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It may be surprising to see emotional sensibility invoked à propos of
mathematical demonstrations which, it would seem, can interest

only the intellect. This would be to forget the feeling of
mathematical beauty, of the harmony of numbers and forms, of

geometric elegance. This is a true esthetic feeling that all real
mathematicians know, and surely it belongs to emotional sensibility.

—Henri Poincaré, Reflections – Mathematical Creation





A B S T R A C T

The goal of this thesis is to investigate Cellular Automata (CA) from
the perspective of Boolean functions and combinatorial designs. Besides
the inherent theoretical interest, this research also bases its motivation
in cryptography, since Boolean functions and combinatorial designs
have several applications in the design of Pseudorandom Number Gen-
erators (PRNG) and Secret Sharing Schemes (SSS).

The contributions presented in this thesis are developed along three
main research lines, organized as follows.

The first research line concerns the use of heuristic optimization
algorithms for designing Boolean functions with good cryptographic
properties, to be used as local rules in CA-based PRNG. The main
motivation is to improve Wolfram’s pseudorandom generator, which
has been shown to be vulnerable to two cryptanalytic attacks due to
the poor cryptographic properties of rule 30. In this research line, we
first develop a discrete Particle Swarm Optimizer (PSO) which explores
the space of truth tables of balanced Boolean functions having good
nonlinearity, resiliency and propagation criteria. Next, we design a
Genetic Algorithm (GA) which works on a different representation of
Boolean functions, namely their Walsh spectrum.

The second research line deals with vectorial Boolean functions
generated by CA global rules. The first contribution investigates the
period of preimages of spatially periodic configurations under the action
of surjective CA, a problem which is related to the maximum num-
ber of players in a CA-based SSS already published in the literature.
The second contribution analyzes the cryptographic properties of CA
global rules, focusing on their algebraic degree, nonlinearity and differ-
ential uniformity. We then adopt a heuristic approach based on Genetic
Programming (GP) to evolve S-boxes defined by CA with nonlinearity
and differential uniformity. As a last contribution in this research line,
we focus on the resiliency criterion and introduce a new cryptographic
property for CA-based S-boxes, namely asynchrony immunity.

The third research line deals with combinatorial designs generated
by CA. We specifically focus on the case of Orthogonal Latin Squares
(OLS), since they are equivalent to perfect authentication codes and
threshold secret sharing schemes. To this end, our first contribution in
this research line concerns the construction and the enumeration of
OLS generated through linear CA, leveraging on results from the the-
ory of finite fields. The second contribution, on the other hand, ex-
tends the investigation to OLS generated by nonlinear CA, using both
a combinatorial approach for exhaustive enumeration and a heuristic
approach based on GA and GP.
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R I A S S U N T O

Lo scopo di questa tesi è studiare gli Automi Cellulari (AC) dalla
prospettiva delle funzioni booleane e dei disegni combinatorici. Oltre
all’intrinseco interesse teorico, questa ricerca è motivata da appli-
cazioni alla crittografia, dato che sia le funzioni booleane che i dis-
egni combinatorici sono utilizzati nella progettazione di generatori di
numeri pseudocasuali (Pseudorandom Number Generators, PRNG) e degli
schemi di condivisione di segreti (Secret Sharing Schemes, SSS).

I contributi della tesi sono stati sviluppati lungo tre linee di ricerca,
di seguito descritte.

La prima linea di ricerca riguarda l’utilizzo di algoritmi di ottimiz-
zazione euristica per cercare funzioni booleane aventi buone propri-
età crittografiche, da impiegare come regole locali nei PRNG basati
su AC. La motivazione principale di questo studio è il miglioramento
del generatore di Wolfram, che è stato dimostrato essere vulnera-
bile a due attacchi crittoanalitici, a causa delle cattive proprietà crit-
tografiche della regola 30. In primo luogo, in questa linea di ricerca
viene sviluppata una versione discreta di un Particle Swarm Optimizer
(PSO), che esplora lo spazio delle tabelle di verità di funzioni booleane
bilanciate aventi una buona combinazione di nonlinearità, ordine di
resilienza e criterio di propagazione. In seguito, viene proposto un Algo-
ritmo Genetico (Genetic Algorithm, GA) basato su una rappresentazione
differente delle funzioni booleane, in particolare il loro spettro di Walsh.

La seconda linea di ricerca si occupa delle funzioni booleane vet-
toriali generate dalle regole globali degli AC. Il primo contributo
in questa linea di ricerca considera il periodo delle preimmagini di
configurazioni spazialmente periodiche sotto l’azione di un AC suriet-
tivo, un problema che è collegato al numero di partecipanti di un
SSS basato sugli AC pubblicato in letteratura. Il secondo contributo
consiste nell’analisi delle proprietà crittografiche delle regole globali
degli AC, con particolare riguardo al loro grado algebrico, nonlinearità
e uniformità differenziale. Viene in seguito adottato un approccio euris-
tico basato sulla Programmazione Genetica (Genetic Programming, GP)
per ottimizzare le S-box definite da AC con una buona nonlinearità e
uniformità differenziale. Infine, viene considerato l’ordine di resilienza
e introdotta una nuova proprietà crittografica per le S-box generate
da AC, l’immunità all’asincronia.

La terza linea di ricerca riguarda i disegni combinatorici generati
tramite AC. Più precisamente, viene considerato il caso dei Quadrati
Latini Ortogonali (Orthogonal Latin Squares, OLS), poiché sono equiv-
alenti ai codici di autenticazione perfetti e agli schemi di condivisione dei
segreti a soglia. Il primo contributo in questa linea di ricerca concerne
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la costruzione e il conteggio degli OLS generati da AC lineari, basan-
dosi su risultati della teoria dei campi finiti. Il secondo contributo,
d’altro canto, generalizza questa analisi a OLS generati da AC non-
lineari, sia attraverso un metodo combinatorico per l’enumerazione
esaustiva, sia tramite un approccio euristico basato su GA e GP.
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R É S U M É

Le but de cette thèse est l’étude des Automates Cellulaires (AC) dans
la perspective des fonctions booléennes et des dessins combinatoires. Au
delà de son intérêt théorique, cette recherche est motivée par ses ap-
plications à la cryptographie, puisque les fonctions booléennes et les
dessins combinatoires sont utilisés pour construir des générateurs de
nombres pseudoaléatoires (Pseudorandom Number Generators, PRNG) et
des schémas de partage de secret (Secret Sharing Schemes, SSS).

Les résultats présentés dans la thèse ont été développé sur trois
lignes de recherche, organisées comme suit.

La première ligne de recherche concerne l’emploi des algorithmes
d’optimisation heuristique pour chercher des fonctions booléennes
ayant des bonnes propriétés cryptographiques, à utiliser comme des
règles locales dans des PRNG basés sur les AC. La motivation prin-
cipale est l’amélioration du générateur de Wolfram, qui a été montré
être vulnérable vis à vis de deux attaques cryptanalytiques, à cause
des mauvaises propriétés cryptographiques de la règle 30. D’abord,
on développe une version discrète d’un optimisateur par essaims par-
ticulaires (Particle Swarm Optimzer, PSO) qui explore l’espace des ta-
bles de vérité des fonctions booléennes balancées ayant une bonne
combinaison de nonlinéarité, ordre de résilience et critère de propagation.
Ensuite, on propose un Algorithme Génétique (Genetic Algorithm, GA)
qui travail sur une représentation différente des fonctions booléennes,
c’est à dire leur spectre de Walsh.

La deuxième ligne de recherche s’occupe des fonctions booléennes
vectorielles engendrées par les règles globales des AC. La première
contribution considère la période des preimages des configurations spa-
tialement périodiques sous l’action d’un AC surjectif, un problème qui
est lié au nombre des joueurs qui peuvent participer dans un SSS basé
sur les AC qui est publié dans la littérature. La deuxième contribution
analyse les propriétés cryptographiques des règles globales des AC,
en se concentrant sur le degré algébrique, la nonlinéarité et l’uniformité
differentielle. Nous adoptons après un approche heuristique basé sur
la Programmation Génétique (Genetic Programming, GP) pour optimiser
des S-boxes définies par des AC avec une bonne nonlinéarité et uni-
formité differentielle. Enfin, on considère l’ordre de résilience et on in-
troduit une nouvelle propriété cryptographique pour les S-boxes en-
gendrées par les AC, l’immunité à l’asynchronie.

La troisième ligne de recherche se concentre sur les dessins com-
binatoires engendrés par les AC. Plus précisément, on considère les
Carrés Latins Orthogonaux (Orthogonal Latin Squares, OLS), puisque ils
sont équivalents aux codes d’authentification cartésiens et aux schémas de

xi



partage de secret à seuil. Notre première contribution dans cette ligne
de recherche regarde la construction et l’énumération des OLS engen-
drés par des AC linéaires, qui se base sur des résultats de la théorie
des corps finis. La deuxième contribution, par contre, généralise cette
investigation à des OLS engendrés par des AC nonlinéaires, soit avec
un méthode combinatoire pour l’énumération exhaustive, soit avec
une approche heuristique basé sur les GA et la GP.
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1

I N T R O D U C T I O N

Some of the deepest results in Computer Science share a common
trend towards simple abstractions. Mentioning two notable examples,
Turing [184] showed that any computable function can be calculated
by a simple abstract machine whose behavior consists of either read-
ing or writing 0s and 1s by moving on a bi-infinite tape, while Böhm
and Jacopini [18] demonstrated that a programming language only
needs to feature sequential composition, conditional statements and
loop structures in order to be Turing-complete.

Cellular Automata (CA), originally introduced by Ulam [185] and
von Neumann [188], are perhaps one of the computational models
that better embody this simplicity principle. In fact, a CA consists of
a collection of cells, either arranged on a line or a grid, where each
cell applies a local rule over its neighbors in order to update its state.
However, notwithstanding this simple structure, CA can exhibit very
complex dynamical behaviors. This feature drew several researchers
to consider CA in a wide variety of domains, be it in applicative
contexts (such as the simulation of discrete complex systems) or in a
more theoretical setting (such as the computational power of CA).

One of the most interesting applications of cellular automata con-
cerns cryptography, whose general goal is to enable two abstract par-
ties, a sender and a receiver, to securely communicate over a channel
which is eavesdropped by an adversary. As a matter of fact, the dy-
namical complexity of CA can be exploited to realize cryptosystems
which satisfy the principles of confusion and diffusion set forth by Shan-
non [164]. Moreover, the aforementioned structural simplicity of CA
is also appealing in cryptography because it facilitates the security
analysis of the resulting cryptosystem. Finally, due to their massive
parallelism, CA can be efficiently implemented in hardware, which
make them interesting for the design of cryptographic applications
in environments with constrained computational resources.

The goal of this thesis is the study of Boolean functions and combi-
natorial designs generated by cellular automata. Indeed, by looking at
the relevant literature [30, 31, 172, 173], one can see that Boolean func-
tions and combinatorial designs underlie the design of several symmet-
ric cryptographic primitives, such as Pseudorandom Number Generators
(PRNG), Substitution boxes (S-boxes) and Secret Sharing Schemes (SSS).

For this reason, we structured our investigation along three re-
search lines, which are based and improve on the current state of
the art of CA-based cryptographic applications.

1
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1.1 heuristic optimization of boolean functions

The first research line pertains the search of Boolean functions with
good cryptographic properties to be used as local rules of CA for the
design of PRNGs and stream ciphers. In this case, the first proposal
of a CA-based PRNG for cryptographic purposes dates back to Wol-
fram [195], who proposed to use a CA equipped with rule 30 to gen-
erate pseudorandom keystreams to be used in a Vernam-like stream
cipher. However, this design was shown to be vulnerable to cryptan-
alytic attacks by Meier and Staffelbach [118] and by Koc and Apo-
han [100], due to the poor cryptographic properties of the Boolean
function representing rule 30. As a consequence, later research [114,
106, 63] focused on the search of local rules with better cryptographic
properties, mainly using combinatorial methods.

Our contribution in this first research line is the use of heuristic
optimization algorithms to evolve Boolean functions featuring a good
combination of cryptographic properties. Heuristic techniques repre-
sent an interesting alternative to algebraic constructions [30] for find-
ing Boolean functions which are useful for cryptographic purposes,
as witnessed by several publications on the subject [123, 43, 2, 143].
Of course, the use of heuristic methods to optimize cryptographic
properties is a research topic that transcends the use of the resulting
Boolean functions as local rules of cellular automata: as we mentioned
above, Boolean functions also play a vital role in the design of several
cryptographic primitives that are not based on CA. Hence, the first
research line addressed in this thesis is of independent interest.

More specifically, in this research line we first developed a discrete
Particle Swarm Optimizer (PSO) which searches the space of truth
tables of balanced Boolean functions having good nonlinearity, re-
siliency and propagation criteria. Next, we designed a Genetic Al-
gorithm (GA) which works on a different representation of Boolean
functions, namely their Walsh spectrum. The advantage is that several
cryptographic criteria can be easily encoded on this representation,
and the goal of GA is to find Walsh spectra with the desired proper-
ties that map to actual Boolean functions.

1.2 cryptographic and coding-theoretic analysis of ca

The second research line considers CA as vectorial Booolean functions
(or S-boxes) instead of focusing on their local rules. This approach
is especially useful when considering CA for the design of block ci-
phers. However, one can see that there is a gap in the literature per-
taining this aspect of CA-based cryptography. As a matter of fact,
few works [74, 162, 176] have been published in the literature about
the design of block ciphers based on CA, and most of them have not
been subjected to a rigorous security analysis. A notable exception in
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this respect is the CA equipped with rule χ proposed by Daemen et
al. [52], whose cryptographic properties have been thoroughly inves-
tigated by the authors. To the best of our knowledge, rule χ is the
only CA which is featured in a real-world cipher, namely Keccak,
which is now part of NIST SHA-3 standard [15].

However, beside the ad-hoc analysis which has already been car-
ried out for χ, a general cryptographic analysis of CA is still missing
in the literature. For this reason, we tackle this task in the second
research line by subdividing it in three parts.

The first part investigates the period of preimages of spatially pe-
riodic configurations under the action of surjective CA. Although this
problem may look unrelated to cryptography at a first glance, it is
actually connected to determining the maximum number of players
allowed in a CA-based Secret Sharing Scheme (SSS) proposed in [112].
In this context, we first show a general methodology based on de
Bruijn graphs to compute the period of preimages in surjective CA.
We then focus on the class of linear CA, for which we give a charac-
terization of the preimages period problem in terms of concatenated
linear recurring sequences.

In the second part of this research line, we begin analyzing the cryp-
tographic properties of CA global rules that are useful for the design
of S-boxes in block ciphers. In particular, we characterize the alge-
braic degree and we prove two upper bounds on the nonlinearity and
differential uniformity achievable by S-boxes defined by CA, relating
them to the corresponding properties of the underlying local rules.
Then, we adopt a heuristic approach based on Genetic Programming to
evolve CA-based S-boxes having a good trade-off of nonlinearity and
differential uniformity.

In the last part, we focus our attention on another criterion of vec-
torial Boolean functions which is relevant in the context of pseudo-
random generation and stream ciphers, namely resiliency. This allows
us to extend our analysis by considering CA from the standpoint of
coding theory. In particular, we show that linear CA are equivalent to
cyclic codes, so that the CA resiliency order corresponds to the min-
imum distance of such codes. Additionally, the encoding process of
these codes actually amounts to the computation of a CA preimage
using the same tools developed for the first part, i. e. concatenated lin-
ear recurring sequences. Finally, this part also considers a new crypto-
graphic criterion for the S-boxes of CA, namely asynchrony immunity,
which could be of interest for the development of side-channel counter-
measures in CA-based ciphers.

1.3 combinatorial designs and ca

The third research line investigates the combinatorial designs gener-
ated by CA, specifically focusing on Orthogonal Latin Squares (OLS).
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The reason is that OLS are equivalent to perfect authentication codes
and to threshold secret sharing schemes. While the former have never
been considered in the literature of CA-based cryptography, the lat-
ter have been investigated to some extent [153, 112]. However, all
the proposed solutions feature a sequential threshold access structure,
meaning that the shares in the SSS must satisfy an adjacency constraint
to reconstruct the secret, beside reaching the specified threshold cardi-
nality. On the other hand, a set of n Mutually Orthogonal Latin Squares
(MOLS) is equivalent to a (2,n)–threshold scheme, meaning that each
subset of 2 players out of n can recover the secret by pooling together
the respective shares. Thus, a possible way to improve on the state
of the art of CA-based SSS is to investigate how to construct sets of
MOLS via CA. We remark that, even though threshold secret shar-
ing is a problem which has already been solved without resorting to
CA (such as in Shamir’s scheme [163] or Blakley’s scheme [17]), we
deem interesting analyzing the OLS engendered by CA due also to
the connections that these combinatorial designs have with coding
theory [173].

In the first part of this research line we start by investigating a
construction of OLS based on linear CA. In this case, we give an al-
gebraic characterization based on invertible Sylvester matrices, which
leads us to prove that two linear bipermutive CA generate orthogonal
Latin squares if and only if the polynomials associated to their local
rules are relatively prime. We then continue our analysis by count-
ing all pairs of OLS generated by linear CA, or equivalently all pairs
of coprime polynomials of degree n with nonzero constant term. In-
terestingly, to the best of our knowledge this specific variant of the
counting problem of coprime polynomials seems to have received
little attention in the literature of finite fields. We thus solve the prob-
lem through a recurrence equation, whose closed form turns out to
be related to an integer sequence already known in the Online Ency-
clopedia of Integer Sequences (OEIS) for several other combinatorial and
number-theoretic facts, not related to CA or OLS. Next, we provide
a construction of MOLS generated by linear CA based on irreducible
polynomials, and conjecture its optimality.

In the second part, we generalize our investigation to OLS gener-
ated by nonlinear bipermutive CA, motivated by the fact that these
OLS have an application in the design of cheater-immune SSS [181].
To this end, we adopt both a combinatorial and a heuristic approach.
In the combinatorial approach, we prove some necessary conditions
that two nonlinear CA rules must satisfy in order to generate a pair
of OLS, and we use such conditions to reduce the search space of
all possible rule pairs. This allows us to classify all bipermutive CA
equipped with nonlinear local rules of up to d = 6 variables that
generate OLS. Next, in the heuristic approach we adopt both Genetic
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Algorithms and Genetic Programming to evolve pairs of local rules
of 7 and 8 variables which generate OLS.

1.4 thesis outline

The rest of this thesis is structured in five parts.
Part i, Background Notions, covers all preliminary definitions and

concepts which are needed to develop the results presented in this
thesis. In particular, this part is composed of six chapters as follows:

• Chapter 2 recalls the basic notions regarding cellular automata.
In particular, it begins by introducing the general model of infi-
nite one-dimensional CA, and then it defines the finite models
which will be mostly used in the thesis, namely No Boundary
CA (NBCA) and Periodic Boundary CA (PBCA). The last section
concludes with some basic remarks about injectivity and surjec-
tivity properties in CA, which will be used in later chapters to
present the original results of the thesis.

• Chapter 3 is divided in three sections. The first section covers the
basic notions of the theory of Linear Recurring Sequences (LRS)
and Linear Feedback Shift Registers (LFSR), upon which the re-
sults reported in Chapter 10 are based upon. The second section
deals with combinatorial designs, focusing in particular on Latin
squares and orthogonal arrays. Beside paving the way for the fol-
lowing introductory Chapters 4 and 5 respectively about cryp-
tography and Boolean functions, this chapter is also used as a
basis for the results proved in Part iv about the combinatorial
designs generated by CA. Finally, the third section recalls some
basic notions of coding theory, focusing in particular on linear
error-correcting codes. This section will be used in Chapter 12

to prove the equivalence between linear CA and cyclic codes.

• Chapter 4 introduces all necessary background about cryptog-
raphy. Starting from the generic definition of a cryptosystem,
the chapter continues by discussing the various attack models
and security definitions, focusing in particular on unconditional
security for symmetric key cryptography. Next, the chapter dis-
cusses the main cryptographic primitives considered in this the-
sis, namely stream and block ciphers, authentication codes and
secret sharing schemes.

• Chapter 5 collects all necessary information on Boolean functions
for cryptography. The first section is devoted to the basic no-
tions about single-output Boolean functions and their crypto-
graphic properties, and it serves as a basis for the results pre-
sented in Chapters 8 and 9. The second section, on the other
hand, generalizes the discussion to vectorial Boolean functions,
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and describes their generalized cryptographic properties. Chap-
ters 11 and 12 are based on the notions presented in this section.

• Chapter 6 features a brief introduction to heuristic optimization
algorithms, focusing in particular on those which will be used
in later chapters of the thesis. In particular, the sections about lo-
cal search methods, Genetic Algorithms and Particle Swarm Op-
timization constitute the preliminary part for Chapters 8 and 9

on the heuristic optimization of Boolean functions with good
cryptographic properties. The section about Genetic Program-
ming, on the other hand, serves as a basis for the experimental
results reported in Chapters 11 and 14 respectively on CA-based
S-boxes and orthogonal Latin squares.

• Chapter 7 provides a survey of the literature regarding the appli-
cations of CA to cryptography, as well as a review of heuristic
methods adopted for optimizing the cryptographic properties
of Boolean functions.

Part ii, Heuristic Optimization of Boolean Functions, is devoted to the
first research line investigated in this thesis, described in Section 1.1.
It is composed of the following two chapters:

• Chapter 8 presents a discrete Particle Swarm Optimization algo-
rithm for the search of balanced Boolean functions with a good
combination of cryptographic properties, namely nonlinearity,
resiliency and propagation criterion.

This chapter is based on an extended version of the short paper
“Heuristic Search by Particle Swarm Optimization of Boolean Func-
tions for Cryptographic Applications”, presented at GECCO 2015.

• Chapter 9 discusses the heuristic search of plateaued Boolean
functions, which are optimal with respect to nonlinearity, alge-
braic degree and resiliency order, through Genetic Algorithms
and spectral inversion.

This chapter is based on the conference paper “A Genetic Al-
gorithm for Evolving Plateaued Cryptographic Boolean Functions”,
presented at TPNC 2015.

Part iii, Cryptographic and Coding-Theoretic Analysis of Cellular Au-
tomata, focuses on the second research line discussed in Section 1.2,
namely the analysis of the global rules of CA from the perspective
of their cryptographic properties and applications to error-correcting
codes. This part is composed of three chapters as follows:

• Chapter 10 investigates the periods of preimages of spatially pe-
riodic configurations under the action of surjective CA. This



1.4 thesis outline 7

research is motivated by the problem of determining the maxi-
mum number of players allowed in the CA-based secret sharing
scheme proposed in [112]. The first part is devoted to charac-
terizing the period of preimages under generic surjective CA,
while the second one focuses on the specific case of linear CA
by leveraging on the theory of linear recurring sequences pre-
sented in Chapter 3.

