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Summary

Background on Cryptographic Primitives and
Cellular Automata
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Symmetric Cryptography

Basic Goal: enable confidentiality in communication using a shared symmetric key

Alice Encryption

K

Channel

Oscar

Decryption

K

Bob
PT CT CT PT

▶ PT : plaintext
▶ CT : ciphertext ▶ K : encryption/decryption key
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Primitives in symmetric crypto
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PRNG
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(a) Stream cipher
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π-box

⊕
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CT

(b) Block cipher

Symmetric ciphers require several low-level primitives, such as:
▶ Pseudorandom number generators (PRNG)
▶ Boolean functions f : Fn

2→ F2 and S-boxes
▶ Permutation (diffusion) layers, ...

Luca Mariot Are Cellular Automata of any use to Cryptography?



Design Approaches

▶ "Traditional" approach: ad-hoc algebraic constructions to choose primitives with
specific security properties

▶ "AI" approach: support the designer in choosing the primitives using AI
methods/models from the following domains:
▶ Optimization (Evolutionary algorithms, swarm intelligence...)

χ point χ point

▶ Computational models (cellular automata, neural networks...)

1 0 0 1 1 0

⇓ F : {0,1}n → {0,1}m

01 0 0 0 1 0 1
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Cellular Automata

▶ One-dimensional Cellular Automaton (CA): a discrete parallel computation model
composed of a finite array of n cells

Example: n = 6, d = 3, ω= 0, f(si ,si+1,si+2) = si ⊕si+1 ⊕si+2 (rule 150)

1 0 0 1

f(1,0,0) = 1

01 0 0 0 1

No Boundary CA – NBCA

01 0 1 0 0

f(1,1,0) = 0

01 0 0 0 1 1 0

Periodic Boundary CA – PBCA

▶ Each cell updates its state s ∈ {0,1} by applying a local rule f : {0,1}d → {0,1} to
itself, the ω cells on its left and the d −1−ω cells on its right
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Motivations

General Research Goal: Investigate cryptographic primitives defined by CA

1 0 0 1 1 0

⇓ F : {0,1}n → {0,1}m

01 0 0 0 1 0 1
Alice Encryption

KE
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Oscar

Decryption
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Bob
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Why CA, anyway?

1. Security from Complexity: CA can yield very complex dynamical behaviors

2. Efficient implementation: Leverage CA parallelism and locality
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Summary

Stream Ciphers based on CA
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Vernam Stream Cipher

K

PRG

z⊕
PT CT

(a) Encryption

K

PRG

z⊕
CT PT

(b) Decryption

▶ K : secret key

▶ PRG: Pseudorandom Generator

▶ z: keystream

▶
⊕

: bitwise XOR

▶ PT : Plaintext

▶ CT : Ciphertext
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CA-based Crypto History: Wolfram’s PRNG

▶ CA-based Pseudorandom Generator (PRG) [W86]: central cell of rule 30 CA used
as a stream cipher keystream

Seed K

Keystream z

K

CA

z⊕
Encryption

PT CT

K

CA

z⊕
Decryption

CT PT

▶ Secret key: (random) initial condition of the CA
▶ Paper published in CRYPTO’85
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Attacks on Wolfram’s PRNG [M91, K97]

Exploiting the specific form of Rule 30: f(x1,x2,x3) = x1XOR(x2ORX3)

Consequences: Wolfram’s PRNG is basically useless when instantiated with rule 30
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Shortcoming 1 in CA Crypto

▶ Wolfram used only empirical and statistical tests for security analysis
▶ But statistical tests can be used as necessary conditions, so:

Shortcoming
Grounding security of CA-based primitives on statistical or empirical tests or criteria
unrelated to cryptography (e.g., chaos-based properties) can be misleading.

Insight
Statistical tests are fine only to filter out bad CA-based cryptographic primitives.
At least, the cryptographic properties of the local rules should be carefully investigated.

▶ How can we fix Wolfram’s PRNG?
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Linear Feedback Shift Registers (LFSR)

▶ Device computing the binary linear recurring sequence

sn+k = a +a0sn +a1sn+1 + · · ·+ak−1sn+k−1

D0

Output

a0 a1

+

D1

· · ·

ak−2

+· · ·

Dk−2

ak−1

+

Dk−1

▶ Too weak as a PRG: 2k consecutive bits of keystream are enough to recover the
LFSR initialization via the Berlekamp-Massey algorithm
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The Combiner Generator

▶ Idea: use n LFSR in parallel, and combine their outputs with a Boolean function
f : Fn

2→ F2 of n variables [C21]

LFSR 1 x1

LFSR 2 x2
...

...

f(x1,x2, · · · ,xn)

LFSR n xn

next bit

▶ The period of the combiner is at most the lcm of the periods of the n LFSR
▶ The function f must satisfy several properties to resist different attacks
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The Filter Generator

▶ Idea: single LFSR of order n, but use the values of all flip-flops as inputs to a
Boolean function f : Fn

2→ F2| [C21]

x1

a0 a1

+

x2 · · ·

an−2

+· · ·

xn−1

an−1

+

xn

· · ·

f(x1,x2, · · · ,xn)

next bit

▶ Equivalent to the combiner model with n copies of the same LFSR, but attacks
work differently on the filter generator
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Cryptographic Properties of Boolean Functions

