynomials
▶ Applications to cryptography [GM20, M21, GMP22]
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Summary

Thank you!
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