This chapter is based on the conference paper “On the Periods
of Spatially Periodic Preimages in Linear Bipermutive Cellular Au-
tomata” presented at AUTOMATA 2015 and its extended journal
version “Computing the periods of preimages in surjective cellular au-
tomata” published on Natural Computing.

• Chapter 11 analyzes the cryptographic properties of S-boxes de-
fined by finite CA. The theoretical part of the chapter character-
izes the algebraic degree of CA and proves two upper bounds
on the nonlinearity and differential uniformity of CA-based
S-boxes by relating them to the corresponding properties of
their local rules. Next, the experimental part employs a Genetic
Programming algorithm to evolve S-boxes defined by CA with
good cryptographic properties.

This chapter is based on the preprint of tue paper “Cellular Au-
tomata based S-boxes” submitted to Cryptography and Commu-
nications, which is available on the IACR eprint archive, and it
is a joint work with Stjepan Picek and Domagoj Jakobovic.

• Chapter 12 concludes the investigation of the cryptographic prop-
erties of CA by addressing their resiliency order. Specifically, the
chapter shows that the S-box defined by a bipermutive local rule
is always at least 1–resilient. Additionally, we prove an equiva-
lence between linear CA and cyclic codes, where the resiliency
order of the former determines the minimum distance of the
latter. Finally, we introduce a new property, called Asynchrony
Immunity, which could be relevant in the design of CA-based
ciphers as a countermeasure for clock-fault attacks.

The first part of this chapter is based on the conference paper
“Resilient Vectorial Functions and Cyclic Codes Arising from Cellular
Automata” presented at ACRI 2016 and the corresponding jour-
nal version “A cryptographic and coding-theoretic perspective on the
global rules of cellular automata” accepted in Natural Computing,
and currently in press. Additionally, the part on asynchrony im-
munity is based on the conference paper “Asynchrony Immune
Cellular Automata” presented at ACA 2016.

Part iv, Combinatorial Designs and Cellular Automata, discusses the
results developed in the third research line presented in Section 1.3.
It is composed of the following two chapters:
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• Chapter 13 investigates Orthogonal Latin Squares (OLS) gener-
ated by linear cellular automata. In particular, it gives a char-
acterization of such OLS which is based on the Sylvester ma-
trix induced by two linear CA. The main theoretical result in
this context is that two linear CA generate a pair of OLS if
and only if the polynomials associated to their rules are rela-
tively prime. Next, the chapter focuses on counting such pairs
of coprime polynomials, uncovering a connection with an inte-
ger sequence already published in the OEIS. Finally, the chap-
ter presents a construction of Mutual Orthogonal Latin Squares
(MOLS) based on irreducible polynomials defining CA local
rules, and conjectures its optimality as a closing remark.

This chapter is based on an extended version of the exploratory
paper “Constructing Orthogonal Latin Squares from Linear Cellular
Automata” presented at AUTOMATA 2016, and available as an
arXiv postprint.

• Chapter 14 generalizes the investigation of CA-based OLS by
considering nonlinear bipermutive rules. In particular, the theo-
retical part of this chapter proves some necessary conditions on
the local rules of two bipermutive CA that induce OLS, which
allows to reduce the search space of candidate solutions and
thus perform an exhaustive search up to diameter 6. The sec-
ond part, on the other hand, employs Genetic Algorithms and
Genetic Programming to evolve pairs of nonlinear bipermutive
CA of diameter 7 and 8 which generate OLS.

This chapter is based on the conference papers “Enumerating Or-
thogonal Latin Squares Generated by Bipermutive Cellular Automata”
and “Evolutionary algorithms for the design of orthogonal Latin squares
based on cellular automata”, respectively presented at AUTOMATA
2017 and GECCO 2017. The latter, in particular, is a joint work
with Stjepan Picek and Domagoj Jakobovic.

Part v, Final Remarks, is composed of Chapter 15 which concludes
the thesis by putting the presented results in perspective, and dis-
cusses several possible avenues for future research.
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C E L L U L A R A U T O M ATA

Cellular Automata (CA) are a particular class of parallel computational
models. In its simplest form, a cellular automaton is composed of a
grid of cells, where each cell applies a local rule to its neighborhood in
order to compute its next state. The CA global state is the configuration
of the states of all cells composing the grid at a given moment, and
the dynamical behavior of the CA is determined by making all cells
update in parallel in discrete time steps.

Despite the apparent simplicity of this model, CA are able to pro-
duce quite complex dynamic behaviors depending on the underlying
local rule. As a matter of fact, by looking at the existing literature it is
possible to remark that CA have been used to analyze and simulate
a wide variety of discrete complex systems, including for instance
physical phenomena [192], biological processes [170], ecosystems [6]
and social dynamics [7].

Besides their applications in several scientific domains, CA have
also been thoroughly investigated by mathematicians and computer
scientists as a computational model and dynamical system per se.
Originally, CA were introduced by Ulam [185] and von Neumann [188]
respectively to model the growth of crystals and self-reproduction
mechanisms in biology. Later, Hedlund [76] investigated CA from
the point of view of dynamical systems theory, characterizing them
as endomorphisms of the full shift space, the basic mathematical ob-
ject studied in symbolic dynamics. Much of the interest in CA spawned
however in the 70’s when Gardner [66] popularized Conway’s Game of
Life, a two-dimensional CA where each cell becomes “dead” or “alive”
depending on how many of its neighbors are alive. Successively, Wol-
fram [194] studied the computational properties of CA and classified
them in four classes of increasing complexity depending on their dy-
namical behavior over finite grids. For a more complete survey about
CA, we refer the reader to [83, 161, 87, 1, 34, 40].

In this chapter, we cover all the necessary background about CA
used throughout the thesis. We begin in Section 2.1 by introducing
the generic model of infinite one-dimensional CA based on sym-
bolic and topological dynamics, reviewing the fundamental Curtis-
Hedlund-Lyndon theorem that characterizes CA as endomorphisms
of the full shift space. We then define in Section 2.2 the finite models
of CA which we will diffusely investigate in the rest of this thesis from
the cryptographic and combinatorial designs perspectives, namely No
Boundary CA (NBCA) and Periodic Boundary CA (PBCA). Due to their
importance in cryptographic applications, in Section 2.3 we finally

11
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make some remarks about injectivity and surjectivity in CA, pointing
out the relationships among the various CA models with respect to
these properties.

2.1 infinite ca

Let Σ be a finite alphabet with q ∈N symbols, and let Σn, Σ∗ and ΣZ

respectively denote the set of all words over Σ of length n ∈N, the set
of all finite words over Σ and the set consisting of all bi-infinite words
over Σ. A bi-infinite word or configuration x ∈ ΣZ can be considered as
a function x : Z → Σ assigning to each integer number a symbol
from Σ. Given x ∈ ΣZ and i, j ∈ Z such that i 6 j and j− i+ 1 = n,
by x[i,j] we denote the finite block (xi, · · · , xj) ∈ Σn. For k ∈ N, the
k-left shift operator σk : ΣZ → ΣZ shifts each symbol of a configuration
x ∈ ΣZ by k places to the left, i. e. for all i ∈ Z the i-th component
of σk(x) is defined as σk(x)i = xi+k. If k = 1, we simply write σ(x),
and refer to it as the shift operator in place of the 1-left shift operator.
The full shift space is the pair 〈ΣZ,σ〉, that is, the set of all bi-infinite
configurations over Σ together with the shift operator. Usually, this
structure is considered as a metric space by endowing it with the
Cantor distance dC : ΣZ × ΣZ → R, defined for all x,y ∈ ΣZ as:

dC(x,y) =

0 , if x = y

2−i , if x 6= y, i = max{j ∈N : x−j 6= y−j ∨ xj 6= yj} .
(1)

Intuitively, under this metric two configurations are close to each
other if they agree on a large block centered on the origin. Given
r ∈ R+ the open ball Br(x) centered on x ∈ ΣZ of radius r is the set of
all configurations with distance less than r from x, that is

Br(x) = {y ∈ ΣZ : dC(x,y) < r} . (2)

An open set U ⊆ ΣZ is defined as a union of open balls. The family
τ = {U ⊆ ΣZ} of all open sets in ΣZ under the distance dC satisfies the
axioms of a topology, meaning that ∅,ΣZ ∈ τ and that τ is closed un-
der finite intersections and (of course) arbitrary unions. This family
is also known as the Cantor topology of the full shift space, since it is
induced by the Cantor distance. Among the various properties of the
Cantor topology, one of the most useful is that it is compact: every sub-
family of open sets U ⊆ τ whose union gives the whole space ΣZ (i. e.
an open cover of ΣZ) admits a finite subcover. Alternatively, one may
define compactness in terms of limits by stating that every sequence
of bi-infinite configurations admits a converging subsequence.

A function F from ΣZ to itself is continuous if for all x ∈ ΣZ and
ε > 0 there exists a δ > 0 such that for all y with dC(x,y) < δ it
holds that dC(F(x), F(y)) < ε. By the Heine-Cantor theorem, a conse-
quence of the compactness of ΣZ under the Cantor topology is that
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every continuous function is also uniformly continuous, which means
that for all ε > 0 there exists a δ > 0 such that for each pair x,y ∈ ΣZ

with dC(x,y) < δ it results that dC(F(x), F(y)) < ε. Remark the differ-
ence with the previous definition of continuity, which concerns the
relationship between δ, ε and x: in a uniform continuous function, δ
does not depend on the particular configuration x, but just on ε. For
this reason, with a slight abuse of terminology we will use “contin-
uous” instead of “uniformly continuous” throughout the rest of this
thesis, unless ambiguities arise.

We are now ready to formally introduce the definition of infinite
one-dimensional CA:

Definition 1. An infinite one-dimensional cellular automaton (CA) is
a quintuple A = 〈Σ,d,ω, f, F〉, where:

• Σ is a finite set called the state alphabet.

• d ∈N is the diameter.

• ω ∈ {0, · · · ,d− 1} is the offset.

• f : Σd → Σ is the local rule.

• F : ΣZ → ΣZ is the global rule defined for all x ∈ ΣZ and i ∈ Z as:

F(x)i = f(x[i−ω,i−ω+d−1]) = f(xi−ω, xi−ω+1, · · · , xi−ω+d−1) .
(3)

Hence, a CA can be seen as a bi-infinite array of cells (also called
the cellular array), where each cell i updates its state by computing
local rule f on the neighborhood ν = x[i−ω,i−ω+d−1] formed by itself,
the ω cells to its left and the d−ω− 1 cells to its right.

With respect to the neighborhood, the CA literature usually consid-
ers the symmetric case where d = 2r+ 1 and ω = r, with r ∈N being
called the CA radius. Regarding the alphabet, the case which is most
commonly investigated is the Boolean (or binary) one, where Σ = {0, 1}.
Elementary CA (ECA) are the class of CA with Boolean alphabet and
symmetric neighborhood with radius r = 1.

Since the local rule f of a CA is defined over the finite set Σd, it
can be described by a rule table of qd entries. Thus, once a particular
ordering of the qd elements of Σd is fixed, each row of the table
corresponding to an input x ∈ Σd can be filled with the respective
value of f(x). Unless otherwise specified, in this thesis we assume
that the elements of Σd are always lexicographically ordered. Hence,
given a total order 6Σ on the alphabet symbols, for all x,y ∈ Σd
it holds x 6 y if and only if xi 6 yi for all i ∈ {1, · · · ,d}. As the
value of f ranges over Σ, it means that one can fill a rule table in qq

d

different ways. This is also equivalent to the number of all possible
local rules over Σ with diameter d. When Σ is the binary alphabet, the
local rule is actually a Boolean function, and the rule table corresponds
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· · · 1 0 0 1 1 0 · · ·

⇓Parallel update Global rule F

01· · · 0 0 0 1 0 1 · · ·

Figure 1: Example of ECA with local rule 150.

to the classic truth table representation (see Chapter 5). In this case,
another common way used in the CA literature to identify local rules
is by means of their Wolfram code [193], which basically amounts to
the decimal encoding of the output column in the truth table. As an
example, consider the CA in Figure 1, depicting the application of the
global rule of an ECA on a portion of the cellular array. The local rule
is defined as f(xi−1, xi, xi+1) = xi−1 ⊕ xi ⊕ xi+1 for all i ∈ Z, with
⊕ denoting the XOR operation. This corresponds to rule 150 using
Wolfram’s encoding.

Beside the symmetric case, in this thesis we will also consider the
following neighborhoods:

• The asymmetric neighborhood, with d = 2r and ω = r− 1. In
this case, each cell will look at itself, the r − 1 cells to its left
and the r cells to its right to compute its next state. This is just
a convention to accommodate the concept of radius also to the
case of even diameters.

• The one-sided neighborhood, with d ∈N and ω = 0. Thus, each
cell applies the local rule on itself and the d− 1 cells to its right.

Regarding the nature of the state alphabet, we will consider also
the following situations beyond the binary case:

• Σ = Fq, i. e. the alphabet is the finite field of order q = ρα, where
ρ is a prime number and α ∈N.

• Σ = Zm, i. e. the alphabet is the residue class ring modulom ∈N.

The Boolean alphabet can be seen as a particular case of both finite
field and residue class ring alphabets, that is {0, 1} = F2 or {0, 1} = Z2.
We will often focus on the former situation by endowing the binary
alphabet with a field structure, due to the connections with Boolean
functions (see Chapter 5).

The global rule of a CA can be seen as a function from the full shift
space to itself. One of the seminal results in CA theory is the Curtis-
Hedlund-Lyndon theorem1, which gives a topological characterization
of CA global rules:

Theorem 1 (Curtis-Hedlund-Lyndon). Let F : ΣZ → ΣZ be a function
from the full shift space to itself. Then, F is the global rule of a CA if and

1 In the relevant literature, this result is often mentioned just as Hedlund’s theorem.
However, Hedlund [76] already credited Curtis and Lyndon as co-discoverers.
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only if F is continuous with respect to the Cantor distance and commutes
with the shift operator, that is σ(F(x)) = F(σ(x)) for all x ∈ ΣZ.

The property of commuting with the shift operator is also referred
to as shift-invariance. Thus, if a function F : ΣZ → ΣZ is shift-invariant
and continuous, then it is defined by a local rule f of a certain di-
ameter d, and vice-versa. We do not delve into the topological conse-
quences of the Curtis-Hedlund-Lyndon theorem, for which we refer
the reader to [102, 88]. However, we will extensively use the shift-
invariance property of CA to prove our results. Additionally, since a
global rule uniquely defines the corresponding CA, in what follows
we will often identify a CA only by its global rule instead of using
the full quintuple specification of Definition 1.

We mentioned in the introduction of this section that CA are mostly
studied as dynamical systems. Starting from an initial configuration
of the cellular array, the dynamical behavior of a CA is determined by
the iterated application of its global rule. Given a CAA = 〈Σ,d,ω, f, F〉,
an initial configuration x ∈ ΣZ and a time t ∈ N, by x(t) = Ft(x) we
denote the configuration of the array obtained after computing the
t–th iterate of F, i. e. after applying the global rule F starting from x for
t steps. Notice that x(0) = x. The dynamical evolution (also called the
orbit) of A starting from x is the sequence of configurations {x(t)}t∈N.
For all i ∈ Z, the trace {xi(t)}t∈N is the sequence of states taken by
cell xi at time t = 0, 1, 2, · · · .

2.2 finite ca

For practical applications, CA can obviously be implemented by us-
ing finite arrays only. This leads to the problem of updating the cells
at the boundaries, since they do not have enough neighbors upon
which the local rule can be applied. There are several ways to address
this issue, two of which we consider in this thesis are No Boundary CA
(NBCA) and Periodic Boundary CA (PBCA).

The NBCA approach is the simplest one to cope with boundary
conditions: given an array of n > d cells, where d is the diameter, one
applies the local rule only to the n−d+1 cells which have enough left
and right neighbors, ignoring the remaining d− 1 cells at the bound-
aries. This means that the output of the global rule will be smaller
than the input, so that the size of the cellular array “shrinks” by d− 1
cells. Since the resulting global rule is a finite vectorial function, one
can assume without loss of generality that the offset is null, i. e. that
the CA has a one-sided neighborhood with ω = 0. This leads to the
following definition:

Definition 2. Let Σ be a finite alphabet and n,d ∈ N with n > d. Addi-
tionally, let f : Σd → Σ be a local rule of d variables. The No Boundary
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1 0 0 1

f(1, 0, 0) = 1

01 0 0 0 1

Figure 2: NBCA

01 0 1 0 0

f(1, 1, 0) = 0

01 0 0 0 1 1 0

Figure 3: PBCA

Figure 4: Examples of NBCA and PBCA with local rule 150.

Cellular Automaton (NBCA) F : Σn → Σn−d+1 is the function defined
for all x ∈ Σn as

F(x1, · · · , xn) = (f(x1, · · · , xd), f(x2, · · · , xd+1), · · · , f(xn−d+1, · · · , xn)) .
(4)

On the other hand, the PBCA approach considers the finite cellular
array as a ring, with the first cell following the last one. Hence, the
ω last cells will use the d−ω− 1 first ones as their right neighbors,
while vice versa the d−ω− 1 first cells will use the last ω as their left
neighbors. Notice that in this case the size of the cellular array does
not shrink by applying the global rule, since all cells are updated.
As in the case of NBCA, one may assume ω = 0 without loss of
generality. We formalize the above discussion through this definition:

Definition 3. Let Σ be a finite alphabet and n,d ∈ N. Additionally, let
f : Σd → Σ be a local rule of d variables. The Periodic Boundary Cellular
Automaton (PBCA) F : Σn → Σn is the function defined for all x ∈ Σn as

F(x1, · · · , xn) = (f(x1, · · · , xd), f(x2, · · · , xd+1), · · · , f(xn, · · · , xd−1)) .
(5)

Figure 4 reports examples respectively of an NBCA and a PBCA
with n = 6 cells and local rule 150.

Remark that in both Definitions 2 and 3 we only defined the global
rules of the CA. This is because in this thesis we focus only on the
short-term behavior of finite CA yielded by just one application of their
global rules, instead of their asymptotical behavior induced by iterat-
ing the global rules for several time steps. This has a straightforward
motivation in the no boundary approach, since as the size of the cel-
lular array shrinks the global rule can be applied only for a finite
number of steps. On the other hand, it is also easy to see that the
asymptotical dynamic behavior of PBCA is trivially periodic, since
for all sizes n ∈N of the array the CA will return to its initial config-
uration after at most qn steps, where q = |Σ|.

Considering the Curtis-Hedlund-Lyndon theorem, one can see that
the shift-invariance property is sufficient to characterize the global
rules of both NBCA and PBCA. In particular, it suffices to replace the
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classic shift operator that acts on bi-infinite configurations with the
cyclic shift σc, defined for all x ∈ Σn as

σc(x) = σc(x1, x2, · · · , xn−1, xn) = (x2, x3, · · · , xn, x1) . (6)

The continuity property, on the other hand, is always satisfied since
any function between finite metric spaces is trivially continuous. For
all n ∈ N, both NBCA and PBCA thus coincide with the class of
shift-invariant functions over Σn. This is due to the fact that, given a
generic shift-invariant function over Σn, one can always define a local
rule of diameter equal to the cellular array size, i. e. d = n. Similarly,
in the infinite setting one needs continuity beside shift-invariance to
characterize CA global rules, since a generic map F : ΣZ → ΣZ that
commutes with the shift could be defined by a local rule whose out-
put depends on arbitrarily far cells.

We finally remark the relation between PBCA and infinite CA re-
stricted to the space of spatially periodic configurations (SPC), which we
formally define as follows:

Definition 4. A configuration x ∈ ΣZ is spatially periodic if there exists
P ∈N, with P 6= 0, such that σP(x) = x. In particular, such a P is called a
period of x. The smallest integer p ∈N among all periods of x is called the
least period of x.

Following the notation of [135], we denote by x = ωuω the SPC
x ∈ ΣZ obtained as the bi-infinite concatenation of block u ∈ Σ∗ with
itself. Setting P = |u| as the length of u, one clearly has that P is a
period of x. If u is in turn aperiodic, then P = p is the least period of
x. Otherwise, the least period of x will be a divisor of P.

For all n ∈ N, let ΣZ
n denote the set of all SPC of least period n.

The space ΣZ
P of all spatially periodic configurations is defined as

ΣZ
P =

⋃
n∈N

ΣZ
n . (7)

The restriction of an infinite CA F : ΣZ → ΣZ to the set of SPC is
denoted as FP. For all n ∈N, let us now define the following set:

ΣZ
d|n =

⋃
d:d|n

ΣZ
d . (8)

In other words, ΣZ
d|n is the union of all spatially periodic configura-

tions of least period d that divides n. By Fd|n we denote the restriction
of an infinite CA F defined by a local rule f to the set Σd|n. It is not
difficult to see that |ΣZ

d|n| = |Σ|n. In particular, one can observe that
Fd|n is actually equivalent to the bi-infinite concatenation of a PBCA
F̃ of length n having the same local rule f that defines F. In particular,
for all u ∈ Σn and x = ωuω ∈ ΣZ

d|n, the following relation holds:

Fd|n(x) =
ωF̃(u)ω . (9)
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2.3 injectivity and surjectivity in ca

We now discuss the injectivity and surjectivity properties of CA, due
to their importance for cryptographic applications. Basically, an infi-
nite CA is injective (respectively, surjective) if and only if its global
rule F is injective (respectively, surjective). This definition can be trans-
lated as is for PBCA, while of course in the case of NBCA there is only
the notion of surjectivity, since the output space of the global rule is
smaller than the input space.

One of the basic results in the theory of one-dimensional CA is
that injectivity is equivalent to bijectivity, as shown in the following
theorem proved by Hedlund [76]:

Theorem 2. An injective infinite CA F : ΣZ → ΣZ is also surjective.

On the other hand, surjectivity in infinite CA can be characterized
by the balancedness property, meaning that for all n ∈ N greater than
or equal to the CA diameter the sets of preimages of the correspond-
ing NBCA with n cells all have the same cardinality [76]:

Lemma 1. Let F : ΣZ → ΣZ be a CA defined by a local rule f : Σd → Σ.
Then, F is surjective if and only if the NBCA Fn : Σn → Σn−d+1 based
on local rule f is balanced for all n > d, that is, for all u ∈ Σn−d+1 it
results that |F−1n (u)| = qd−1, where q = |Σ|. Additionally, if F is surjective
|F−1(y)| 6 qd−1 holds for all y ∈ ΣZ.

A useful tool to study injectivity and surjectivity in CA is the de
Bruijn graph representation. Given a finite alphabet Σ and t ∈ N, the
corresponding de Bruijn graph has vertex set Σt, and there exists a
directed edge from w1 ∈ Σt to w2 ∈ Σt if and only if w1 = ax and
w2 = xb, where a,b ∈ Σ and x ∈ Σt−1. In other words, two vertices
are connected if and only if their respective words overlap respectively
on the rightmost and the leftmost t − 1 symbols. De Bruijn graphs
have several applications beyond their use in the CA literature, such
as designing maximal length periodic sequences in combinatorics [24,
183] and de novo sequence assembly in bioinformatics [198, 8, 9].