▶ A mapping f : Fn
2→ F2, most commonly represented by its Truth Table (TT) Ωf

▶ Walsh Transform (WT): represents f as correlations with linear functions a ·x

Wf (a) =
∑
x∈Fn

2

(−1)f(x)⊕a·x

(x1,x2,x3) 000 001 010 011 100 101 110 111
Ωf 0 1 1 0 1 0 1 0

Wf (a) 0 −4 0 4 0 4 0 4

A Boolean function used in the combiner model should:
▶ be balanced
▶ have high nonlinearity nl(F)
▶ be correlation immune of high order t
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Salvaging Wolfram’s PRNG

▶ Problem of rule 30: too small to give any meaningful cryptographic property [M08]
▶ Later works considered rules of larger diameters [L13, F14, L14]

(a) Rule 1452976485 (b) Rule 1520018790 (c) Rule 2778290790

▶ Example: bipermutive rules [L13] satisfy 1st-order correlation immunity, d = 5 is
the minimum to find also nonlinear rules.
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Shortcoming 2 in CA Crypto

▶ Cryptographic properties are tailored for some PRNG models (combiner, filter, ...)
▶ But Wolfram’s PRNG is not among them! So:

Shortcoming
Security claims for Wolfram-like PRNGs based on the cryptographic properties of the
local rule are not enough:
▶ Attacks on the combiner or filter model might not be relevant in the CA setting
▶ Cryptographic properties might not capture other attacks unique to the CA model

Insight
Consistently link the CA model with the security properties and the related attacks
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Summary

Block Ciphers based on CA

Luca Mariot Are Cellular Automata of any use to Cryptography?



Zoom on SPN Block Ciphers

Plaintext

S5S4S3S2S1 S6 S7 S8 S9 S10

Permutation layer

⊕
Ciphertext

(a) Substitution-Permutation Network (SPN)

Zoom in on a S-box Si :

y2y1 y3 y4 y5 y6 y7 y8

⇓ F : {0,1}n → {0,1}n

x2x1 x3 x4 x5 x6 x7 x8

(b) S-box Si

S-boxes in SPN ciphers must satisfy several properties, mainly [C21]:
▶ invertibility (for decryption)
▶ High nonlinearity (for linear cryptanalysis)
▶ Low differential uniformity (for differential cryptanalysis)
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CA-based symmetric ciphers

The "dynamical system" way:
▶ Iterate a CA for several time steps to encrypt the whole plaintext
▶ Typically seen in CA venues [S04, M06, S08]
▶ Several weaknesses (low diffusion, ...)

The "reductionist" way:
▶ Iterate a CA for a single time step to encrypt a part of plaintext
▶ More common in crypto venues [P17a, G18, M19]
▶ In line with current state of the art
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"Dynamical System" CA-Based Crypto: Gutowitz’s Block Cipher [G93]

▶ Diffusion: iterative preimage computation of a permutive CA

PT t = 0

w1 t = 1
← →

w2
← →

t = 2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

CT t = T

▶ Confusion: Iteration of a partitioned (reversible) CA
▶ No formal security analysis so far
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Shortcoming 3 in CA Crypto

▶ Gutowitz’s cipher does not follow the SPN paradigm

Shortcoming
Using non-standard paradigms to design block ciphers hinders the security analysis. A
general appeal to the confusion and diffusion principles is not a sound approach.

▶ But CA are simply vectorial Boolean functions, hence:

Insight
Prefer to work with well-established paradigms (e.g., SPN ciphers and sponges) and
insert CA as building blocks inside them (e.g., as S-boxes)
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"Reductionist" CA-Based Crypto: Keccak χ S-box

▶ Local rule (rule 210):

χ(x1,x2,x3) = x1⊕ (1⊕ (x2 ·x3))

▶ Invertible for every odd CA size [D95]
▶ Used as a PBCA with n = 5 in the

Keccak specification of SHA-3
standard [B11]

▶ CA iterated for a single step, and
interleaved with other (non-local)
operations
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CA-based S-boxes

Algebraic approach:
▶ Theoretical analysis of specific CA

rules as S-boxes
▶ Examples: χ in Keccak [D95, B11]

Heuristic approach:
▶ Use of heuristic algorithms (e.g. GP)

to optimize the crypto properties of CA
rules [P17a, P17b, M19, M21, D23]

▶ More flexibility wrt other properties
(e.g. implementation cost)

∧

+ ¬

x1 x2 x3

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f(x)

0
0
1
0
1
0
0
0

v4 v3 v2 v1 v0

o4 o3 o2 o1 o0
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Can we use CA for everything?

▶ The propagation of differences is bounded by the CA "speed of light" (diameter)

Image credits: J. Daemen, On Keccak and SHA-3,
http://ice.mat.dtu.dk/slides/KeccakIcebreak-slides.pdf

▶ But diffusion requires quick propagation!
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Shortcoming 4 in CA Crypto

Shortcoming
CA are simply bad for diffusion

▶ Further motivation to work with established block cipher paradigms:

Insight
For certain components of a block cipher, it is better to abandon the CA approach.
Non-local transformations are usually better, especially for the diffusion phase.

▶ Diffusion layers with CA: how many iterations do we need to reach good
difference propagation?
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Summary

Conclusions
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Future Outlook

To sum up:
▶ CA are definitely useful for cryptography, but...
▶ ... need to link them consistently to security models and properties of ciphers

Directions for future research:
▶ For stream ciphers: closely analyze Wolfram’s PRNG, find new attacks [M17]
▶ For block ciphers: study CA-based permutation layers [M20, G23], and compare

them with traditional ones
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