For the purposes of this thesis, we formally define de Bruijn graphs
in terms of fusion operators, following the notation of Sutner [174].
Given s ∈ N and u, v ∈ A∗ such that |u| > s and |v| > s, the s-fusion
operator � is defined as follows:

u� v = z⇔ ∃x ∈ As, u0, v0 ∈ A∗ : u = u0x, v = xv0, z = u0xv0

that is, z is obtained by overlapping the right part of u and the left
part of v of length s.

We then give the following definition of de Bruijn graph associated
to a CA:

Definition 5. Let F : ΣZ → ΣZ be a CA defined by a local rule f : Σd → Σ

of diameter d. The de Bruijn graph associated to F is the directed labeled
graph GDB(f) = (V ,E, l) defined as follows:



2.3 injectivity and surjectivity in ca 19

00

0110

11

1

00

1

0

1

0

1

Figure 5: de Bruijn graph associated to the ECA F defined by rule 150.

• V = Σd−1

• Given v1, v2 ∈ V , (v1, v2) ∈ E if and only if there exists z ∈ Σd
such that z = v1 � v2, where � denotes the s-fusion operator with
s = d− 2

• For all (v1, v2) ∈ E, the label function l : E → Σ is defined as
l(v1, v2) = f(v1 � v2)

Figure 5 reports the de Bruijn graph associated to the ECA with
local rule 150.

One can observe that a bi-infinite path pv = {vi : vi ∈ V}i∈Z on the
vertices of the de Bruijn graph associated to an infinite CA F can be
used to specify a configuration x ∈ ΣZ by using the fusion operator:

x =
⊙
i∈Z

vi (10)

Further, since the CA local rule is represented as a labeling of the
edges, the bi-infinite path pe = {l(vi, vi+1) : vi, vi+1 ∈ pv}i∈Z on the
labels of the edges of GDB(f) corresponds to the image of x under
the global rule F, i. e.

y = pe = F(x) . (11)

This allows us to characterize injectivity and surjectivity of an infinite
CA F by means of its de Bruijn graph GDB(f) as follows:

• F is injective if and only if for every distinct pair pv1 6= pv2 of bi-
infinite paths on the vertices of GDB(f) the corresponding paths
on the labelings of the edges pe1 and pe2 are distinct as well.
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• F is surjective if and only if every configuration y ∈ ΣZ there
exists at least one bi-infinite path pe on the edges of GDB(f)
labeled by y.

Clearly, these characterizations can be straightforwardly translated
also in the finite case for NBCA and PBCA.

One of the main classes of CA studied in this thesis consists of
bipermutive CA, defined as follows:

Definition 6. A CA F : ΣZ → ΣZ induced by a local rule f : Σd → Σ is
called left permutive (respectively, right permutive) if, for all z ∈ Σd−1,
the restriction fR,z : Σ → Σ (respectively, fL,z : Σ → Σ) obtained by fixing
the first (respectively, the last) d− 1 coordinates of f to the values specified
in z is a permutation on Σ. A CA which is both left and right permutive is
said to be a bipermutive CA (BCA).

Remark that when Σ = {0, 1} is the Boolean alphabet a local rule
f : Fd2 → F2 is left permutive if and only if there exists a generating
function ϕ : Fd−12 → F2 such that

f(x1, x2, · · · , xd) = x1 ⊕ϕ(x2, · · · , xd) , (12)

and symmetrically for right permutive rules. In fact, permutations
over F2 can be constructed only through the XOR operator. Hence,
one can see that the elementary rule 150 used up to now in our exam-
ples is bipermutive, since it is defined as the XOR of the three cells in
the neighborhood.

Bipermutivity may also be expressed in terms of the de Bruijn
graph representation, by interpreting GDB(f) as a finite state automa-
ton. To this end, if l(v1, v2) = x, define the transition function as
δ(v1, x) = v2. Then, F is bipermutive if and only if for all v1, v2 ∈ V
with v1 6= v2 and for all x ∈ A, it holds that δ(v1, x) 6= δ(v2, x), i. e. the
de Bruijn graph is a permutation automaton.

This observation leads us to deduce that infinite bipermutive CA
are surjective. As a matter of fact, it is easy to see that for every con-
figuration y ∈ ΣZ one can always find a path on the edges labeled
by y. Since the de Bruijn graph in this case is a permutation automa-
ton, this means in particular that one can construct a preimage of
y starting from any vertex v ∈ Σd−1, the reason being that the sets
of labels on the outgoing and ingoing edges of v are permutations
of Σ. Bipermutive infinite CA thus satisfy a stronger balancedness
condition than the one stated in Lemma 1, since every configuration
y ∈ ΣZ has exactly qd−1 preimages.

Another interesting property of surjectivity in CA is its closure
property when considering the restriction of the global rules to the
set of spatially periodic preimages, as the next result proved in [57]
shows:

Lemma 2. Let F : AZ → AZ be a surjective CA. Then, given a SPC
y ∈ AZ, each preimage x ∈ F−1(y) is also spatially periodic.
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As a matter of fact, surjective CA satisfy an even stronger condition
than the closure property implied by the Lemma above. In particular,
the global map F : AZ → AZ of a CA is surjective if and only if its re-
striction Fp to the set of SPC is surjective (see [57]). As a consequence,
one can study certain properties of surjective CA by considering only
their restriction to SPC. In the model-theoretic setting proposed by
Sutner [175], this means that the set of SPC is an elementary substruc-
ture of the full shift space AZ for surjective CA.

We conclude this section by mentioning the class of reversible CA
(RCA), which are particularly interesting for cryptographic applica-
tions. Formally, an infinite CA A = 〈Σ,d,ω, f, F〉 is reversible if its
global rule F : ΣZ → ΣZ is bijective and the inverse G = F−1 is again
the global rule of an infinite CA, i. e. it is defined by a local rule
f ′ : Σd

′ → Σ of a certain diameter d ′. In practice, as the next theo-
rem proved in [76, 154] shows, the reversibility of an infinite CA is
characterized just by the bijectivity of its global rule:

Theorem 3. Let A = 〈Σ,d,ω, f, F〉 be an infinite CA with global rule
F : ΣZ → ΣZ. Then, F is bijective if and only if its inverse function G = F−1

is the global rule of a CA A ′ = 〈Σ, δ ′,ω ′, f ′,G〉.

Notice that the above result does not say how to find the inverse
global rule G. As a matter of fact, even characterizing the diameter of
the inverse local rule is still an open problem [49].

Since an infinite RCA F : ΣZ → ΣZ is clearly reversible over the set
of spatially periodic configurations ΣZ

P , it follows that for any n ∈ N

the PBCA Fn : Σn → Σn is reversible as well. The converse is however
not true: a local rule f : Σd → Σ may give rise to a PBCA whose
global rule is invertible only for certain array lengths n ∈ N, but the
corresponding infinite CA is not reversible. As it will be discussed
in Chapter 7, this is exactly the case for some CA used in real-world
cryptographic applications.





3

L I N E A R R E C U R R I N G S E Q U E N C E S ,
C O M B I N AT O R I A L D E S I G N S A N D C O D I N G T H E O RY

In this chapter, we recall the basic concepts about linear recurring
sequences, combinatorial designs and coding theory that we will em-
ploy to prove the results in this thesis. Moreover, these notions will
also be used as a basis in Chapters 4 and 5 respectively concerning
cryptography and Boolean functions.

Section 3.1 discusses linear recurring sequences and linear feedback
shift registers over finite fields, focusing on their periodicity prop-
erties. Section 3.2 describes the basic combinatorial designs consid-
ered in this thesis, namely Latin squares and orthogonal arrays, and
describes the connections between them. Finally, Section 3.3 gives a
brief overview of coding theory, introducing among other things lin-
ear cyclic codes and MDS codes.

3.1 linear recurring sequences and linear feedback shift

registers

Sequences generated by recurrence relations play an important role
in several applications, e. g. in the design of error-correcting codes
in coding theory and pseudorandom number generators in cryptog-
raphy. When the underlying set is the finite field Fq and the terms
in the recurrence equation are related by a linear expression, the re-
sulting sequence is also called a linear recurring sequence (LRS). Several
properties of LRS (such as number of cycles of a certain periods, fixed
points, etc.) are characterizable by means of linear algebraic methods.

We now cover the fundamental definitions and results about LRS
that we will use in the rest of this work. All the proofs of the facts
and the theorems mentioned in this section may be found in [107].

Definition 7. Given k ∈N and a, a0, a1, · · · , ak−1 ∈ Fq, a linear re-
curring sequence (LRS) of order k is a sequence s = s0, s1, · · · of elements
in Fq which satisfies the following relation:

sn+k = a+ a0sn + a1sn+1 + · · ·+ ak−1sn+k−1 ∀n ∈N . (13)

The terms s0, s1, · · · , sk−1 which uniquely determine the rest of the
LRS are called the initial values of the sequence. If a = 0 the sequence
is called homogeneous, otherwise it is called inhomogeneous. In what
follows, we will only deal with homogeneous LRS.

A linear recurring sequence can be generated by a device called
linear feedback shift register (LFSR), depicted in Figure 6. Basically, a
LFSR of order k is composed of k delayed flip-flopsD0, D1, · · · , Dk−1,

23
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each containing an element of Fq. At each step n ∈ N, the elements
sn, sn+1, · · · , sn+k−1 in the flip-flops are shifted one place to the
left, and Dk−1 is updated with the linear combination defined in
Equation (13). This kind of linear feedback shift registers are also
called Fibonacci LFSR, as opposed to Galois LFSR where the adders
are placed between one flip-flop and the other.

Notice that the output of a LFSR (that is, the LRS s = s0, s1, · · · ) is
ultimately periodic, i. e. there exist p,n0 ∈ N such that for all n > n0,
sn+p = sn. In fact, for all n ∈ N the state of the LFSR is completely
described by the vector (sn, sn+1, · · · , sn+k−1). Since all the compo-
nents of such a vector take values in Fq, which is a finite set of q
elements, after at most qk shifts the initial value of the vector will be
repeated. In particular, in [107] it is proved that if a0 6= 0, then the
sequence produced by the LFSR (or, equivalently, the corresponding
LRS) is periodic, in the sense of Definition 4.

The characteristic polynomial a(x) ∈ Fq[x] of a k-th order homoge-
neous LRS s = s0, s1, · · · is defined as:

a(x) = xk − ak−1x
k−1 − ak−2x

k−2 − · · ·− a0 . (14)

The multiplicative order of the characteristic polynomial, denoted by
ord(a(x)), is the least integer e such that a(x) divides xe − 1, and it
can be used to characterize the period of s. In fact, in [107] it is shown
that if a(x) is irreducible over Fq and a(0) 6= 0, then the period p of
s equals ord(a(x)), while in the general case where a(x) is reducible
ord(a(x)) divides p.

A common way to represent a LRS s = s0, s1, · · · is through its
generating function G(x), which is the formal power series defined as:

G(x) = s0 + s1x+ s2x
2 + · · · =

∞∑
n=0

snx
n (15)

In this case, the terms s0, s1, · · · are called the coefficients of G(x). The
set of all generating functions over Fq can be endowed with a ring
structure in which sum and product are respectively pointwise addi-
tion and convolution of coefficients. The fundamental identity of formal
power series states that the generating function G(x) of a k-th order
homogeneous LRS s can be expressed as a rational function:

G(x) =
g(x)

a∗(x)
=

−
∑k−1
j=0

∑j
i=0 ai+k−jsix

j

xka(1/x)
. (16)

D0

Output

a0 a1

+

D1

· · ·

ak−2

+· · ·

Dk−2

ak−1

+

Dk−1

Figure 6: Diagram of a linear feedback shift register.
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where g(x) is the initialization polynomial, which depends on the k
initial terms of sequence s (where ak = −1), while a∗(x) = xka(1/x)
denotes the reciprocal characteristic polynomial of s.

A given LRS s = s0, s1, · · · over Fq satisfies several linear recur-
rence equations. Hence, several characteristic polynomials can be as-
sociated to s, one for each recurrence equation which s satisfies. The
minimal polynomial m(x) associated to s is the characteristic polyno-
mial which divides all other characteristic polynomials of s, and it
can be computed as follows:

m(x) =
a(x)

gcd(a(x),h(x))
, (17)

where a(x) is a characteristic polynomial of s and h(x) = −g∗(x)

is the reciprocal of the initialization polynomial g(x) appearing in
Equation (16), with the sign changed. In [107] it is proved that the
period of s equals the order of its minimal polynomial m(x).

In order to study the periods of preimages of LBCA, we also need
some results about families of linear recurring sequences. Denote by
S(f(x)) the set of LRS having f(x) as characteristic polynomial. Given
s = s0, s1 · · · ∈ S(f(x)) and t = t0, t1, · · · ∈ S(f(x)) define the sum of
LRS σ = s+ t as σn = sn + tn for all n ∈ N, and for c ∈ Fq define
the scalar multiplication µ = c · s as µn = c · sn for all n ∈ N. Under
these two operations, the set S(f(x)) is a vector space over Fq. The
following theorem shows what is the characteristic polynomial of the
direct sum of two families of LRS:

Theorem 4. Let f1(x), f2(x) ∈ Fq be non-constant monic polynomials, and
let S(f1(x)) and S(f2(x)) be the families of LRS whose characteristic polyno-
mials are respectively f1(x) and f2(x). Denoting by S(f1(x))+S(f2(x)) the
family of all LRS σ+ τ where σ ∈ S(f1(x)) and τ ∈ S(f2(x)), it follows that
S(f1(x)) + S(f2(x)) = S(c(x)), where c(x) is the least common multiple of
f1(x) and f2(x).

From Theorem 4, the following result states how to compute the
least periods of the sum of two LRS in the special case when their
characteristic polynomials are coprime:

Theorem 5. Let σ1 and σ2 be two homogeneous LRS having minimal
polynomials m1(x),m2(x) ∈ Fq[x] and periods p1,p2 ∈ N, respectively.
If m1(x) and m2(x) are relatively prime, then the minimal polynomial
m(x) ∈ Fq[x] of the sum σ = s + t is equal to m1(x) ·m2(x), while
the least period of σ is the least common multiple of p1 and p2.

Finally, the following theorem characterizes the multiplicities of the
least periods in S(f(x)) when f(x) is the power of an irreducible poly-
nomial:

Theorem 6. Let f(x) = g(x)t with g(x) monic and irreducible over Fq and
such that g(0) 6= 0, deg(g(x)) = k, ord(g(x)) = e, and t ∈ N a positive
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integer. Let s ∈ N be the smallest integer such that ρs > t, where ρ is the
characteristic of Fq. If t = 1 the family of LRS S(f(x)) is composed of the
following numbers of sequences with the following least periods:

• one sequence of least period 1

• qk − 1 sequences of least period e

For t > 2, S(f(x)) additionally contains the following numbers of sequences
with the following least periods:

• for j ∈ {1, · · · , s− 1}, qkρ
j
− qkρ

j−1
sequences of least period eρj

• qkt − qkρ
s

sequences of least period eρs

3.2 combinatorial designs , latin squares and orthogo-
nal arrays

Combinatorial design theory is a branch of combinatorics that stud-
ies sets and arrangements of objects satisfying certain balancing prop-
erties. Even though the first investigations in this discipline can be
traced back at least to Euler [62], it was only the 20th century that
combinatorial design theory developed as an independent field of
research. The reason lies in the fact that the objects studied by com-
binatorial design theory have a wide variety of applications in sev-
eral domains, ranging from the design of experiments in statistics
to the development of error-correcting codes, whose interest mainly
bloomed in the past few decades.

Combinatorial design theory is a vast field, and a complete treat-
ment of the topic is clearly outside the scope of this thesis. In this sec-
tion, we touch upon only the two combinatorial designs which will
interest us in later chapters, namely Latin squares and orthogonal arrays.
For further information on the subject, we refer the reader to [173, 46,
92]. In particular, in the rest of this section we adopt Stinson’s nota-
tion [173].

In what follows, for all N ∈ N by [N] we denote the set {1, · · · ,N}.
We begin with the following definition:

Definition 8. Let N ∈ N. A Latin square of order N is a N×N square
matrix L with entries from [N] such that each row and each column is a
permutation of [N]. Thus, for all i, j,k ∈ [N] it holds that L(i, j) 6= L(i,k)
and L(j, i) 6= L(k, i).

Latin squares exist for all orders n ∈ N. As a matter of fact, a sim-
ple construction is to take the vector v = (1, 2, · · · ,N) as the first row
of the matrix and then apply the cyclic shift σc for all subsequent
rows. It easy to check that the resulting matrix is a Latin square. Fig-
ure 7 depicts the Latin square of order N = 4 constructed in this way.
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1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

Figure 7: Example of Latin square of order N = 4.

Latin squares are related to algebraic structures called quasigroups,
which we formally define below:

Definition 9. A quasigroup of order N ∈ N is a pair 〈X, ◦〉 where X is a
finite set of N elements, while ◦ is a binary operation over X such that for all
x,y ∈ X the two equations x ◦ z = y and z ◦ x = y admit a unique solution
for all z ∈ X.

As shown in [173], an algebraic structure 〈X, ◦〉 is a quasigroup if
and only if its Cayley table is a Latin square.

Counting the number of Latin squares is an open problem for
generic orders n ∈ N [46]. Several bounds and constructions are
known, about which the reader can find further information in [92].
The numbers of Latin squares have been computed by exhaustive
search up to order N = 11 [85]. A typical way to restrict the search
space of possible Latin squares of a given order is to define equiv-
alence relations on them, and then count or enumerate the equiva-
lence classes in the resulting quotient space. One of the most com-
mon equivalence relations studied in Latin squares is isotopy: namely,
two Latin squares L1,L2 of order N are isotopic if and only if there
exist three permutations α,β,γ over [N] respectively on the rows, the
columns and the elements of [N] which map L1 to L2. It is easy to
check that this is indeed an equivalence relation. The equivalence
classes in this case are also called isotopy classes.

We now turn to the orthogonality property of Latin squares, formally
introduced below:

Definition 10. Two matrices L1 and L2 of order N are called orthogonal
Latin squares (OLS) if

(L1(i1, j1),L2(i1, j1)) 6= (L1(i2, j2),L2(i2, j2)) (18)

for all distinct pairs of coordinates (i1, j1), (i2, j2) ∈ [N] × [N]. Equiva-
lently, L1 and L2 are orthogonal if their superposition yields all the ordered
pairs in the Cartesian product [N]× [N].

A set of k Latin squares which are pairwise orthogonal is denoted
as a k-MOLS (the acronym standing for Mutually Orthogonal Latin
Squares). Figure 8 reports an example of a pair of orthogonal Latin
squares of order 4. Unlike in the case of Latin squares, OLS Latin



28 linear recurring sequences , combinatorial designs and coding theory

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

1 4 2 3

3 2 4 1

4 1 3 2

2 3 4 1

1, 1 3, 4 4, 2 2, 3

4, 3 2, 2 1, 4 3, 1

2, 4 4, 1 3, 3 1, 2

3, 2 1, 3 2, 1 4, 4

Figure 8: Orthogonal Latin squares of order N = 4, and their superposition.

squares do not exist for every possible order. In particular, Euler [62]
conjectured that pairs of OLS do not exist for N = 6 and for all or-
ders N ≡ 2 mod 4. This conjecture was first proved for N = 6 by
Tarry [178] at the beginning of the 20th century, basically using an
exhaustive search method1. Several years later, Euler’s general conjec-
ture was disproved by Bose, Shrikande and Parker [19], who showed
a construction of OLS for all orders N 6= 6, 10.

Given N ∈ N, the maximum number for a set of mutually orthog-
onal Latin squares is N− 1. In this case, the set is called a complete set
of MOLS. Complete sets of MOLS are equivalent to other geometrical
objects, in particular projective planes and affine planes [46].

Another type of combinatorial designs which are closely related
with orthogonal Latin squares are orthogonal arrays, which we define
as follows:

Definition 11. Let X be a finite set of v elements, and let t, k and λ be
positive integers such that 2 6 t 6 k. A t–(v,k, λ) orthogonal array (t–
(v,k, λ)–OA, for short) is a λvt × k rectangular matrix with entries from
X such that, for any subset of t columns, every t–uple (x1, · · · , xt) ∈ Xt
occurs in exactly λ rows.

When t = 2 and λ = 1, the resulting orthogonal array is a v2 × k
matrix in which every pair of columns contains all ordered pairs of
symbols from X. In this case, the orthogonal array is simply denoted
as OA(k, v), and it is equivalent to a set of (k− 2)–MOLS. As a mat-
ter of fact, suppose that L1, · · · ,Lk−2 are (k − 2)–MOLS of order v.
Without loss of generality, we can assume that X = {1, · · · , v}. Then,
consider a matrix A of size v2 × k defined as follows:

• Columns 1 and 2 are filled with all ordered pairs (i, j) ∈ X× X
arranged in lexicographic order.

• For 1 6 i 6 v2 and 3 6 h 6 k, the entry (i,h) of A is defined as

A(i,h) = Lh−2(A(i, 1),A(i, 2)) . (19)

1 The case of order N = 6 was also referred by Euler as the 36 officers problem: namely,
given 36 officers coming from all possible combinations of 6 different ranks and
6 different regiments, arrange them on a 6 × 6 square such that no rank and no
regiment is repeated on the same row or the same column.
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In other words, column h is filled by reading the elements of the
Latin square Lh−2 from the top left down to the bottom right.

The resulting array is a OA(k, v): indeed, let h1,h2 be two of its
columns. If h1 = 1 and h2 = 2 one gets all the ordered pairs of sym-
bols from X in lexicographic order. If h1 = 1 (respectively, h1 = 2)
and h2 > 3, one obtains all pairs because the h1-th row (respectively,
column) of Lh2−2 is a permutation over X. Finally, for h1 > 3 and
h2 > 3 one still gets all ordered pairs since the Latin squares Lh1−2
and Lh2−2 are orthogonal. The reader can find further details about
the inverse direction of the construction in [173].

3.3 error-correcting codes

We now introduce the basic definitions and results related to error-
correcting codes, focusing in particular on linear and cyclic codes.
For a thorough treatment of the subject, the reader can refer to [117].

The theory of error-correcting codes studies the methods to encode
messages transmitted by a sender over a noisy channel, so that (un-
der specific assumptions) the receiver can correct eventual errors and
retrieve the original message.

Alice Encoder Channel

Noise

Decoder Bob
µ c z µ

e

Figure 9: Communication model studied in coding theory.

Figure 9 represents the communication model usually considered
in error-correcting code theory. Alice, the sender, wishes to send to
Bob, the receiver, a message µ ∈ Σm of length m defined over a finite
alphabet Σ. Since the channel is disturbed by some random noise,
she uses and encoder to obtain the encoded message c ∈ Σm+r, which
adds r redundancy symbols to protect it from eventual errors. After
transmitting c over the channel, Bob receives a message z ∈ Σm+r,
which could be the result of the noise over the channel that modified
some symbols in c with a random error pattern e ∈ Σm+r. Bob thus
feeds the received message z into a decoder, and if certain conditions
are met (usually, that the number of errors occurred during transmis-
sion are below a specific threshold t) then the decoder output the
original message µ.

In order to verify how many errors have occurred, one needs a way
to measure how different are two distinct messages. For this reason,
in coding theory the space of messages Σm is endowed with the Ham-
ming distance, which counts how many positions in two messages are
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different. Formally, given x,y ∈ Σm, the Hamming distance of x and
y is defined as

dH(x,y) = |{i : xi 6= yi} . (20)

This gives Σm the structure of a metric space. Clearly, since Σm is fi-
nite, many of the topological properties which we discussed in Chap-
ter 2 about the full shift space such as compactness are trivially satis-
fied.

We can now give the formal definition of linear code. In what fol-
lows, we assume that the message space is a vector space over a finite
field.

Definition 12. Let n,m,d ∈ N such that n > m, and let q = ρα be the
power of a prime number ρ. A (n,m,d) linear code C is a m-dimensional
subspace of the vector space Fnq , such that the Hamming distance between
any two vectors c1, c2 ∈ C (called codewords) is at least d. The parame-
ters n, m and d are respectively called the length, the dimension and the
minimum distance of C.

Since a (n,m,d) linear code C is a subspace of dimension m of Fnq ,
it is possible to specify it using a m× n matrix G whose rows form
a set of m linearly independent codewords of C. Such a matrix G
is called a generator matrix for code C. The encoding process simply
amounts to multiplying a message vector µ ∈ Fmq by matrix G, thus
obtaining the codeword c = µG. Another matrix related to a linear
code C is its parity check matrixH of dimension (n−m)×n. The parity
check matrix is such that Hx> = 0 if and only if x ∈ C. In general, the
vector s = Hx> is called the syndrome of x ∈ Fnq .

Remark that, since every two distinct codewords in C are at Ham-
ming distance at least d from each other, each vector x ∈ Fnq will
always belong to the ball of radius t = bd− 1c/2 of a unique code-
word c ∈ C. This means that the union of all balls of radius t centered
on the codewords of C do not intersect among themselves and cover
the entire vector space Fnq , as depicted in Figure 10. For this reason,
the parameter t is also called the covering radius of the code. Con-

c1 c2 c3

c5c4 c6 c7

c8 c10c9

t

Figure 10: Covering of the message space by the codewords of C.

sequently, under the assumption that at most t errors occur during
transmission (i. e. at most t symbols of the codeword are modified
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by noise), a straightforward error-correction procedure for Bob is to
determine to which ball the received word z belongs to, and then out-
put the center of the ball as the codeword transmitted by Alice. This
method, which is called Sphere Shrinking (SS), has the drawback that
the decoding procedure can take exponential time in the size of the
alphabet, since Bob has to compute the Hamming distance between z
and all the valid codewords in C in order to determine the minimum
one.

A more efficient error-correcting algorithm is Syndrome Decoding,
which works as follows. Let c ∈ C be a codeword and e ∈ Fnq be
an error pattern introduced by the channel, having Hamming weight
at most t, i. e. the number of nonzero coordinates in e is less than
or equal to t. A received word can thus be expressed as z = c + e.
Given a parity check matrix H of C, the syndrome of z is s = Hz> =

H(c+ e)> = Hc> +He> = He>. In order to retrieve c, it thus suffices
to determine the error pattern e corresponding to s, and output c =

z+ e. This task can be performed by storing in a table the set of all
error patterns of weight at most t together with their syndromes.

Let x,y ∈ Fnq . Then, the scalar product of x and y is defined as:

x · y =

n⊕
i=1

xi · yi = x1 · y1 ⊕ x2 · y2 ⊕ · · · ⊕ xn · yn . (21)

In particular, two vectors are called orthogonal if their scalar product
is zero.

The dual code of a (n,m,d) linear code C is the set

C⊥ = {x ∈ Fn2 : x · y = 0,∀y ∈ C} , (22)

that is, the set of all vectors in Fnq which are orthogonal to the code-
words in C. The parity check matrix H of C is a generator matrix
for C⊥, and vice versa the generator matrix G of C is a parity check
matrix for C⊥.

The parameters of a code C induce some bounds on its size. In
particular, Singleton’s bound states that any (n,m,d) linear code C over
Fq satisfies the following inequality:

|C| 6 qn−d+1 . (23)

Codes that satisfy this bound with equality are called Maximum Dis-
tance Separable (MDS) codes. As discussed in Section 4, MDS codes
play an important role in cryptography, especially in the design of
linear diffusion layers for block ciphers. MDS codes can also be char-
acterized in terms of orthogonal arrays, as the next result shows. A
proof of this theorem can be found in [173].

Theorem 7. A (n,m,d) linear code C over Fnq is MDS if and only if its
codewords are the rows of a t− (q,n, 1) −OA, where t = n− d+ 1.
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We now introduce the class of linear cyclic codes.

Definition 13. A (n,m,d) linear code C ⊆ Fnq is called cyclic if it is
closed under cyclic shifts, i. e. for all c = (c1, c2 · · · , cn) ∈ C, it holds that
c ′ = σ(c) = (c2, · · · , cn, c1) ∈ C.

A cyclic code is described by its generator polynomial, which is de-
fined as g(x) = g0 + g1x+ · · ·+ gn−mxn−m, where gi ∈ Fq for all
i ∈ [n−m]. If the m-bit message µ = (µ0, · · · ,µm−1) is represented
by the polynomial µ(x) = µ0 + µ1x+ · · ·+ µm−1x

m−1, then the poly-
nomial corresponding to the codeword c is c(x) = µ(x)g(x). There
exists a one-to-one correspondence between cyclic codes of length n
and divisors of xn− 1. In particular, a (n,m,d) code C is cyclic if and
only if its generator polynomial g(x) divides xn − 1.

Given a (n,m,d) cyclic code C with generator polynomial g(x) of
degree n−m, the polynomial h(x) = (xn − 1)/g(x) of degree m is
called the parity check polynomial of C. Analogously to the parity check
matrix, h(x) satisfies the property that the codeword associated to a
polynomial d(x) belongs to C if and only if d(x)h(x) = 0. The relation-
ship between the generator/parity check polynomials of a cyclic code
C and its generator/parity check matrices is given by the following
result:

Theorem 8. Let C ⊆ Fnq be a (n,m,d) cyclic linear code with generator
polynomial g(x) = g0 + g1x+ · · ·+ gn−mxn−m and parity check polyno-
mial h(x) = h0 +h1x+ · · ·+hmxm. Then the following are respectively a
generator and a parity check matrix for C:

G =


g0 · · · gn−m 0 · · · · · · · · · · · · 0

0 g0 · · · gn−m 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 g0 · · · gn−m

 , (24)

H =


hm · · · h0 0 · · · · · · · · · · · · 0

0 hm · · · h0 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 hm · · · h0

 . (25)

As a consequence of Theorem 8, the dual code C> of a cyclic code
is again a cyclic code of length n and dimension n−m.

One of the main advantages of cyclic codes is that they can be easily
implemented using linear feedback shift registers, as shown in [117,
pp. 193–195]. In particular, if the parity check polynomial h(x) of a
(n,m,d) cyclic code is such that h0 6= 0, the codeword of a message
µ ∈ Fm2 can be generated by a LFSR of length m whose tap poly-
nomial is the reciprocal h̃(x) = hm + hm−1x+ · · ·+ xm of h(x). The
registers are initialized to the values µ0, · · · ,µm−1 of µ, and the LFSR
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is evolved for n steps. The output of length n produced by the LFSR
is the codeword corresponding to µ. Notice that the first m output
bits are exactly the original message µ, while the remaining n −m

are the parity check bits. This encoding procedure is called systematic,
since the bits of the message appear unaltered in the corresponding
codeword. If no errors are introduced by the channel, the decoding
process is immediate since it just consists of truncating the codeword
to its first m bits.
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C RY P T O G R A P H Y

Cryptography is a discipline at the intersection of computer science
and mathematics that studies the methods enabling two or more par-
ties to securely communicate among each other in the presence of
adversaries. As such, cryptography aims at developing protocols that
enforces two fundamental properties of secure systems [136]: confiden-
tiality, meaning that only authorized users can access protected data,
and integrity, i. e. protected data cannot be tampered with or modified
by non-authorized users.

The communication scheme studied in cryptography is illustrated
in Figure 11. Similarly to the communication model of coding theory
discussed in Section 3.3, the basic scenario of cryptography contem-
plates a sender and a receiver, respectively named Alice and Bob. Al-
ice’s goal is to send a plaintext message PT to Bob over an insecure
communication channel which is wiretapped by an opponent, Oscar.
Hence, Oscar can read and modify any message transiting on the
channel. In order to thwart any interception attempt by Oscar, Al-
ice feeds the plaintext PT to an encryption function, which depends
also on an encryption key KE. The result of the encryption function is
the ciphertext CT , which is the message actually transmitted over the
channel and eventually intercepted by Oscar. On the other side of the
channel, Bob applies on CT a decryption function, that analogously de-
pends on a decryption key KD. The output of the decryption function
is the original plaintext message PT which was originally meant to
Bob by Alice. The various components of this transmission protocol
are such that Oscar cannot recover the plaintext PT from the observed
ciphertext CT if he does not know the decryption key KD.

We formalize the above discussion in the following definition of a
cryptosystem, adopting Stinson’s notation [172]:

Definition 14. A cryptosystem is a sextuple CS = 〈P,C,KE,KD,E,D〉
where:

• P is a finite set of plaintexts

• C is a finite set of ciphertexts

• KE and KD are finite sets of encryption and decryption keys, re-
spectively

• E = {e : P→ C} and D = {d : C→ P} are finite families respectively
of encryption and decryption functions

In particular, there exists a bijective mapping M : KE → KD between
encryption and decryption keys. Moreover, for each KE ∈ KE there exists

35
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Figure 11: Basic communication scheme studied in cryptography.

an encryption function eKE ∈ E and a decryption function dKD ∈ D where
KD = M(KE), and such that for all PT ∈ P it holds that

dKD(eKE(PT)) = PT . (26)

The property expressed in Equation 26 is the most important one of
a cryptosystem, since it states that encryption and decryption must be
idempotent operations. Thus, given a plaintext message, applying to it
in sequence an encryption function and the corresponding decryption
function results in the original plaintext.

A broad classification of cryptosystems is based on the nature of
the encryption and decryption keys. In particular, one may speak of
a symmetric (or secret) key cryptosystem when KE = KD and M = Id

is the identity function, i. e. Alice and Bob use the same key both
for encryption and decryption. On the other side, if KE and KD are
distinct or M is not the identity function, then one is dealing with
an asymmetric (or public key) cryptosystem. In this thesis, we mainly
focus on the symmetric key setting. Thus, in what follows we omit
the subscript E and D when talking about a key K or the keyspace K

to which it belongs.
In the remainder of this chapter, we focus on symmetric key cryp-

tosystems in Section 4.1 by first modeling Oscar’s attack capabilities
and then by discussing three different security definitions a cryptosys-
tem can satisfy. Subsequently, in Section 4.2 we further classify sym-
metric key cryptosystems by introducing stream and block ciphers. We
conclude the chapter by presenting in Sections 4.3 and 4.4 two other
cryptographic protocols, namely authentication codes and secret sharing
schemes.

4.1 symmetric key cryptography

Historically, Kerckhoff [95, 96] was the first to observe that the secu-
rity of a cryptosystem should not lie in the secrecy of the particu-
lar families E and D (an approach commonly referred to as security
through obscurity), but rather on the secrecy of the key K used to select
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an encryption and a decryption function respectively from E and D.
Since we are considering symmetric key cryptosystems, this means
that Alice and Bob must agree on a common key before beginning
transmission. Additionally, they must do so in a secure way, therefore
not using the communication channel which is intercepted by Oscar.
This posits the problem of secure key agreement, which obviously raises
several practical questions. The most common remark is usually the
following one: if Alice and Bob have access to a secure channel to
share the key, then why do not use it directly to communicate the
plaintext messages in the first place?

We will not delve into the details about how Alice and Bob can
securely share a key. Rather, as most texts on symmetric cryptography
do, we take secure key agreement as an axiom, and assume that Alice
and Bob already figured out a way to agree on a common secret key1.

When considering the security of a cryptosystem, the first thing
the designer has to bear in mind are the capabilities of the attacker.
In particular, depending on the type of attack Oscar can perform on
a cryptosystem, one can isolate the following four attack models:

• Ciphertext only attack: Oscar has only the ciphertext CT transmit-
ted over the channel

• Known plaintext attack: Oscar has a plaintext PT and the corre-
sponding ciphertext CT

• Chosen plaintext attack: Oscar has access to the encryption func-
tion eK, and can thus generate any plaintext message PT and
obtain the corresponding ciphertext CT

• Chosen ciphertext attack: Oscar has access to the decryption func-
tion dK, and can thus recover the original plaintext PT corre-
sponding to any ciphertext CT he intercepts over the channel

Remark that the opponent’s goal is not to decrypt ciphertexts in
an impromptu manner. Rather, what Oscar aims for is the value of
the secret key K, which would give him complete control over any
message transmitted over the channel. This is why it makes sense to
consider also the chosen ciphertext attack model.

The next step consists in addressing the security of a cryptosys-
tem with respect to the computational resources that Oscar has at its
disposal to perform one of the above attacks. In this sense, as sum-
marized in [172], there are three common definitions adopted in the
literature:

• Computational security: a cryptosystem is said to be computation-
ally secure if the best attack that an opponent can apply on it

1 Usually, this problem is solved by means of public key cryptography (see for exam-
ple the Diffie-Hellmann key exchange protocol [56]).
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requires at least N operations, with N being a very large num-
ber. The problem with this approach is that no cryptosystem
can be proved to be secure under this definition. In particular,
computational security is studied only with respect to specific
cryptanalytic attacks. Of course, this is not an absolute guaran-
tee, since if a cryptosystem is secure against a particular attack,
it can well be the case that it is vulnerable to other attacks.

• Provable security: this approach consists of reducing the security
of a cryptosystem to solving a problem which is believed to be
hard from the computational complexity point of view. In this
case, Oscar’s computational resources are bounded to the class
of probabilistic polynomial time (PPT) algorithms. Thus, given a
provable secure cryptosystem CS, finding a PPT algorithm that
solves the problem CS has been reduced to would be equiva-
lent to breaking CS. Most of complexity-based cryptography rests
upon this security definition, and the hardness assumptions of
certain computational problems (such as, for example, factoring
integer numbers). However, we will not use provable security in
this thesis. The interested reader may refer to [89, 72, 73] for fur-
ther information on the subject.

• Unconditional security: in this security definition, the computa-
tional resources of the opponents are not bounded. Thus, a cryp-
tosystem is unconditionally secure if Oscar cannot successfully
attack it even with infinite computational resources.

Since we discuss more in detail in Chapter 5 the notion of compu-
tational security with respect to the framework of Boolean functions,
let us now have a few additional words on unconditional security.
In particular, we consider unconditional security under the weakest
attack model for Oscar, namely ciphertext only attacks.

Let 〈P,C,K,E,D〉 be a symmetric key cryptosystem. Suppose we
have defined two discrete random variables χ : P → R and κ : K → R

respectively over the plaintext set P and the keyspace K. Additionally,
given K ∈ K, let us define C(K) = {eK(x) : x ∈ P}, i. e. the set of all
ciphertexts generated by computing eK over all possible plaintexts.
Then, the random variable γ : C → R over the set of ciphertexts has
an associated probability distribution that equals

Pr[γ = y] =
∑

K∈K:y∈C(K)

Pr[κ = K] · Pr[x = dK(y)] . (27)

On the other hand, the conditional probability distribution that a ci-
phertext y ∈ C will be generated by a plaintext x ∈ P is given by

Pr[γ = y|χ = x] =
∑

K∈K:x=dK(y)

Pr[κ = K] . (28)
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As a consequence, one can combine Equations (27) and (28) to deter-
mine through Bayes’ theorem the probability that a particular observed
ciphertext y ∈ C has been generated by a plaintext x ∈ P as follows:

Pr[χ = x|γ = y] =
Pr[χ = x] · Pr[γ = y|χ = x]

Pr[γ = y]
. (29)

We can now introduce the property of perfect secrecy, which is the
standard definition of unconditional security for symmetric key cryp-
tosystems under ciphertext only attacks:

Definition 15. Let CS = 〈P,C,K,E,D〉 be a symmetric key cryptosystem
with two discrete random variables χ : P→ R and κ : K→ R respectively
defined over P and K. Then, CS has perfect secrecy if and only if for all
x ∈ P and y ∈ C it holds that

Pr[x|y] = Pr[x] . (30)

In other words, Definition 15 states that a cryptosystem is perfectly
secure if Oscar does not gain any information on the plaintext x just
by observing the ciphertext y.

Recalling our previous discussion of Latin squares in Section 3.2,
let us turn our attention to a concrete example of symmetric cryp-
tosystem satisfying perfect secrecy, the one-time pad:

Definition 16. Let Σ be a finite alphabet of q symbols and n ∈ N. Ad-
ditionally, let L be a Latin square of order q with entries from Σ. The
one-time pad (OTP) of length n over Σ is the symmetric cryptosystem
OTPn = 〈P,C,K,E,D〉 where:

• P = C = K = Σn

• For each x = (x1, · · · , xn),K = (K1, · · · ,Kn) ∈ Σn, the encryption
function eK(x) is defined as

eK(x) = (eK1(x1), · · · , eKn(xn)) = (L(x1,K1), · · · ,L(xn,Kn)) .
(31)

• Symmetrically, given a ciphertext y = (y1, · · · ,yn) ∈ Σn and a key
K ∈ Σn, the decryption function dK(y) is defined as

dK(y) = (dK1(y1), · · · ,dKn(yn)) = (L(K1,y1), · · · ,L(Kn,yn)) .
(32)

Hence, for each component i ∈ [n] of the plaintext message x and
the key K, the one-time pad encryption function computes the i-th
component of the ciphertext yi as the entry of L whose row and
column are respectively indexed by x and K. Analogously, the i-th
component of the plaintext is recovered by the decryption function
returning the entry of L at the coordinates indexed by K and y.
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Given that each row and each column of the Latin square L is
a permutation of Σ, it is easy to see that the OTP encryption and
decryption functions are idempotent operators. Moreover, assuming
that a uniform probability distribution is defined over the keyspace
K (i. e. , each symbol of a key is independently sampled with uni-
form probability), one can also see that the OTP satisfies the perfect
secrecy property. As a matter of fact, suppose that Oscar observed a
particular ciphertext symbol yi, and that he has access to the Latin
square L used by Alice for encryption. Given that Oscar does not
know the symbol of the key Ki, he can determine the column of the
Latin square which Bob will use to recover xi, but not the correspond-
ing row. Since the column indexed by yi is a permutation of Σ and
that Alice randomly chose Ki with uniform probability, this means
that the conditional probability Pr[xi|yi] equals the apriori probability
Pr[xi]. Consequently, the OTP meets the definition of perfect secrecy.

Shannon [164] was the first to observe this property of OTP. In fact,
he went way beyond than that: up to isomorphism (i. e. up to the par-
ticular Latin square used for encryption and decryption), Shannon
proved that the one-time pad is the only kind of symmetric cryp-
tosystem achieving perfect secrecy. This can also be translated in the
following three conditions, which must be simultaneously satisfied:

(a) The key must have the same length as the plaintext message.

(b) There must be a one-to-one correspondence between plaintext
messages and keys.

(c) The key must be random, i. e. sampled with uniform probability
from K.

In particular, condition (b) means that a key cannot be used to en-
crypt more than one message, otherwise the scheme would be vulner-
able to a known plaintext attack. This is the reason of the “one-time”
adjective in OTP.

4.2 block and stream ciphers

As one may think, the three conditions that characterize perfect se-
crecy greatly hampers the use of OTP in several practical scenarios.
In fact, Alice and Bob should share over a secure channel a key which
is exactly as long as the plaintext. This immediately leads to the ques-
tion about why Alice does not directly use this channel to transmit
the plaintext. Nevertheless, the OTP is still finds some applications in
the design of certain cryptosystems (e. g. in quantum cryptography [5]).
More generally, the notion of unconditional security is also used in
cryptographic protocols other than encryption schemes, such as au-
thentication codes and secret sharing schemes on which we will elaborate
more in the next two sections.
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Let us now return to the security of cryptosystems. From now on,
we will assume that the key K is shorter than the plaintext message,
and thus we have to fall back to the computational security setting.

After observing the shortcomings of the OTP scheme in [164], Shan-
non described in the same paper two general principles that every
cryptosystem should satisfy in order to frustrate statistical attacks,
namely diffusion and confusion. The diffusion principle states that each
symbol in the plaintext should depend on several symbols of the
ciphertext. In other terms, the statistical structure of the plaintext
should be sufficiently “spread” over the ciphertext. On the other hand,
the confusion principle says that the symbols of the plaintext should
depend in a complicated way on the symbols of the key.

Although diffusion and confusion are not rigorously defined con-
cepts, they are often the two main guidelines that cryptographers use
to design symmetric cryptosystems achieving computational security.

One may classify symmetric key cryptosystems as block ciphers and
stream ciphers. In a block cipher, the plaintext is usually encrypted by
dividing it in chunks of symbols called blocks that are subsequently
combined with several round keys derived from the initial secret key
through a scheduling algorithm. In a stream cipher, on the contrary,
each symbol of the plaintext is combined with the corresponding
symbol of a keystream, computed from the initial secret key through a
keystream generator algorithm 2.

Let us have a closer look at block ciphers, starting by formally defin-
ing them. In what follows, we assume that the underlying alphabet
for the plaintext, the ciphertext and the key is Σ = {0, 1}.

Definition 17. Let r,n ∈ N. A block cipher with block length n and r
rounds is a cryptosystem BC = 〈P,C,K,E,D〉 where:

• P = C = K = {0, 1}n, with n ∈N.

• The family of encryption functions E is defined by a key scheduling
function KS : K→ K and by a round function g : P×K for all key
K ∈ K and plaintext x ∈ P as follows:

eK(x) = g
r(x,K) , (33)

where for all i ∈ {1, · · · , r} the function gi is inductively defined as:

gi(x,K) =

g(x,KS(K)) , if i=1

g(gi−1(x,K),KS(KSi−1(K))) , if i>1
(34)

with KS0 ≡ Id denoting the identity function.

2 Remark that the difference between block and stream ciphers is often a fuzzy one:
depending on the definition of a “symbol”, a stream cipher could also be interpreted
as a block cipher. This is the case, for instance, of the RC4 stream cipher [157], where
each symbol is actually an 8-bit block. On the other hand, block ciphers can be used
under certain modes of operation as stream ciphers to encrypt one bit at a time.
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• Denoted as h = g−1 the inverse round function, the family of de-
cryption functions D is defined symmetrically for all key K ∈ K and
ciphertext y ∈ C as follows:

dK(y) = h
r(y,K) , (35)

with hi being defined for all i ∈ {1, · · · , r} as:

hi(y,K) =

h(y,KSr(K)) , if i=1

h(hi−1(y,K),KSr−i+1(K))) , if i>1
(36)

As a consequence, a block cipher is completely specified by its
round function g (together with its inverse h) and the key schedul-
ing algorithm KS. In particular, the only secret information that must
be shared by Alice and Bob is the initial key K, since they can inde-
pendently derive all the round keys they need by applying KS.

Concerning the round function, one of the most common design
approach is the Substitution-Permutation Network (SPN). Suppose we
want to encrypt a block of plaintext bits x ∈ {0, 1}n of length n = lm.
A SPN cipher is usually composed of the following parts:

• A Permutation box (P-box) π : {0, 1}n → {0, 1}n which permutes
blocks of n-bits.

• A set of m Substitution boxes (S-boxes) σi : {0, 1}l → {0, 1}l, each
of which takes as input an l-bit block and output another l-bit
block. Each S-box is invertible (i. e. , a permutation).

Let x,K ∈ {0, 1}n, with u = x⊕ K denoting their bitwise XOR and
u[i,j] the block included between i < j of u. Then, the round function
g is defined as

g(x,K) = π(σ1(u[1,l]),σ2(u[l+1,2l]), · · · ,σm(u[m(l−1)+1,lm]) . (37)

Following Definition 17, a plaintext x ∈ {0, 1}n is transformed in
the ciphertext y ∈ {0, 1}n by applying for each round i ∈ {1, · · · , r} the
following procedure:

1. Initialization: Let xi−1 be the result of the previous encryption
round, with x0 being the original plaintext block

2. Key combination phase: combine xi−1 with the current round key
Ki by computing a bitwise XOR.

3. Substitution phase: Let u be the result of the key combination
phase. Then, split u in m blocks b1, · · · ,bm ∈ {0, 1}l of l bits
each, and for each i ∈ {1, · · · ,m} apply the S-box σi to bi, ob-
taining ci = σi(bi)
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4. Permutation phase: Let C = c1||c2|| · · · ||cm be the concatenation of
the blocks computed by the S-boxes at the previous step. Then,
apply the permutation π to C, obtaining the block xi = π(C). In
the final round r, the resulting block xr is the ciphertext y.

The decryption process of a SPN cipher consists simply in the above
procedure applied in reverse order. This is the reason why all opera-
tors involved in encryption (S-boxes and P-box) must be invertible.

The permutation π is also called the diffusion layer of the cipher.
As a matter of fact, one can see that the P-box acts on the whole
block of length n, performing a transposition of the bits inside it.
Hence, the permutation phase realizes the diffusion principle. Usu-
ally, this phase is implemented in real-world block ciphers through
a linear invertible transformation. In many cases, this transformation
is derived from the generator matrix of a linear MDS code, since it
provides optimal diffusion. For instance, in the Rijndael cipher, which
won the NIST competition for the Advanced Encryption Standard (AES),
the MixColumns operation used in the permutation phase is defined
by a circulant MDS matrix [156].

On the other side, the S-boxes used in the substitution phase are
the elements devoted to confusion. As we will discuss in detail in
Chapter 5, S-boxes can be regarded as vectorial Boolean functions
F : Fl2 → Fl2, and they must satisfy certain properties (namely, high
nonlinearity) in order to provide good confusion.

A different approach for the construction of block ciphers is the
Feistel Network (FN), from the name of its inventor who first proposed
it in the design of the IBM cipher Lucifer, upon which the Data Encryp-
tion Standard (DES) encryption algorithm is based [171].

In a Feistel network, the plaintext x ∈ {0, 1}n of length n = 2m is
represented by a left block L ∈ {0, 1}m and a right block R ∈ {0, 1}m

of equal length m, i. e. x = (L,R). At each round i ∈ {1, · · · , r}, let
Li−1,Ri−1 ∈ {0, 1}m be respectively the left and right block of the
previous step (with (L0,R0) = (L,R) = x), and let Ki ∈ {0, 1}k be the
round key for step i. Then, the round function g is defined as

g(Li−1,Ri−1,Ki) = (Li,Ri) . (38)

where the blocks Li and Ri are computed as follows:

Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1,Ki) , (39)

where f : {0, 1}m × {0, 1}k → {0, 1}m is a S-box mapping the previous
right block Ri−1 and the round key Ki to an m-bit block, which is
subsequently XORed with the previous left block Li−1. As in the case
of SPN ciphers, decryption is achieved by performing the same round
operations in reverse order. Differently from SPN ciphers, however,
the S-box used in a FN does not need to be bijective, since invertibility
is ensured by the XOR operation of Equation (38).
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A block cipher can be used to encrypt a plaintext message of arbi-
trary length x ∈ {0, 1}∗ by dividing it in blocks of length n and then
by applying on each of them the round function and the key schedul-
ing algorithm. Depending on the operation mode, each block can be
encrypted independently (as in Electronic Code Book mode, ECB) or by
combining them in a specified way (as in Cipher Block Chaining mode,
CBC). The interested reader can refer to [172] for further information
about modes of operation of block ciphers.

We now turn to stream ciphers. In particular, we focus on Vernam-
like synchronous stream ciphers, defined as follows:

Definition 18. A Vernam-like synchronous stream cipher is a cryp-
tosystem SC = 〈P,C,K,E,D〉 where:

• P = C = K = {0, 1}∗

• The family of encryption functions E is defined by a keystream gen-
erator function g : K → {0, 1}∗ which, given an initial secret key
K ∈ K of length l ∈ N and the length of the plaintext n > l, produces
a binary string z of length n called the keystream. The encryption
function eK ∈ D is thus defined as

eK(x) = x⊕ z = x⊕ g(K) , (40)

i. e. , the bitwise XOR between the plaintext x and the keystream z

• D = E. In particular, each encryption function eK is an involution:
for all ciphertexts y ∈ {0, 1}∗, it holds

dK(y) = eK(y) = y⊕ z = y⊕ g(K) . (41)

It is easy to see that dK(eK(x)) = x for all x ∈ {0, 1}∗, since the
XOR is a idempotent operation. Figure 14 depicts the encryption and
decryption block schemes for a Vernam-like stream cipher.

K

g

z

⊕
x y

Figure 12: Encryption

K

g

z

⊕
y x

Figure 13: Decryption

Figure 14: Encryption and decryption in a Vernam-like stream cipher.
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One may notice a close resemblance between a Vernam-like stream
cipher and the OTP. As a matter of fact, the Cayley table of the XOR
operation corresponds to one of the two possible Latin squares of or-
der 2 (the other being the complement of the XOR). Hence, by generat-
ing a random keystream which is as long as the plaintext, one obtains
the OTP over the binary alphabet3. In practice, however, one usually
adopts a deterministic Pseudorandom Number Generator (PRNG) as the
keystream generator g, to stretch a short secret key K ∈ K shared by
Alice and Bob (which as been chosen randomly) to an arbitrarily long
pseudorandom keystream. As a consequence, a Vernam-like stream
cipher does not satisfy perfect secrecy, and its computational security
entirely rests upon the properties of the underlying PRNG. Remark
that the generated keystream will repeat after at most 2n steps if the
state of the PRNG is described by a register of n bits.

A common method for designing a PRNG for a stream cipher is
the combiner model [30], represented in Figure 15.

LFSR 1 x1

LFSR 2 x2

...

f(x1, x2, · · · , xn)

LFSR n xn

next bit

Figure 15: Combiner model for the PRNG of a Vernam-like stream cipher.

In this model, the outputs of n LFSRs are combined by a Boolean
function f : {0, 1}n → {0, 1}. A PRNG based on the combiner model
can generate a sequence whose maximal length is upper bounded by
the LCM of the n LFSRs composing it. In order to resist to specific
attacks, the Boolean function used in the combiner model must satisfy
several properties, which are discussed in Chapter 5.

4.3 authentication codes

Recall that the goal of cryptography is to develop secure communica-
tion systems meeting the requirements of confidentiality and integrity.
However, up to now we only analyzed cryptosystems, which provide
confidentiality but do not not address integrity. In fact, Oscar is able
not only to eavesdrop the messages passing through the channel, but
also to modify them. Hence, he could tamper with the ciphertext
message transmitted by Alice to Bob, or even pose as Bob (in the so-

3 Historically, this encryption scheme was known as the Vernam cipher, since it was
patented by Gilbert Vernam in 1919 [187]. This is also the reason why we called
the cryptosystem of Definition 18 as Vernam-like. The perfect secrecy of the Vernam
cipher, however, was proved in 1949 by Shannon [164].
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called man in the middle attack). The tools developed in cryptography
to solve this problem are authentication codes (AC).

Generally speaking, an AC is composed of a signing function and a
verification function. Given a message that Alice wishes to send to Bob,
she computes the signing function on it, thus obtaining the signature
of the message. Then, Alice transmits to Bob both the message and
its signature. Finally, Bob applies to the received message the verifi-
cation function, and checks whether the resulting signature matches
with the received one. If not, Bob knows that someone has modified
the message during transmission. A typical method for constructing
authentication codes relies on the use of public-key cryptosystems,
where signing and verification respectively depend on private and
public keys [172].

In what follows we focus on symmetric authentication codes, where
the signing and verification functions coincide. Hence, from now on
by AC we always refer to the symmetric case, unless otherwise speci-
fied. We begin with the following definition taken from [173]:

Definition 19. An Authentication Code is a quadruple

AC = 〈M,A,K,E〉 ,

where:

• M is a finite set of messages

• A is a finite set of authenticators

• K is a finite set of keys

• E is a set of authentication rules, where for each key K ∈ K there
exists a rule eK ∈ E with eK : M→ A

Similarly to the case of symmetric cryptosystems, in an AC Alice
and Bob agree ahead of time on a secret key K ∈ K. When Alice wants
to transmit a message m ∈ M, she computes a = eK(m), and sends
to Bob the pair c = (m,a). On the other end of the communication
channel, Bob computes again the authentication rule on the received
message, and verifies whether a = eK(m). If a 6= eK(m), Bob can
conclude that the message has been modified in transit.

Oscar can perform two types of attacks on an AC:

• Impersonation attack: Oscar injects a new pair c ′ = (m ′,a ′) into
the channel.

• Substitution attack: Oscar observes a message pair c = (m,a)
sent by Alice, and replaces it with a new pair c ′ = (m ′,a ′).

In both attacks, the only information which is unknown to Oscar is
the secret key K chosen by Alice and Bob, while all remaining com-
ponents of the AC (in particular, the family of authentication rules
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E) are supposed to be public. The goal of Oscar is to deceive Bob by
making him accept his fake message c ′ as legitimately sent by Alice.
Let us denote by Pr[Imp] and Pr[Sub] the deception probabilities that
Oscar successfully performs an impersonation attack and a substitu-
tion attack, respectively. Ideally, these probabilities should be as low
as possible.

An orthogonal array with t = 2 and k columns (or equivalently,
a set of (k − 2)-MOLS as illustrated in Section 3.2) can be used to
construct an authentication code with optimal deception probabilities.
In particular, let A be an OA(k, v), and define M = [k], A = [v] and
K = [v2]. Given K ∈ K, the authentication rule eK is defined for all
possible messages m ∈M as

eK(m) = B(K,m) , (42)

that is, the authenticator corresponding to m is the entry in B whose
row and column are respectively indexed by K and m.

Let us first analyze the deception probability Pr[Imp] of this AC.
Supposing that Oscar has injected a message pair c ′ = (m ′,a ′), he
will succeed in his impersonation attack only if the authenticator a ′

equals eK(m ′). Let us define R(m ′,a ′) = {R ∈ [v2] : B(R,m ′) = a ′} as
the set of all rows in B which have entry a ′ in the column indexed by
m ′. Since B is a OA(k, v), it follows that |R(a ′)| = v. Now, Oscar will
succeed in the attack only if the key K ′ which he uses to determine
the authentication rule belongs to the set R(m ′,a ′). Considering that
|K| = v2, this means that the deception probability Pr[Imp] equals

Pr[Imp] =
|R(m ′,a ′)|

|K|
=
v

v2
=
1

v
. (43)

Concerning the deception probability Pr[Sub] of substitution, sup-
pose now that Oscar observed the message c = (m,a) and replaced
it with c ′ = (m ′,a ′). Since B is assumed to be public, Oscar knows
that the key K used by Alice and Bob is a row of B belonging to the
set R(m,a). As a consequence, Oscar’s substitution will succeed only
if K ∈ R(m,a) ∩ R(m ′,a ′). Remark that |R(m,a) ∩ R(m ′,a ′)| = 1,
because B is a OA(k, v). Thus, the deception probability is equal to

Pr[Sub] =
|R(m,a)∩R(m ′,a ′)|

|R(m,a)|
=
1

v
. (44)

As a consequence, both deception probabilities Pr[Imp] and Pr[Sub]
equals 1v , with v being the number of possible authenticators. Authen-
tication codes reaching this lower bound on the deception probabil-
ities are also called perfect (or Cartesian [169]), in analogy with the
perfect secrecy property of the OTP discussed in Section 4.1.

4.4 secret sharing schemes

Secret sharing schemes (SSS) are a cryptographic primitive underlying
several protocols such as secure multiparty computation [38] and gener-
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alized oblivious transfer [179]. The basic scenario addressed by a SSS
considers a dealer who wants to share a secret K (for instance, a cryp-
tographic key) among a set of players, so that only certain authorized
subsets of players may reconstruct K.

We give the following formal definition of a generic SSS:

Definition 20. A Secret Sharing Scheme (SSS) is a sextuple

S = 〈K,B,P, Γ ,D,C〉

where:

• K is a finite set of secrets.

• B is a finite set of shares.

• P is a finite set of players.

• Γ ⊆ 2P is a family of subsets of players called the access structure of
S. The elements of Γ are the authorized subsets of S.

• D is a family of distribution rules: for each secret K ∈ K there exists
dK : P→ B with dK ∈ D.

• C is a family of combination rules: for each secret K ∈ K, denote by
dK(P) the image of the distribution rule dK ∈ D. Then, there exists
a combination rule cK : 2dK(P) → K with cK ∈ C such that for all
authorized subset A ∈ Γ it holds that cK(A) = K.

Suppose that P = {P1,P2, · · · ,Pn} is the set of players. The pro-
tocol of a SSS S can be summarized in two steps, namely the setup
phase and the reconstruction phase. During the setup phase, the dealer
chooses a secret K ∈ K and sends the share Bi = dK(Pi) to player Pi
for all i ∈ {1, · · · ,n}. In the reconstruction phase, the players of an au-
thorized subset A = {Pi1 ,Pi2 , · · · ,Pik} ∈ Γ pool together their shares
Bi1 ,Bi2 , · · · ,Bik received from the dealer and compute the combina-
tion rule cK(A). The result is the value of the secret K ∈ K.

Usually, the access structure Γ is required to be monotone, that is, if
A1 ∈ Γ and A1 ⊆ A2 then A2 ∈ Γ . This is a reasonable property, since
if an authorized subset includes more shares than what are actually
needed to compute the combination rule, then it is intuitive to think
that the players can still recover the secret by discarding the extra
shares. In particular, an authorized subset M ∈ Γ is called minimal
if N /∈ Γ for all N ⊂ M, that is, if all shares in M must be used to
recover the secret. A monotone access structure Γ can thus be defined
as the union-closure of the basis Γ0, which is the family of all minimal
authorized subsets.

One of the most studied models of SSS are threshold schemes, origi-
nally introduced by Shamir [163] and Blakley [17], which we define
as follows:
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Definition 21. Let t,n ∈ N with t 6 n. A (t,n)–threshold scheme is
a SSS S = 〈K,B,P, Γ ,D,C〉 where P is a set of n players and the access
structure is defined as Γ = {A ⊆ 2P : |A| > t}.

In other words, in a (t,n)–threshold scheme all subsets having at
least t players can reconstruct the secret. It is easy to see that the
access structure in this scheme is monotone, since Γ is defined by the
following basis:

Γ0 = {A ⊆ 2P : |A| = t} , (45)

i. e. the minimal authorized subsets of S are all those subsets of ex-
actly t players. Figure 16 represents an example of (2, 3)–threshold
scheme, where each combination of 2 players can recover the secret.

K = B2

B1

B3

Setup

P1

P2

P3

P2 B2

B3

B1P1

P3

Recovery

Figure 16: Schematic description of a (2, 3) threshold SSS.

The security model adopted for the study of secret sharing schemes
considers the information an attacker can obtain about the secret K
by having the shares of a generic unauthorized subset. In particu-
lar, schemes which do not leak any information on K by knowing
the shares of any unauthorized subset U /∈ Γ are called perfect, analo-
gously to the perfect secrecy property of the OTP cryptosystem which
we discussed in Section 4.1. To formalize this notion in a probabilistic
framework, we follow the approach laid out by Stinson [172].

Let K be the space of secrets and B the space of possible shares.
Given a secret K ∈ K, the set DS denotes the family of all distribution
rules induced by K. The dealer selects both the secret and the corre-
sponding distribution rule according to two probability distributions,
which we respectively denote by Pr[K] and Pr[d]. These probability
distributions and the family of distribution rules D =

⋃
K∈KDK are

assumed to be public, hence known to an attacker. Considering a
generic subset of players G ⊆ P, a shares distribution δG is a possible
assignment of shares to the members of G. Given a distribution rule
d, the corresponding shares distribution δG is thus the image of the
restriction d|G. By BG(G) = {d|G : ϕ ∈ DK} we denote the set of all
possible shares distributions to G induced by the secret K. The proba-
bility distribution on all possible values of δG is obtained as follows:
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Pr[δG] =
∑
K∈K

Pr[K] · ∑
d∈BG(S)

Pr[ϕ]

 . (46)

We can now give the formal definition of perfect secret sharing scheme.

Definition 22. A secret sharing scheme S = 〈K,B,P, Γ ,D,C〉 with access
structure Γ ⊆ 2P and family of distribution rules D =

⋃
K∈KDK is perfect

if for all unauthorized subsets U /∈ Γ and for all shares distributions δU it
results that Pr[K|δU] = Pr[S].

Looking at the definition above, one may ask whether there is a
relation between the size of the secret and the size of the shares in
a perfect SSS. Let us assume that K = Σn and B = Σm are both
defined over an alphabet Σ. Then, the inequality m > n is a necessary
condition for a SSS to be perfect, i. e. the size of the shares must be
at least equal to the size of the secret. This requirement is similar to
the property of perfect secrecy where the secret key must be at least
as long as the plaintext message. Perfect secret sharing scheme where
the size of the shares equals the size of the secret are also called ideal.

We conclude this section by describing how a t–(v,n+ 1, 1) orthog-
onal array A can be used to implement a (t,n)–threshold scheme with
n players P1, · · · ,Pn.

In the setup phase, the dealer chooses with uniform probability the
secret K from the support set X and a row A(i, ·) in the OA such that
the last component equals K. Next, for all j ∈ {1, · · · ,n} the dealer
distributes to player Pj the share Bj = A(i, j). Thus, we have that

Pr[K] = Pr[d] =
1

|X|
=
1

v
. (47)

In particular, notice that the probability of selecting the distribution
rule d equals 1v since there are exactly v rows having K as their last
component, due to the fact that the orthogonal array has λ = 1.

In the reconstruction phase, any subset of t players Pj1 , · · · ,Pjt can
recover the secret, the reason being that the shares (Bj1 , · · · ,Bjt) form
a t–uple which uniquely identifies row A(i, ·). Conversely, suppose
that a set of t− 1 players U = {Pi1 , · · · ,Pit−1} attempts to determine
the secret. Then, the (t− 1)–uple δU = (Bj1 , · · · ,Bjt−1) representing
the shares distribution to the players in U occurs in the columns
j1, · · · , jt−1 in v rows of the array. By considering also the last column,
one obtains a t–uple (Bj1 , · · · ,Bjt−1 ,A(ih,n+ 1)) for all 1 6 h 6 v.
Since λ = 1, it must be the case that all these t–uples are distinct,
and thus they must differ in the last component. Hence, the v rows
containing the (t− 1)–uple (Bj1 , · · · ,Bjt−1) determine a permutation
on the last column, which means that the conditional probability of
K given the shares distribution δU equals

Pr[K|δU] = Pr[K] =
1

v
. (48)
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Since this result is independent from the particular value of the key
K or the shares distribution δU, it follows that this threshold scheme
is perfect. Remark also that both K and B correspond to the support
set X of the OA, and thus they have the same cardinality. Assuming
that X = Σm (i. e. , X is described by a set of strings of length m over
the alphabet Σ), this means that the threshold scheme based on the
OA is also ideal. We summarize these facts in the following result:

Theorem 9. Let A be a t–(v,n+ 1, 1)–OA. Then, there exists a perfect and
ideal (t,n)–threshold scheme.





5

B O O L E A N F U N C T I O N S F O R C RY P T O G R A P H Y

Boolean functions play a fundamental role in several areas of computer
science, ranging from complexity theory to machine learning [47]. In
cryptography, the computational security of a symmetric cipher of-
ten relies on the properties of the particular Boolean functions that
underlie its design.

In this chapter, we cover all necessary background notions about
the cryptographic properties of Boolean functions and their vectorial
counterparts, S-boxes. Throughout this chapter, we follow Carlet [30,
31] as a reference for our discussion respectively on Boolean func-
tions and S-boxes. Other reference works on Boolean functions for
cryptography include [48, 109].

The rest of this chapter is structured as follows. In Section 5.1 we
give the basic definitions and presents four representation methods of
Boolean functions. We then overview in Section 5.2 the main crypto-
graphic properties of Boolean functions considered in the next chap-
ters of this thesis, reporting the various trade-offs among them and
introducing the relation of affine equivalence. Next, Section 5.4 fo-
cuses on the basic definitions and representations of S-boxes, while
Section 5.5 gives an overview of their cryptographic criteria. Finally,
Section 5.6 defines affine equivalence for vectorial Boolean functions,
and mentions two other more general equivalence relations, namely
EA and CCZ equivalence.

5.1 basic definitions and representations of boolean

functions

A Boolean function of n ∈ N variables is a mapping f : Fn2 → F2.
The basic way to represent a Boolean function f : Fn2 → F2 is by
means of its truth table, which specifies for each of the possible 2n

input vectors of Fn2 the corresponding output value of f. Hence, for
any n ∈N the set Fn of Boolean functions of n variables is composed
of 22

n
functions. Once an ordering of the input variables x1, · · · , xn

has been established, a truth table can be compactly described just
by the 2n-bit string Ω(f) ∈ F2

n

2 representing the output values of the
corresponding function.

53
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Another common representation of Boolean functions is the Alge-
braic Normal Form (ANF). In particular, the ANF of f : Fn2 → F2 is
defined by the following multivariate polynomial:

Pf(x) =
⊕
I∈2[n]

aI

(∏
i∈I

xi

)
, (49)

Hence, the ANF represents a Boolean function as a sum of products
over F2. Remark that this representation is unique, since the mapping
which associates a Boolean function to its ANF is a bijection from Fn
to the quotient ring F2[x1, · · · , xn]/(x21 ⊕ x1, · · · , x2n ⊕ xn). The alge-
braic degree of a Boolean function f is the cardinality of the largest
subset I ∈ 2[n] in the ANF of f such that aI 6= 0. Boolean functions
having degree d = 1 are called affine functions. In particular, an affine
function is linear if a∅ = 0, i. e. if the constant term in its ANF is null.
Given ω ∈ Fn2 , the linear Boolean function Lω : Fn2 → F2 is defined
for all x ∈ Fn2 as Lω(x) = ω · x.

The relationship between the ANF coefficients and the truth table
of f is given by the Möbius transform, defined for all x ∈ Fn2 as:

f(x) =
⊕

I⊆supp(x)

aI , (50)

where supp(x) = {i : xi 6= 0} is the support of x.
A third representation which is useful to characterize several cryp-

tographic properties of Boolean functions is the Walsh transform.

Definition 23. The Walsh transform (also the Walsh-Hadamard trans-
form) of a Boolean function f : Fn2 → F2 is the function Wf : Fn2 → R

defined for all ω ∈ Fn2 as

Wf(ω) =
∑
x∈Fn2

(−1)f(x)⊕ω·x , (51)

In particular, the coefficientWf(ω) measures the correlation between
f and the linear function Lω selected by ω. The multiset S(f) of all
Walsh coefficients of f is also called the Walsh spectrum of f, while the
maximum coefficient in absolute value is called the spectral radius or
the linearity of f.

A property satisfied by all Boolean functions is Parseval’s relation,
which states that the sum of all squared Walsh coefficients is constant.
Formally, for all f : Fn2 → F2 it holds∑

ω∈Fn2

[Wf(ω)]2 = 22n . (52)

The inverse Walsh transform is used to recover the truth table of a
Boolean function f : Fn2 → F2 starting from its Walsh coefficients. In
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particular, the polar value f̂(x) = (−1)f(x) corresponding to x ∈ Fn2
equals

f̂(x) = 2−n
∑
ω∈Fn2

F̂(ω) · (−1)ω·x . (53)

A straightforward method to compute the Walsh transform would
be to simply perform the sum in Equation (54) for each vectorω ∈ Fn2 .
Since there are 2n vectors ω ∈ Fn2 and that each coefficient is deter-
mined by a sum of 2n products, it follows that this naive algorithm
would require O(22n) steps to compute the Walsh transform of a
Boolean function with n variables. However, there exists a divide-and-
conquer recursive algorithm that allows one to compute the Walsh
transform in O(n · 2n) steps. Further information on this Fast Walsh
Transform (FWT) algorithm can be found in [30]. Notice that, since
Equation (53) still describes a Walsh transform up to normalization
by a constant, the same FWT algorithm can be adapted to compute
the inverse Walsh transform as well.

Finally, a fourth representation of Boolean functions which we will
use in this thesis is the autocorrelation function:

Definition 24. The autocorrelation function of f : Fn2 → F2 is the func-
tion r̂f : Fn2 → R defined for all s ∈ Fn2 as

r̂f(s) =
∑
x∈Fn2

(−1)f(x)⊕f(x⊕s) . (54)

The maximum absolute value ACmax for s ∈ Fn2 \ {0} of the au-
tocorrelation function is called the absolute indicator of f. The Wiener-
Khinchin-Einstein theorem1 states a relationship between the autocorre-
lation function and the Walsh transform.

Theorem 10 (Wiener-Khinchin-Einstein). Let f : Fn2 → F2 be a Boolean
function. The following equality holds for all ω ∈ Fn2 :

[Wf(ω)]2 =
∑
s∈Fn2

r̂f(s) · (−1)ω·s . (55)

The above theorem implies that the autocorrelation function can
also be computed through the FWT algorithm. In particular, it suf-
fices to compute the Walsh transform of f, square all its coefficient
and finally apply the inverse Walsh transform in order to obtain the
autocorrelation function.

5.2 cryptographic properties of boolean functions

The notion of computational security defined in Section 4.1 is usually
declined with respect to specific types of cryptanalysis that a symmet-
ric key cryptosystem must be resistant to. This rationale translates to

1 Usually, this theorem is referred in the literature just as the Wiener-Khinchin theorem.
However, in [67] it is shown that Einstein already proved a similar result twenty
years before the independent discoveries by Wiener and Khinchin.
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the fact that the Boolean functions involved in the design of block and
stream ciphers must satisfy certain criteria in order to resist to vari-
ous kinds of attacks. In this section we consider five cryptographic
properties of Boolean functions, namely balancedness, algebraic degree,
nonlinearity, resiliency and propagation criterion, and discuss their rel-
evance with respect to the computational security of stream ciphers.
Next, we discuss some theoretical bounds that these properties in-
duce among themselves, and conclude by introducing the notion of
affine equivalence of Boolean functions.

5.2.1 Balancedness

A Boolean function f : Fn2 → F2 is balanced if

|f−1(0)| = |f−1(1)| = 2n−1 . (56)

This means that the truth table of such functions is a string composed
by an equal number of zeros and ones. Balancedness is easily char-
acterized by the Walsh transform. In particular, f is balanced if and
only if the Walsh transform over the null vector 0 is null:

Wf(0) = 0 . (57)

Balancedness is a fundamental criterion that every Boolean function
used in symmetric ciphers should satisfy. In fact, unbalanced func-
tions present a statistical bias that can be exploited for linear and
differential cryptanalysis.

5.2.2 Algebraic Degree

In Section 5.1 we defined the algebraic degree deg(f) of a Boolean
function f as the cardinality of the largest subset of variables with
nonzero ANF coefficient. In the case of stream ciphers and crypto-
graphic PRNGs, the algebraic degree of the involved Boolean func-
tions is related to the notion of linear complexity: given a sequence
produced by a PRNG, its linear complexity is the length of the short-
est LFSR which generates it.

PRNGs which produce sequences having low linear complexity can
be attacked using the Berlekamp-Massey algorithm [115]. In [158] it is
shown that PRNGs based on Boolean functions having high algebraic
degree also have a high linear complexity, making the Berlekamp-
Massey algorithm computationally unfeasible. Thus, the algebraic de-
gree of Boolean functions used in the design of stream ciphers and
cryptographic PRNGs should be as high as possible.
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5.2.3 Nonlinearity

Considering the truth table representation, cryptographic Boolean
functions should lie at a high Hamming distance from all affine func-
tions. Formally, the nonlinearity of a Boolean function f is defined as
follows.

Definition 25. Let f : Fn2 → F2 be a Boolean function, and let A be the set
of all affine functions in n variables. The nonlinearity of f is defined as

Nf = dH(f,A) = min{dH(Ω(f),Ω(a)) : a ∈ A} .

When used in stream ciphers, Boolean functions having low non-
linearity may expose to fast-correlation attacks (for details, see for ex-
ample [39]). For this reason, the nonlinearity should be as high as
possible, to provide better confusion.

The following result gives a simple formula to compute the nonlin-
earity of a Boolean function by means of its Walsh transform.

Lemma 3. Let f : Fn2 → F2 be a Boolean function. Denoting by L(f) the
spectral radius of f, the nonlinearity of f is equal to

Nf = 2
n−1 −

1

2
L(f) . (58)

In order to have high nonlinearity, the spectral radius must be low.
An interesting problem is to determine what is the maximum non-
linearity obtainable by a Boolean function f : Fn2 → F2. Recalling
Parseval’s relation (52), we know that for each Boolean function in n
variables the sum of all its squared Walsh coefficients must equal 22n.
Hence, to reach the minimum spectral radius the squared spectrum of
the function must be uniformly divided among all 2m vectors, which
means that F̂2(ω) = 2n for all ω ∈ Fn2 . Thus, the Walsh coefficients
must all have the same absolute value 2

n
2 , giving the following upper

bound on nonlinearity:

Nf 6 2
n−1 − 2

n
2−1 . (59)

Clearly, equality in (59) can occur only if n is even, since the Walsh co-
efficients of a Boolean function must be integer numbers. The Boolean
functions achieving this bound are called bent functions, and by Equa-
tion (57) they are not balanced, since Wf(0) = ±2

n
2 6= 0. Relation (59)

is also called the covering radius bound, since if n is even it coincides
with the maximum covering radius of the Reed-Muller code R(1,n) [117].
When n is odd, we can uniformly divide the squared Walsh spectrum
over a subset S ⊆ Fn2 of 2n−1 vectors. Since by Parseval’s relation the
remaining 2n−1 vectors must all have null Walsh coefficients, it fol-
lows that Wf(ω) = ±2n+12 for all ω ∈ S. The bound on nonlinearity
for this kind of functions then becomes

Nf 6 2
n−1 − 2

n+1
2 −1 . (60)
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Equality in 60 can be obtained by quadratic functions (that is, Boolean
functions which have algebraic degree d = 2). For this reason, this in-
equality is also called the quadratic bound. For n = 1, 3, 5, 7 it is known
that the maximum nonlinearity coincides with the quadratic bound.
For n > 7 odd, however, this is still an open problem. In [91] it was
proved that the maximum nonlinearity strictly exceeds the quadratic
bound if n > 7, but a definitive upper bound for the general case, in-
cluded between the quadratic bound and the covering radius bound,
is yet to be discovered.

5.2.4 Correlation Immunity and Resiliency

Another essential cryptographic criterion for Boolean functions, intro-
duced by Siegenthaler in [167], is correlation immunity. In what follows,
we denote by wH(x) the Hamming weight of vector x, i. e. the number
its nonzero coordinates.

Definition 26. A Boolean function f : Fn2 → F2 is t–th order correlation
immune (with 1 6 t 6 n) if the truth tables of the restrictions of f obtained
by fixing at most t input coordinates all have the same Hamming weight.

We denote by CI(t) a t–th order correlation immune function. A
Boolean function f which is both balanced and t–th order correla-
tion immune is also called t-resilient. This means that each restriction
of f where at most t input variables are fixed is balanced.

Siegenthaler showed in [168] that if the Boolean functions used in a
stream cipher are not t–resilient then it is possible to apply an efficient
correlation attack using t LFSRs.

A Walsh characterization of correlation immunity has been proved
by Xiao and Massey in [196].

Theorem 11. Let f : Fn2 → F2 be a Boolean function. Then, f is t–th order
correlation immune if and only if Wf(ω) = 0 for all vectors ω ∈ Fn2 such
that wH(ω) 6 t.

Hence, by Equation (57) and Theorem 11, one can check if a given
Boolean function is t–resilient by verifying that its Walsh transform
vanishes for all vectors ω having Hamming weight at most t.

5.2.5 Strict Avalanche Criterion and Propagation Criterion

Webster and Tavares [190] defined the Strict Avalanche Criterion (SAC)
as a more stringent property than the avalanche effect. If a Boolean
function f satisfies the SAC, then the probability that the output of f
changes whenever a single input bit is complemented is 12 . The prac-
tical consequence in using Boolean functions satisfying the SAC in
cryptosystems is that plaintexts “close” to each other (that is, sepa-
rated by a small Hamming distance) produce ciphertexts which are
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completely different. Hence, this property is related to the diffusion
principle of symmetric ciphers.

A generalization of the SAC, described in [150], is the propagation
criterion of order l, which takes into account the complementation of
at most l input bits.

Definition 27. A Boolean function f : Fn2 → F2 satisfies the propagation
criterion of order l (with 1 6 l 6 n) if the function f(x)⊕ f(x⊕ s) is
balanced for all nonzero vectors s ∈ Fn2 having Hamming weight at most l.

Functions satisfying the propagation criterion of order l are also
called PC(l) functions. Similarly to resiliency, in [150] a characteriza-
tion of the propagation criterion based on the zeros of the autocorre-
lation function was proved.

Theorem 12. A Boolean function f : Fm2 → F2 is PC(l) if and only if
r̂f(s) = 0 for all s ∈ Fn2 such that 1 6 wH(s) 6 l.

5.2.6 Theoretical Bounds

Generally, the cryptographic properties described in the previous sec-
tions cannot be satisfied simultaneously by a Boolean function, since
they induce several trade-offs among them. A complete survey re-
garding these trade-offs can be found in [30]: in what follows, we
report only the most useful ones for our results.

The first result pertains to resiliency and algebraic degree. In [167]
Siegenthaler proved the following bound.

Theorem 13 (Siegenthaler’s bound). Let f : Fn2 → F2 be a t–resilient
Boolean function with algebraic degree d. Then, it holds that

d 6 n− t− 1 . (61)

The second result concerns nonlinearity and order of resiliency. In
particular, Tarannikov [177] showed an upper bound on the maxi-
mum nonlinearity obtainable by a t–resilient function.

Theorem 14 (Tarannikov’s bound). Let f : Fn2 → F2 be a t–resilient
Boolean. Then, the following relation holds:

Nf 6 2
n−1 − 2t+1 . (62)

In what follows, by (n, t,d,nl) we denote the profile of a balanced
boolean function of n variables having resiliency order t, algebraic
degree d and nonlinearity nl.

An interesting class of Boolean functions is the set of plateaued func-
tions, originally introduced by Zhang and Zheng [200]. Formally, a
Boolean function f : Fn2 → F2 with spectral radius L(f) is plateaued
if Wf(ω) ∈ {−L(f), 0, +L(f)} for all ω ∈ Fn2 . Thus, Walsh spec-
tra of plateaued functions take at most three values. Plateaued func-
tions are especially interesting for cryptography, since they satisfy
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with equality both Siegenthaler’s and Tarannikov’s bounds, a feature
which makes them optimal with respect to algebraic degree, nonlin-
earity and resiliency. The profile of a plateaued boolean function is of
the form (n, r− 2,n− r− 3, 2n−1 − 2r−1), where r > n

2 , from which
it follows that L(f) = 2r. Notice that if n is even and r = n

2 , then a
plateaued function is bent.

We conclude by mentioning a bound concerning t–resilient and
PC(l) Boolean functions, which was proved in [36].

Theorem 15. Let f : Fn2 → F2 be a PC(l) boolean function. Then, the
order t of resiliency of f is upper bounded by

t 6 n− l− 1 . (63)

5.3 affine equivalence for boolean functions

As we saw in Section 5.1, the number of Boolean functions of n vari-
ables is 22

n
. This makes the search of Boolean functions with good

cryptographic properties very difficult, since the corresponding space
Fn is too huge to be exhaustively explored even for small values of
n. The notion of affine equivalence among Boolean functions has been
introduced to address this enumeration problem:

Definition 28. Let f,g : Fn2 → F2 be two Boolean functions of n variables.
Then, f and g are affine equivalent if there exists an affine permutation
P : Fn2 → F2 such that

g(x) = f(A(x)) (64)

for all x ∈ Fn2 .

One can easily check that affine equivalence is actually an equiva-
lence relation. Interestingly, the cryptographic properties of balanced-
ness, algebraic degree and nonlinearity are all preserved under affine
equivalence [30]. Thus, one can study these three properties just by
considering the equivalence classes induced by these relation, which
are considerably less than the total number of Boolean functions of
n variables. For example, in the case of n = 5 variables there are
22
5
= 4294967296 functions in total, but the quotient space induced

by the affine equivalence relation is composed of only 48 classes.
Berlekamp and Welch classified these 48 classes with respect to their
cryptographic properties in [13].

5.4 basic definitions and representations of s-boxes

We now turn to vectorial Boolean functions. Let n,m ∈N. A vectorial
Boolean function (also called a (n,m)–function or a S-box in the cryp-
tographic context) is a mapping F : Fn2 → Fm2 with n input variables
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andm outputs. By f1, · · · , fm : Fn2 → F2 we denote the coordinate func-
tions of F, that is, the m Boolean functions which specify the value of
each output bit of F. More precisely, F(x) is defined for all x ∈ Fn2 as:

F(x1, · · · , xn) = (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn)) . (65)

The component functions of F are defined as v · F for all v ∈ Fm
∗

2 , with
Fm

∗
2 = Fm2 \ {0}. Since

v · F = v1f1(x1, · · · , xn)⊕ · · · ⊕ vmfm(x1, · · · , xn) ,

it follows that the component functions are the (non-trivial) linear
combinations of the coordinate functions of F.

Remark 1. Recall that in Section 2.2 we defined the global rule of a finite
CA in terms of its local rule f : Σd → Σ as follows:

• No Boundary CA: F : Σn → Σn−d+1 is defined for all x ∈ Σn as:

F(x1, x2, · · · , xn) = (f(x1, · · · , xd), · · · , f(xn−d+1, · · · , xn)) .
(66)

• Periodic Boundary CA: F : Σn → Σn is defined for all x ∈ Σn as:

F(x1, x2, · · · , xn) = (f(x1, · · · , xd), · · · , f(xn, · · · , xd−1)) . (67)

Hence, when the state alphabet is Σ = F2, the global rule of a finite CA
is a vectorial Boolean function F : Fn2 → Fm2 whose coordinate functions
correspond to the local rule f applied to the neighborhood (xi, · · · , xi+d−1).
In the NBCA case we have m = n− d+ 1 while for PBCA it holds m = n.

The truth table representation can be easily extended to the vecto-
rial case: given F : Fn2 → Fm2 , one can simply concatenate the truth
tables of the m coordinate functions of F:

Ω(F) = (Ω(f1),Ω(f2), · · · ,Ω(fm)) . (68)

It follows that the truth table of F has sizem · 2n. Thus, the cardinality
of the set Fn,m of all (n,m)–functions is 2m·2

n
.

The algebraic normal form and the Walsh transform are also de-
fined similarly to their single-output counterparts which we intro-
duced in Section 5.1. In particular, given F : Fn2 → Fm2 and x ∈ Fn2
the ANF of F(x) equals

Pf(x) =
⊕
I∈2[n]

aI

(∏
i∈I

xi

)
, (69)

the only difference being that the coefficient aI is an element of Fm2
instead of F2 as for the ANF of a single-output Boolean function.
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On the other hand, the Walsh transform of F is defined in terms of
its components functions. Thus, we have

Wv·F(ω) =
∑
x∈Fn2

(−1)v·F(x)⊕ω·x (70)

for all ω ∈ Fn2 and v ∈ Fm
∗

2 .
The autocorrelation function of F is defined in analogous way, but

we will not use it in this thesis.

5.5 cryptographic properties of s-boxes

In this section we show how the vectorial counterparts of the cryp-
tographic properties of Boolean functions are characterized in terms
of either the coordinates or the component functions of S-boxes. We
frame each property with respect to the cryptanalytic attacks that can
be performed on the S-boxes of block ciphers.

5.5.1 Balancedness

A vectorial Boolean function F : Fn2 → Fm2 is balanced if for all output
vectors y ∈ Fm2 it results that |F−1(y)| = 2n−m. Equivalently, F is
balanced if and only if all its component functions are balanced, i. e.
if the following relation

Wv·F(0) = 0 (71)

holds for all v ∈ Fm
∗

2 . Remark that balancedness of the coordinate
functions is a necessary but not sufficient condition for the balanced-
ness of F: it can be the case that certain linear combinations of bal-
anced coordinate functions yield unbalanced component functions.

Balanced vectorial Boolean functions are critical components in the
design of confusion layers for block ciphers, since they ensure that
each output vector y ∈ Fm2 has a uniform probability of occurring,
given that the input vectors are randomly sampled. Hence, balanced-
ness constitutes a first security measure to stand statistical cryptanal-
ysis by the attacker. Moreover, (n,n)–functions actually correspond
to bijective S-boxes, which are fundamental to ensure decryption in
SPN block ciphers, as we mentioned in Section 4.2. It is easy to deter-
mine the number of bijective S-boxes of n variables: each n-bit vector
can be indexed by a natural number i ∈ {0, · · · , 2n− 1}. Consequently,
a bijective (n,n)–function can be seen as a permutation of 2n natural
numbers. This means that there are (2n)! bijective n-bit S-boxes, i. e.
the size of the symmetric group over a set of 2n objects.
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5.5.2 Algebraic degree

The algebraic degree of a vectorial function F : Fn2 → Fm2 is by defini-
tion the degree of its ANF, and it corresponds to the maximal degree
of the coordinate functions of F.

S-boxes with a low algebraic degree are vulnerable to higher-order
differential attacks [98], which are a generalization of the differential
attack introduced by Biham and Shamir [16] based on the formal
derivative of Boolean functions.

5.5.3 Nonlinearity

Similarly to the single-output case, the nonlinearity of a vectorial
Boolean function F : Fn2 → F2 corresponds to its Hamming distance
from all affine functions. This property can be characterized as the
minimal nonlinearity among all component functions of F, that is

NF = minv∈Fn
∗
2

{
2n−1 −

1

2
L(v · F)

}
, (72)

where L(v ·F) = maxω∈Fn2
{|Wv·F(ω)|} is the linearity of the component

function v · F.
S-boxes used in the design of block ciphers (both under the SPN

and FN approaches) must have high nonlinearity in order to resist
linear cryptanalysis attacks [116].

Since Boolean functions are a particular case of vectorial functions,
the covering radius bound also holds for any (n,m)–function:

NF 6 2
n−1 − 2

n
2−1. (73)

As in the single-output case, vectorial functions satisfying the above
bound are called bent. Bent (n,m)–functions exist only for even values
of n and m 6 n/2 [31].

Whenm = n, a better bound exists. The Sidelnikov-Chabaud-Vaudenay
bound [35] states that the nonlinearity of any (n,n)–function F satis-
fies the following inequality:

NF 6 2
n−1 − 2

n−1
2 . (74)

Functions satisfying with equality bound (74) are called Almost Bent
(AB) functions. As one may notice, these functions can exist only if
n is odd. AB functions provide an optimal resistance to linear crypt-
analysis attacks.

5.5.4 Differential Uniformity

Let F be a (n,m)–function, with a ∈ Fn
∗
2 and b ∈ Fm2 . We define the

difference distribution set of F with respect to a and b as:

DF(a,b) = {x ∈ Fn2 : F(x)⊕ F(x⊕ a) = b} . (75)
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The difference table of F is a 2n − 1× 2m table where for all a ∈ Fn
∗
2

and b ∈ Fm2 the entry at position (a,b) corresponds to the cardinality
of the delta difference set DF(a,b), and it is denoted as δF(a,b). The
differential uniformity δF is then defined as [128]:

δF = max
a ∈ Fn∗2
b ∈ Fm2

δf(a,b). (76)

Ideally, the differential uniformity of the S-boxes used in a block ci-
pher should be as low as possible in order to provide better resistance
to differential cryptanalysis attacks [16].

When m < n, it can be proved that the minimum value achievable
for differential uniformity is 2n−m. Functions satisfying this bound
are called Perfect Nonlinear (PN), and it can be shown that they co-
incide with the class of bent vectorial functions [128]. On the other
hand, for m = n it follows that the minimum value for differential
uniformity is 2, due to the fact that if x ∈ Fn2 is a solution to the
equation F(x)⊕ F(x⊕ a) = b, then x⊕ a is also a solution. S-boxes
reaching this lower bound are called Almost Perfect Nonlinear (APN)
functions [130].

Every AB function is also APN, but the converse does not hold in
general [32]. Contrary to AB functions, APN functions also exist for
even number of variables. A common method to search for APN func-
tions is to use power functions. In this case, one represents a vectorial
Boolean function as a univariate polynomial, by identifying the vector
space Fn2 as the finite field F2n . Then, power functions are monomials
of the form F(x) = xd. In this case, one can show that it suffices to
check the APN property only for a = 1 [31]. A result reported in [31]
and proved by Dobbertin shows that if n is odd then APN power
functions are also permutations (i. e. bijective S-boxes). On the other
hand, APN power functions are not permutations for any even n.

The existence of APN permutation with even number of variables
remained open until 2009, when Dillon showed an example of an
APN permutation of 6 variables [23]. However, for all n even and
greater than 6 the problem is still open.

5.5.5 Resiliency

Resiliency for vectorial functions is defined analogously to the single-
output case. In particular, F : Fn2 → Fm2 is t–resilient if, by fixing any t
input variables xi1 , · · · , xit , the resulting restriction F̃ : Fn−t2 → Fm2 is
a balanced vectorial function, i. e. |F̃−1(y)| = 2n−t−m for all y ∈ Fm2 .
Note that t–resilient functions can exist only if m < n− t.

Similarly to nonlinearity and balancedness, the resiliency of a vec-
torial function can also be characterized by the resiliency of its com-
ponent functions, as the next result [31] shows:
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Lemma 4. Let F : Fn2 → Fm2 be a vectorial Boolean function in n variables
and m outputs. Then, F is t–resilient if and only if for all v ∈ (Fm2 )∗ the
component function v · F is t-resilient.

Resilient (n,m)–functions are useful in the design of PRNG for
stream ciphers, and also for achieving key renewal: suppose that Oscar
managed to discover at most t bits of a key K ∈ Fn2 used by Alice and
Bob in a symmetric cryptosystem. Then, Alice and Bob can apply a
t–resilient function F : Fn2 → Fm2 to get a new key K1 = F(K) about
which Oscar does not know anything, for the restriction of F to the
t bits he found is balanced. Clearly, the downside of this solution is
that the new key is shorter than the original one.

As the next result reported in [173] shows, linear resilient vectorial
functions are equivalent to binary linear codes.

Theorem 16. There exists a (n,m,d) binary linear code C if and only if
there exists a t–resilient linear (n,m)–function such that t = d− 1.

Resilient vectorial functions are also related to a particular type of
combinatorial designs called Large sets of Orthogonal Arrays. (LOA).
Formally, a large set of t− (v,k, λ) orthogonal arrays (t− (v,k, λ)–LOA),
is defined a set of vk−t/λ simple t − (v,k, 1)–OA such that each k-
tuple of symbols occurs in exactly one of the orthogonal arrays of the
set. The following result [173] illustrates the relation between resilient
functions and LOAs:

Theorem 17. A t− (2,n, 2n−m−t)–LOA exists if and only if there exists
a t–resilient (n,m)–function.

5.6 affine equivalence for s-boxes

Equivalence relations are useful also in the context of S-boxes, in or-
der to reduce the search space among all vectorial Boolean functions
with interesting cryptographic properties. In this thesis, we consider
only the case of equivalence relations over (n,n)–functions, but all
definitions reported in this section can be straightforwardly adapted
to (n,m)–functions as well.

The notion of affine equivalence is generalized to the vectorial case
as follows:

Definition 29. Two (n,n)–functions F,G : Fn2 → Fn2 are called affine
equivalent (AE) if there exist two affine permutations A1,A2 : Fn2 → Fn2
such that

G(x) = A2(F(A1(x))) (77)

for all input vectors x ∈ Fn2 .

All the cryptographic properties discussed in this section for vecto-
rial Boolean functions are invariant under affine equivalence.
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In the literature, there are also other more general equivalence rela-
tions for S-boxes. We mention them here for the sake of completeness,
even though in this thesis we will focus mainly on AE. The Extended
Affine (EA) equivalence [31] is similar to the AE notion reported in
the definition above, but in this case the function G is also summed
(i. e. , XORed) with a third affine permutation A3 : Fn2 → Fn2 . In
the Carlet-Charpin-Zinoviev (CCZ) equivalence, on the other hand, two
(n,n)–functions F and G are equivalent if and only if one can obtain
the graph ΓG of G by composing the graph ΓF of F with an affine
permutation over Fn2 [32].

AE is a special case of EA equivalence, which is in turn a special
case of CCZ equivalence. However, not all cryptographic properties
mentioned above are invariant under these equivalence relations. For
example, the algebraic degree of an (n,n)–function is not preserved
under CCZ equivalence [31].
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H E U R I S T I C O P T I M I Z AT I O N A L G O R I T H M S

A combinatorial optimization problem is defined as a function P : I → S

which maps a set I of problem instances to a family S of solution spaces.
For all I ∈ I, the solution space S = P(I) is a finite set equipped
with an objective function f : S→ R assigning to each candidate solution
x ∈ S a measure of how good x is in solving that particular problem
instance. The goal of combinatorial optimization is to find an optimal
solution x∗ that maximizes f, that is

x∗ = argmaxx∈S{f(x)} . (78)

In most combinatorial optimization problems of practical importance,
the solution space S is usually too huge to be explored in an exhaus-
tive manner. Hence, one has to resort to heuristic algorithms in order
to find a (sub)optimal solution in a reasonable amount of time.

In this chapter, we recall the basic concepts of the heuristic algo-
rithms which we will use in the rest of this thesis. We begin in Sec-
tion 6.1 by describing the two local search methods of Hill Climbing and
Simulated Annealing, which starts from an initial candidate solutions
and gradually improves it by slight modifications. We then introduce
in Section 6.2 Genetic Algorithms and Genetic Programming, which on
the other hand evolve a population of candidate solutions by leverag-
ing on principles based on biological evolution. We finally conclude
the chapter in Section 6.3 by discussing Particle Swarm Optimization,
another population-based heuristic which is inspired by the move-
ments of swarms.

6.1 local search methods

Let dS : S × S → R be a distance defined over the solution space
S. Similarly to the situation arising in error-correcting codes that we
encountered in Section 3.3, we assume that there exists a minimum
distance dm such that dS(x, x ′) > dm holds for each pair of distinct
solutions x, x ′ ∈ S. We thus define the neighborhood N(x) of a solution
x ∈ S as the set of all solutions y 6= x with minimal distance from x:

N(x) = {y ∈ S : ∀z ∈ S dS(z, x) > dS(y, x)} . (79)

A local search method (or local optimization algorithm) usually works
by randomly generating an initial candidate solution x ∈ S, evaluat-
ing its objective function f(x) and then by replacing it with a new
solution y ∈ N(x) from its neighborhood. The selection method for
the new solution y depends on the underlying algorithm.

67
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6.1.1 Hill Climbing

The Hill Climbing (HC) optimization algorithm always selects the best
solution in the neighborhood (i. e. , the one maximizing f(x)). For-
mally, the current solution x is replaced by y, where

y = argmaxz∈N(x){f(z)} . (80)

This process is iterated until a solution x is produced whose neigh-
bors all have an equal or smaller objective function value than that of
x. Clearly, if the optimization problem features several local optima,
HC is very likely to get stuck in one of them.

6.1.2 Simulated Annealing

Simulated Annealing (SA) is a more refined local search algorithm,
which is inspired by the process of metal annealing [97]. During a SA
iteration, only one solution y in the neighborhood of x is generated,
usually in a random way. If the objective function computed over y is
higher than the objective function value of x, then x is replaced by y.
Otherwise, x is replaced by y with a certain acceptance probability Pa.
This acceptance probability does not remain constant during the exe-
cution of the algorithm: as a matter of fact, Pa is computed through a
temperature parameter T , which is decreased at each SA iteration by a
cooling schedule. Hence, the probability of accepting a solution which
is worse than the current one decreases over time.

Formally, for all solutions x ∈ S and y ∈ N(x) generated by the SA
algorithm the acceptance probability Pa is defined as follows:

Pa =

1 , if f(x) < f(y)

e
−
(
|f(y)−f(x)|

T

)
, if f(x) > f(y)

(81)

while at each iteration the temperature parameter is updated as:

T ← αT , (82)

where α ∈ (0, 1).
In this way, the SA algorithm favors exploration of the search space

during the first optimization steps, and then stabilize towards exploita-
tion of the current solution in later steps. This results in an heuristic
which is able to escape local optima more easily than Hill Climbing.

6.2 evolutionary computation algorithms

6.2.1 Genetic Algorithms

Genetic Algorithms (GAs) are an heuristic search method loosely based
on the principles of evolution theory, in particular natural selection.
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They belong to a broader class of nature-inspired optimization meth-
ods called Evolutionary Computation (EC) algorithms. Holland [79]
originally introduced GAs to pursue two objectives: the abstraction
of the adaptive processes in natural systems, and the design of arti-
ficial systems which would take advantage of the adaptive processes
abstracted from natural systems. The second goal led Holland to ap-
ply GAs to combinatorial optimization problems.

The main idea behind GAs is to represent a population of candi-
date solutions, or individuals, as strings of bits (usually called chromo-
somes), and evolve them by means of genetic operators. The evolved
solutions are successively evaluated against a fitness function, which
generally represents the objective function to be optimized, and the
solutions having higher fitness value are selected for the successive
generation. The process is repeated until a certain number of genera-
tions is reached or a sufficiently fit solution is found.

Goldberg [70] points out four characteristics featured by GAs which
make them a more robust search method than usual optimization
techniques, such as hill climbing:

• GAs do not work directly on the parameters of the problems,
but on a coding of the parameters (which is, essentially, the fixed-
length bitstring representation).

• Instead of iteratively optimizing a single candidate solution,
GAs evolve in parallel a population of solutions.

• GAs use only the value of the fitness function to optimize the
solutions. No additional information on the underlying search
space (such as derivatives) is required.

• GAs employ probabilistic operators to evolve their solutions, rather
than deterministic operators such as those used by hill climbing.

The traditional genetic operators used by a GA are the following:

• Reproduction operator. This operator is used to select the individ-
uals in the current population which will reproduce in the next
generation. Usually, the value of the fitness function drives the
selection process. In the roulette wheel reproduction operator, for
example, individuals are selected with probability proportional
to their fitness.

• Mutation operator. The aim of the mutation operator is to in-
troduce random changes in the chromosome of an individual.
Typically, a mutation operator flips the value of the bits in a
chromosome with low probability.

• Crossover operator. Crossover recombines the chromosomes of
two or more individuals in order to produce a new chromo-
some (the offspring). There are several methods to implement
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crossover operators, among which one of the most used is one-
point crossover. Given two parents p1 and p2 of length n, a
crossover site s ∈ {1, · · · ,n} is randomly selected. Then, a child
string c1 is produced by copying the bits of p1 up to position
s, and the bits of p2 from position s + 1 to n. Symmetrically,
a second child string c2 is built by swapping the order of the
copying operations: from position 1 to s the bits are taken from
p2, and from position s+ 1 to n they are copied from p1.

Generally speaking, these three genetic operators are combined by a
GA using the following procedure:

1. Initialize the population with a random set of candidate solu-
tions represented as bitstrings, and compute their fitness values.

2. Using the reproduction operator, choose a subset of individuals
from the current population which will reproduce in the next
generation.

3. Generate the new offspring from the parents selected in the pre-
vious step by applying mutation and crossover operators.

4. Compute the fitness values of the individuals in the offspring.

5. Create the new population by copying the individuals in the off-
spring. Optionally, it is possible to copy a few of the most fit in-
dividuals from the old population, by using elitist or steady state
strategies. This ensures that the maximum fitness value present
in the population is a non-decreasing monotone function of the
number of generations.

6. Until a termination condition is met (e. g. a specific number of
generations has been reached), return to point 2.

Several variations of the basic GA heuristic have been developed,
ranging from more sophisticated solution encodings (based for exam-
ple on permutations [191]) to variation operators preserving particu-
lar properties of the solutions, such as their balancedness [123].

6.2.2 Genetic Programming

Genetic Programming (GP) is an EC algorithm originally proposed by
Koza [101]. The main difference with GA is that in GP the evolved
individuals are not candidate solutions, but rather computer programs
represented as trees. In particular, the leaf nodes of the tree represent
the input of the program. For example, if the computer program cor-
responding to a candidate solution is a Boolean function, then the
leaves of the tree are the input variables x1, · · · , xn of the function.
The internal nodes, on the other hand, are operators (such as AND,
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OR and XOR in the case of Boolean functions) combining the results
coming from the children nodes. The output is finally determined by
the root node.

The genetic operators of GP follow the same philosophy of those
used in GA, but they are obviously adjusted to accommodate for this
new representation. In particular, subtree crossover is used to swap two
random subtrees of two individuals, while in subtree mutation a sub-
tree of a solution is replaced by another random tree. Figure 17 repre-
sents an example of tree encoding of a Boolean function f : F42 → F2

in 4 variables. In this case, the input variables x1 and x2 are com-

OR

OUTPUT

AND XOR

x1 x2 x3 x4

Figure 17: Example of GP tree encoding of a Boolean function.

bined by an AND operator, while x3 and x4 are XORed. The outputs
of these two operations are finally combined in the root node by an
OR operator, thus giving the following algebraic expression:

f(x1, x2, x3, x4) = (x1 AND x2) OR (x3 XOR x4) . (83)

As in the case of GA, several variations of GP have been proposed
in the literature, including for example Semantic GP [127, 186], where
constraints on the semantics of the program output are enforced, and
Cartesian GP [124], in which the solutions are represented as graphs
instead of trees.

6.3 particle swarm optimization

Particle Swarm Optimization (PSO) is a stochastic optimization heuris-
tic originally introduced by Kennedy and Eberhart [93]. PSO basically
works by representing a set of candidate solutions of an optimization
problem as a swarm of particles which move in a coordinated manner
through the search space, usually a subset of Rm. At each time step
t ∈ N, the current position of the i-th particle x(t)i ∈ Rm is updated
using the recurrence equation

x
(t+1)
i = x

(t)
i + v

(t)
i ,
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where v(t)i ∈ Rm is the velocity vector of the i-th particle at time t. The
candidate solution represented by the new position is then evaluated
by a fitness function, which is usually the function to be optimized,
as in the case of GA. Each coordinate j ∈ {1, · · · ,m} of the i-th particle
velocity is in turn stochastically updated as follows:

v
(t+1)
ij = w · v(t)ij + Rij ·ϕ · (gj − x

(t)
ij ) + Rij ·ψ · (bij − x

(t)
ij ) ,

where the current velocity of the particle v(t)ij is weighted by the in-
ertia parameter w ∈ R, the value Rij ∈ [0, 1] is a random number
sampled with uniform probability, and ϕ and ψ are constants which
respectively determine the influence of the global best solution g ∈ Rm

found so far by the neighborhood of the i-th particle and the influence
of the local best solution bi ∈ Rm found so far by the i-th particle. In
order to control the velocity of the particle, each component v(t+1)ij

is also limited in absolute value by a global parameter vmax. Vari-
ous topologies can be used to define a neighborhood for the particles,
such as the Von Neumann topology and the ring topology. In this work,
however, we focus only on the fully informed particle paradigm [119],
in which the global best solution g is simply the best solution discov-
ered so far by the whole swarm.

The PSO heuristic has been successfully applied to several continu-
ous optimization problems (see for example [147] for a survey). How-
ever, there are no obvious ways to apply it to discrete search spaces.

Kennedy and Eberhart proposed in [94] a variant of their original
PSO algorithm in order to solve binary optimization problems. The
solutions are represented as vectors of m bits, and the search space is
geometrically interpreted as the m-dimensional hypercube Fm2 . Con-
sequently, the particles move through the vertices of this hypercube.
The velocity vector becomes a probability vector: given the i-th particle
in the swarm, for each coordinate j ∈ {1, · · · ,m} the position xi with
respect to dimension j is updated by sampling a Bernoullian random
variable with parameter pij. In particular, if a sampled random num-
ber r ∈ [0, 1] is less than pij then the value of the j-th coordinate of xi
is updated to 1, otherwise it is updated to 0.

The advantage of this discrete version is that it is possible to use the
same velocity equation defined for the basic PSO procedure to update
the probability vectors of the particles, provided that their compo-
nents are normalized on the interval [0, 1]. To this end, Kennedy and
Eberhart adopted in [94] the logistic function, defined for all x ∈ R as:

S(x) =
1

1+ exp (−x)
.
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S U RV E Y O F L I T E R AT U R E

In this chapter, we analyze the state of the art concerning the appli-
cations of CA to cryptography, as well as the literature pertaining to
the heuristic optimization of Boolean functions and S-boxes.

We begin our survey in Sections 7.1 and 7.2 by analyzing the works
related to the design of stream and block ciphers based on cellular
automata. We then give a brief overview in Section 7.3 of the field of
rotation-symmetric S-boxes, which are basically periodic boundary CA
under disguise where the diameter of the local rule equals the size
of the cellular array. Next, in Section 7.4 we move to secret sharing
schemes based on CA, remarking that the few solutions proposed in
the relevant literature all feature a sequential threshold access structure,
where the shares must satisfy an adjacency constraint. Finally, we
conclude in Section 7.5 by describing the research line devoted to
the optimization of Boolean functions and S-boxes through heuristic
techniques.

7.1 ca-based prngs and stream ciphers

Most applications of CA to cryptography published in the literature
deal with the generation of pseudorandom sequences for stream ciphers.
The first work in this line of research dates back to Wolfram [195],
who proposed to exploit the chaotic behaviour of a ECA equipped
with rule 30 to build a pseudorandom number generator (PRNG).
The idea was to represent the random seed of the PRNG as the ini-
tial configuration of the cellular array and iterate the CA with pe-
riodic boundary conditions using rule 30 for a certain number of
steps. Then, the trace of the central cell of the CA was sampled as a
keystream for a Vernam-like cipher. Figure 18 displays a diagram for
the overall cipher proposed by Wolfram. The initial configuration of
the CA which acts as the PRNG seed is framed in blue, while the sam-
pled trace that constitutes the keystream in red. Wolfram extensively
analyzed the dynamic evolution of this rule over several initial config-
urations, using statistical tests and methods from dynamical systems
theory, such as the computation of Lyapunov’s exponent which is a
measure of the stability of a dynamical system. The obtained results
seemed to indicate that this rule could produce good pseudorandom
sequences, potentially useful for the implementation of a stream ci-
pher. From a practical point of view, Wolfram recommended to use
a CA with at least n = 127 cells, using various sampling strategies
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in order to destroy the correlations of the bits in the sequence (for
example, sampling in alternating time steps).

Unfortunately, Wolfram’s PRNG turned out to be very weak from a
cryptographic standpoint: Meier and Staffelbach [118] proved that it
is vulnerable to a known plaintext attack, unless the CA is initialized
with a seed of at least 1000 bits. The attack exploits the right permu-
tivity of rule 30, which effectively halves the keyspace of initial con-
figuration from 2n to 2

n
2 possible seeds. Later, Koc and Apohan [100]

showed another attack on Wolfram’s PRNG based on a linear approx-
imation of rule 30.

These two attacks are a consequence of the fact that rule 30 does not
have good cryptographic properties. In particular, this rule has non-
linearity Nf = 2, which makes it vulnerable to linear approximation
like in Koc and Apohan’s attack. Moreover, rule 30 is not 1–resilient,
which is the reason why Meier and Staffelbach’s attack proved to be
so efficient: as a matter of fact, rule 30 features some statistical cor-
relations allowing one to reduce even further the keyspace, which is
already been halved to 2

n
2 by the right permutivity of the rule.

More generally, Martin [114] showed by an exhaustive search that,
among the 256 elementary rules, only the 8 linear rules are 1–resilient.
This fact can be interpreted as a corollary of Tarannikov’s bound,
stated in Theorem 14: if the local rule is defined over d = 3 variables,
then the maximum nonlinearity for 1–resilient Boolean functions is
23−1 − 21+1 = 0.

The consequence is that elementary CA rules are not adequate for
building a cryptographic PRNG or a stream cipher, so it is necessary
to explore the spaces of rules having higher radii. This research line
has been pursued by Leporati and Mariot in [106], where the authors
showed that bipermutive local rules are 1–resilient. Since the space
of bipermutive rules of d variables is 22

d−2
, the authors performed

an exhaustive search of all bipermutive rules of radius r = 2, 3 with
the goal of finding those having the highest nonlinearity values and
resiliency orders. Formenti et al. [63] also performed a similar ex-
haustive search over the set of local rules of radius r = 2, leveraging
on the classification of Boolean functions of 5 variables up to affine
equivalence carried out by Berlekamp and Welch in [13].

Seed K

Keystream z

K

CA

z

⊕
Encryption

PT CT

Figure 18: Block scheme of Wolfram’s stream cipher based on Rule 30.
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7.2 ca-based block ciphers

The first block cipher based on cellular automata was proposed by
Gutowitz [74]; it was designed using both irreversible and reversible
CA. In particular, for the irreversible part, the author employed per-
mutive local rules. Given a configuration c ∈ Fn2 , permutive rules
allow one to determine a preimage p ∈ Fn+d−12 by constructing a
path over the de Bruijn graph, as discussed in Section 2.3. Gutowitz
proposed to iterate this preimage computation process for the diffu-
sion phase of the cipher. Additionally, reversible block CA were used
in the substitution phase to ensure the invertibility of the resulting
S-box. In a block CA, the local rule does not determine the next state
of a single cell, but rather the state of a block of multiple cells. At the
beginning, the cellular array is divided in blocks of m cells each, and
then a permutation f : Fm2 → Fm2 is applied to each block in parallel.
Next, the local rule is applied by shifting the blocks one place to the
right using periodic boundary conditions.

A second type of reversible CA used for block ciphers are second-
order CA. Given a local rule f : Fd2 → F2, the next state at time t+ 1 of
the i-th cell ci(t+ 1) in a second-order CA is determined as follows:

ci(t+ 1) = ci(t− 1)⊕ f(ci(t), · · · , · · · , ci+d−1(t)) . (84)

As a consequence, in order to compute the next state of a second-
order CA, one has to know both the value of the current configura-
tion and its value at the previous time step. Seredynsky et al. [162]
investigated second-order CA as S-boxes, studying the avalanche prop-
erties of CA of length n = 32 and n = 64 equipped with local rules of
radius r = 2 and r = 3.

A third approach for the construction of CA-based block ciphers
was set forth by Szaban et al. in [176]. Instead of considering classes
of CA already known to be reversible, the authors first considered the
set of all 256 local rules of radius r = 1 and selected those which had
the best nonlinearity and autocorrelation values by evolving the CA
for a certain number of steps over a cellular array of size n = 8. This
selection resulted in six local rules, which were subsequently checked
for bijectivity over longer array lengths.

Notice that the solutions described up to now always focus on
the iterated behaviour of the CA. Another perspective is to consider
the S-box corresponding only to one CA iteration (that is, the CA
global rule). This approach has been mainly investigated by Daemen
et al. [52, 51], focusing in particular on the class of complementing
landscapes cellular automata (CLCA). A complementing landscape is
a string s over the alphabet {0, 1, ∗}, where the symbol ∗ indicates a
don’t care that can be either 0 or 1. Thus, each landscape defines a set
of possible binary strings. Given a collection of complementing land-
scapes Scl, each of length d− 1, the local rule f : Fd2 → F2 induced by
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Scl flips the state of the i-th cell if the string (xi−ω, · · · , xi−ω+δ−1)

appears in one of the landscapes of Scl, and leaves it unchanged oth-
erwise. In [52], CLCA for block cipher design were studied distin-
guishing between locally and globally invertible rules. In particular, all
locally invertible CLCA turn out to be involutions, while globally in-
vertible CLCA are invertible only over certain sets of periodic configu-
rations. This implies that a globally invertible CLCA is not reversible
in general, and the inverse global rule is typically specified using a
sequential algorithm. In this case, one can prove that a specific CLCA
F is globally invertible over ΣZ

n by first providing a seed for every pos-
sible periodic configuration y ∈ ΣZ

n, i. e. a value x ∈ Σ such that there
exists i ∈ {0, · · · ,n− 1} with F−1(y)i = x. The second step consists of
providing a leap: starting from the seed x at position i, the value of
the preimage F−1(y) at position i− k can be determined, for a certain
k ∈N. Next, the value at position i− k becomes a new seed, and the
leap procedure is repeated until either the preimage of y is completed
or no additional bits can be determined, in which case one has to pro-
vide a new seed for the remaining positions. The size k of the leap
depends on the diameter of the local rule, and thus the number of in-
dependent seeds required for reconstructing a preimage depends on
the period n of the configurations. As an example, consider the case
where k = 2 and n is odd: then, a single seed in any position i is suf-
ficient to determine the whole preimage of a periodic configuration
y ∈ Fn under a globally invertible CLCA. In particular, the CLCA
χ introduced by Daemen et al. [51] with diameter d = 3 and offset
ω = 0 defined by the single landscape l = 01 is globally invertible
over all periodic configurations of odd length. The CLCA χ also has a
simple description in terms of correlation and propagation character-
istics, which makes it interesting for cryptographic purposes. Indeed,
this CA is the only nonlinear component used in Keccak [15], where
it is applied to a periodic array of length n = 5. In this case, the re-
sulting S-box has nonlinearity and differential uniformity both equal
to 8. Earlier hash functions such as Panama [50] and RadioGatún [14]
also employed the one’s complement of χ, called γ.

7.3 rotation-symmetric s-boxes

Rotation symmetry has been extensively studied in the case of Boolean
functions, in particular with respect to the nonlinearity property. To
the best of our knowledge, the first who generalized this concept
to S-boxes were Rijmen et al. [155]. Formally, A (n,n)-function F is
rotation-symmetric if there exists a Boolean function f : Fn2 → F2 such
that, for all x ∈ Fn2 ,

F(x) = (f(x), f(σc(x)), f(σ2c(x)), · · · , f(σn−1c (x))) , (85)
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where σic(x) denotes the cyclic shift σc applied i times to vector x.
Thus, rotation-symmetric S-boxes have a simple algebraic description
since they are defined by a single coordinate function f, and this fea-
ture also yields an advantage at the implementation level.

Given the definition above, it is not difficult to see that a S-box F
is rotation-symmetric if and only if it commutes with the cyclic shift,
i. e. F(σc(x)) = σc(F(x)) for all x ∈ Fn2 . From Hedlund’s theorem,
stated in Section 2.1, it follows that rotation-symmetric S-boxes are
actually finite CA with periodic boundary conditions. In particular,
the local rule of the CA is the coordinate function f : Fn2 → F2 of
the S-box, meaning that the diameter d equals the length n of the
CA. Additionally, from Equation (85) one can see that the offset of
the CA is ω = 0, hence each cell looks at its state and the states of its
n− 1 right neighbors with periodic boundary conditions to compute
its next state.

Rijmen et al. [155] showed that bijective S-boxes generated using
power maps or exponentiations over finite fields are linearly equiv-
alent to rotation-symmetric S-boxes. This result is particularly inter-
esting, since, as remarked by the authors of [155], almost all S-boxes
used in practical cryptographic applications are generated through
power maps and exponentiations.

Kavut [90] enumerated all 6×6 bijective rotation-symmetric S-boxes
with maximum nonlinearity 24, showing that up to affine equivalence
there are only 4 functions with differential uniformity 4 and algebraic
degree 5. Finally, more recently, Liu et al. [108] analyzed the iterated
behaviour of (n,n) functions and provided a construction of rotation-
symmetric S-boxes satisfying perfect diffusion.

7.4 ca-based secret sharing schemes

During the last few years some SSS based on cellular automata (CA)
have been proposed in the literature, the first of which can be traced
back to del Rey, Mateus and Sánchez [153]. Specifically, this scheme
exploits the reversibility of higher-order CA, which we already en-
countered in Section 7.2. The secret is represented as one of the k
initial conditions in a k-th order CA which is then evolved for n
iterations. Each player then receives one of the n resulting CA con-
figurations as a share. The access structure generated by this scheme
can be defined as a (k,n) sequential threshold, since at least k consecu-
tive shares are required in order to evolve backwards the LMCA and
recover the secret, meaning that there are in total n− k+ 1 minimal
authorized subsets. Most of the later CA-based SSS [111, 60, 61] use
the same LMCA principle of del Rey, Mateus and Sánchez’s scheme,
and thus feature similar access structures.

More recently, a CA-based SSS designed on a different principle
has been proposed by Mariot and Leporati in [112]. In particular, this
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Figure 19: Setup phase of the extended scheme proposed in [112].

SSS is based on the preimage construction algorithm of bipermutive
CA used by Gutowitz [74] for the design of his CA block cipher men-
tioned in Section 7.2. The secret S is represented as a finite configura-
tion of length m of a NBCA equipped with a bipermutive local rule.
The dealer runs the preimage construction algorithm until a preimage
of length k ·m is obtained. This preimage is then split in k blocks of
size m each, which the dealer successively distributes to the players.
In order to recover the secret, the players must combine in the cor-
rect order their blocks to reconstruct the preimage, and then evolve
the CA forward until they obtain the secret. A simple modification
allows to extend this (k,k) threshold scheme to k+ 1 players by ap-
pending a copy of the secret to its right, in order to obtain a final
preimage of k+ 1 blocks of size m in which the two sets of players
P1, · · · ,Pk and P2, · · · ,Pk+1 can recover the secret using the same
procedure. As a matter of fact, by combining the respective shares
the dynamic evolution of the resulting pieces of preimages collapse
on one of the two copies of the secret. Figure 19 displays the setup
phase of this extended scheme. Clearly, this procedure can be gener-
alized to get a (k,n)-threshold scheme by concatenating k copies of
the secret. Hence, this scheme features a sequential threshold access
structure as well, since all minimal authorized subsets are of the form
{Pi, · · · ,Pi+k−1}. The difference with the approach set forth in [153] is
that in the latter the shares must satisfy a temporal adjacency constraint
(the shares being successive configurations of a LMCA), while in this
scheme the shares must be spatially adjacent, since they are block of a
NBCA preimage. Further, by Lemma 2 we know that the preimages
of spatially periodic configurations in surjective CA are spatially pe-
riodic as well. This means that at a certain point the shares in the
scheme proposed in [112] will begin to repeat themselves, thus yield-
ing a cyclic threshold access structure. More precisely, recall from Sec-
tion 2.3 that one can construct a preimage of a configuration y ∈ ΣZ

under a surjective CA F by building a path on the vertices of its de
Bruijn graph. This is done by reading the corresponding symbols of
y over the edges labels. In particular, the preimage is determined by
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fusing all vertices labels which one visits throughout the path. Since
the configuration whose we are computing a preimage is spatially
periodic, the labels read on the edges will begin to repeat themselves
at a certain point. Hence, if the vertex label equals the one where
we started our path at that repetition point of y, the preimage re-
peats itself as well. This happens after at most qd−1 repetitions of
the block defining the SPC y, since there are qd−1 vertices in the
de Bruijn graph of F. Figure 20 exemplifies this preimage computa-
tion process in a bipermutive CA. As a consequence, determining the

u· · · · · · u u · · ·

w1· · · v1 w2 · · · wh−1 vh−1 w1 v1 w2 · · ·

h 6 qd−1 copies of u

Figure 20: Example of preimage construction of an SPC y = ωuω. The
period of the sequence of blocks wi is at most qd−1

maximum number of players in the SSS proposed in [112] depends on
the characterization of the periods of preimages of spatially periodic
configurations in bipermutive CA.

7.5 heuristic optimization of boolean functions and s-
boxes

The body of literature devoted to the optimization of the crypto-
graphic properties of Boolean functions and S-boxes is rather large.
In this section, we only mention the works which are relevant for
the subsequent chapters of this thesis. For further information on the
subject, the reader is referred to [137].

The first attempt at designing a GA to optimize the cryptographic
properties of Boolean functions dates back to Millan, Clark and Daw-
son [122]. There, the authors used the classic bitstring representation
of GA to encode the truth table of Boolean functions, with the goal
of maximizing their nonlinearity. Later, the same authors presented
an improvement in [123] which confined the GA to balanced Boolean
functions, combining it also with an additional hill climbing optimiza-
tion step. The fitness function, in this case, took into account also the
resiliency order and the propagation criterion of the evolved function,
besides their nonlinearity.

Clark and Jacob [44] proposed a two-stage method for optimizing
the cryptographic properties of Boolean functions, using simulated
annealing in the first stage and hill climbing in the second one. Suc-
cessively, the same authors together with Maitra and Stanica set forth
a different approach to this optimization problem in [42]. In partic-
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ular, they proposed to use a spectral inversion method, where the can-
didate solutions are not the truth tables of Boolean functions, but
rather Walsh spectra already satisfying certain cryptographic proper-
ties. Since applying the inverse Walsh transform to any Walsh spec-
trum does not yield a Boolean function in general, the objective func-
tion of the optimization problem becomes minimizing the deviation
of the resulting pseudo-Boolean function f : Fn2 → R from being a true
Boolean function. The authors of [42] thus applied a simulated an-
nealing algorithm on this new problem representation.

Picek, Jakobovic and Golub [142] were the first to apply GP to the
evolution of Boolean functions with good cryptographic properties,
comparing its performance with GA. Successively, Picek, Marchiori,
Batina and Jakobovic [144] experimented with several EC algorithms
by combining them with algebraic constructions, in order to investi-
gate the maximum nonlinearity achievable by balanced Boolean func-
tions of 8 variables. In fact, for these functions it is still an open prob-
lem to determine whether the upper bound on nonlinearity is 118 or
116. Hrbacek and Dvorak [81] applied Cartesian GP to evolve bent
functions up to 16 variables. On the other hand, the cryptographic
property of correlation immunity has been investigated by Picek et
al. in [140, 138]. More recently Picek et al. [143] compared the per-
formance of four evolutionary algorithms (namely GA, GP, Cartesian
GP and evolutionary strategy) under three different fitness functions
which take into account several cryptographic properties.

The first work adopting EC algorithms for optimizing the crypto-
graphic properties of S-boxes dates back to Millan et al. [121]. There,
the authors designed a GA to evolve S-boxes with high nonlinearity
and low autocorrelation. Burnett et al. [26] used an heuristic method
to generate S-boxes with the same structure as those featured in the
Mars block cipher, one of the AES finalists [28].

Fuller, Millan and Dawson [65] proposed a multi-objective opti-
mization approach for the heuristic construction of cryptographically
strong S-boxes, showing that power functions can be evolved to ob-
tain solutions with the best possible trade-off between nonlinearity
and autocorrelation.

Picek et al. [146] applied GP and Cartesian GP to the evolution of
S-boxes, devising a method to adapt these two heuristic to the per-
mutation encoding. Finally, Picek et al. proposed a new cost function
in [139] to evolve S-boxes with higher nonlinearity values.
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H E U R I S T I C S E A R C H O F B O O L E A N F U N C T I O N S B Y
D I S C R E T E PA RT I C L E S WA R M O P T I M I Z AT I O N

In Chapter 7 we saw that Wolfram’s pseudorandom generator for
stream ciphers is vulnerable to two cryptanalytic attacks, due to the
fact that rule 30 is not 1–resilient and does not have a high nonlinear-
ity. Moreover, we observed by Tarannikov’s bound that none of the
22
3
= 256 local rules of diameter d = 3 are 1–resilient and nonlinear

at the same time, thus limiting the usefulness of elementary CA in
the design of PRNGs for cryptographic purposes.

On the other hand, we also mentioned that the space of binary
local rules of diameter d, or equivalently the set of Boolean functions
of d variables, is composed of 22

d
elements, which makes exhaustive

search unfeasible for any d > 5. The search of Boolean functions with
good cryptographic properties is thus a combinatorial optimization
problem which is interesting both for CA-based cryptography and
for the field of cryptographic Boolean functions in general.

In order to cope with the combinatorial explosion resulting by in-
creasing the number of variables, one can rely on two different ap-
proaches. The first is the use of algebraic constructions, which allows
one to determine infinite classes of Boolean functions with good cryp-
tographic properties from scratch (primary constructions) or to obtain
new functions by modifying known ones (secondary constructions) [30].
On the other hand, the second approach is based on the use of heuris-
tic techniques, about which we gave an overview in Chapter 7. In this
chapter and the next one, we focus on the latter approach.

In particular, the aim of this chapter is to investigate the application
of Particle Swarm Optimization (PSO) to search balanced Boolean
functions with good cryptographic properties. As far as we know,
this is the first time that PSO is applied to this optimization problem.
More precisely, Saber et al. showed the existence of Boolean func-
tions of 9 variables 3–resilient functions with nonlinearity 240 and
degree 5 using a modified version of the PSO algorithm [159]. How-
ever, the details of the modified algorithm are not available in that
correspondence, and moreover the authors state that their PSO vari-
ant is based on Clark et al.’s spectral inversion method mentioned
in Section 7.5 [42]. On the other hand, in this chapter we apply PSO
to the classic truth table representation of Boolean functions, an ap-
proach which, to the best of our knowledge, has never been attempted
before in the relevant literature.

To this end, we propose a modified version of the discrete PSO
algorithm for permutation problems designed by Hu, Eberhart and

83
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Shi [82] by adapting it to the case of
(
2n

2n−1

)
combinations, thus limiting

the search space to balanced Boolean functions. This modification is
implemented by a new update method for the positions of the par-
ticles, which preserves the Hamming weights of the truth tables. To
further improve the nonlinearity and the deviation from correlation
immunity of the candidate solutions, the modified PSO algorithm is
also integrated with the Hill Climbing procedure by Millan, Clark
and Dawson [123]. We address the problem of finding optimal val-
ues for the social and cognitive constants, inertia and maximum ve-
locity parameters in the PSO velocity equation by using two meta-
optimization techniques: Local Unimodal Sampling (LUS) and Con-
tinuous Genetic Algorithms (CGA, also known as Real-Coded GA).
While the former has already been adopted in the literature to tune
the parameters of PSO [134], to our knowledge CGA have never been
applied to this meta-optimization task. We compare the performances
of LUS and CGA in tuning the PSO parameters for the case of Boolean
functions of n = 7 variables with three underlying fitness functions
(each targeting a different set of cryptographic properties), and ob-
serve that CGA achieve better results. We finally employ the parame-
ters optimized through CGA to run the PSO algorithm on the spaces
of Boolean functions of up to n = 12 variables. The results of the ex-
periments are reported and compared with those achieved by other
heuristic methods published in the literature, focusing only on the
best solutions found. We observe that our PSO algorithm is able to
find Boolean functions with similar or better combinations of nonlin-
earity, correlation immunity and propagation criterion than the ones
produced by other methods, especially when the number of variables
is less than 10. It is also found that the properties (especially the non-
linearity) get worse as the number of variables increases, suggesting
that further parameters tuning is required in this case.

The remainder of this chapter is structured as follows. Section 8.1
describes the modified PSO algorithm, focusing on the update method
for the particle positions which preserves their Hamming weights,
and defines the fitness functions employed in the experiments. Sec-
tion 8.2 deals with the parameter tuning problem, briefly introduc-
ing the two meta-optimization techniques used (LUS and CGA) and
then reporting their results. Section 8.3 describes the experiments per-
formed on the PSO algorithm with the CGA-evolved parameters and
reports the results, comparing them with those obtained by other op-
timization methods. Finally, Section 8.4 summarizes the results pre-
sented in this chapter.
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8.1 pso algorithm description

8.1.1 Position Update for Balanced Functions

Using the truth table representation, the discrete PSO heuristic de-
scribed by Kennedy and Eberhart [94] mentioned in Section 6.3 can
be straightforwardly applied to the optimization problem of finding
good cryptographic properties of Boolean functions of n variables. In
this case, the particles would move in the space of m = 2n binary vec-
tors. However, the method proposed in [94] to update the positions of
the particles does not give any control over their Hamming weights,
since each component in the probability vector is sampled indepen-
dently from the others. Hence, there are no guarantees that the gener-
ated truth tables will be balanced, a fundamental property for crypto-
graphic Boolean functions. A possible solution to this drawback is to
add an unbalancedness penalty in the fitness function, an approach
which has been followed in [142] for Genetic Algorithms and Ge-
netic Programming. Our preliminary experiments however showed
that this method is not satisfactory with PSO, since the proportion
of generated balanced functions is really low. Thus, it is necessary to
use an update operator which limits the search space to the set of
balanced Boolean functions.

Hu, Eberhart and Shi [82] adapted the discrete PSO algorithm in
order to apply it to permutation problems. Their update method works
by stochastically swapping the values in the permutation vector which
represents the position. In particular, the component xij of the i-th
particle is changed with probability pij by swapping it with xik,
where k is such that xik = gj. As a consequence, the permutation
represented by vector xi is adjusted by making it more similar to the
global best solution g.

From a combinatorial point of view, the set of balanced Boolean
functions of n variables is isomorphic to the set of

(
2n

2n−1

)
combina-

tions. In fact, a subset of 2n−1 out of 2n objects can be represented
by its characteristic function, which is basically a balanced binary vec-
tor x ∈ Fm2 , where m = 2n. Starting from this observation, we gen-
eralised the update operator proposed by Hu, Eberhart and Shi to
the case of balanced combinations. Given the balanced binary vector
xi ∈ Fm2 and the corresponding probability vector pi ∈ [0, 1]m, for
each coordinate j ∈ {1, · · · ,m} a random number r ∈ [0, 1] is sampled
with uniform probability, and if r is less than pij then a swap is per-
formed as follows. First, the value of xij is compared with that of the
global best in the same index, gj. If the two values are equal, then
no action is taken. Otherwise, the bit in xij is swapped with another
bit xik, where k 6= j is such that xik 6= gk and xik 6= xij. These two
conditions ensure that, while the Hamming weight of the vector is
preserved, its Hamming distance from the global best solution is de-
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Figure 21: Example of application of swap-based position update.

creased by 2. In fact, if only xik 6= gk is verified, swapping the values
of xij and xik yields the same Hamming distance between xi and g.
Since there can be more than one index k which satisfies these two
conditions, our update operator randomly selects one of them. Fig-
ure 21 depicts an example of application of our update operator over
a binary string.

The whole update process is then repeated using the local best bi of
the i-th particle instead of the global best g. In this way, xi is changed
by considering both the social attraction of the whole swarm and the
cognitive attraction of the particle. Moreover, if the current position
of the particle is equal to g, a random pair of bits in xi is swapped in
order to avoid premature convergence, a solution similar to the one
proposed in [82].

Algorithm 1 reports the general pseudocode implementing our po-
sition update operator. The input parameters xi and y are balanced
binary vectors which respectively represent the position of the i-th
particle in the swarm and either the position of the global best g or
local best bi. We assume that xi 6= y. Vector pi is the probability vec-
tor associated to the i-th particle and m = 2n is the length of xi. The
procedure Rand-Unif() samples a random number r ∈ [0, 1] with
uniform probability, which is used to determine whether a swap is
required by comparing it to pij. The subroutine Find-Cand-Swap(),
whose details are omitted, performs the search of a suitable index for
the swap, returning 0 if it cannot find one.

Algorithm 1 Update-Bal-Pos(xi, y, pi, m)

for j := 1 to m do
r := Rand-Unif()
if (r < pij AND xij 6= yj) then
k := Find-Cand-Swap(xi, j)
if (k 6= 0) then

Swap xij with xik
end if

end if
end for
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8.1.2 Fitness Functions

We tested our Particle Swarm Optimizer with three fitness functions,
all of which have to be maximized. The three cryptographic proper-
ties which we considered for optimization are nonlinearity, correla-
tion immunity and Strict Avalanche Criterion (SAC, i. e. the propaga-
tion criterion PC(1)).

While we already have a numerical formula to compute the non-
linearity of a Boolean function (see Equation (58) in Section 5.2), for
correlation immunity and propagation criteria orders we only gave
binary definitions (i. e. either a function is t–th order correlation im-
mune or PC(l), or it is not). For these reason, we adopted two deviation
measures originally introduced in [123] in order to better drive the op-
timization process of PSO through the fitness function. We formalize
these measures in the following definition.

Definition 30. The deviation from t-th order correlation immunity
and propagation criterion PC(l) of a Boolean function f : Fn2 → F2 are
respectively defined as

cidevt(f) = max{|Wf(ω)| : ω ∈ Fn2 , 1 6 wH(ω) 6 t} (86)

pcdevl(f) = max{|r̂(s)| : s ∈ Fn2 , 1 6 wh(s) 6 l} . (87)

In other words, cidevt(f) and pcdevl(f) corresponds to the maxi-
mum absolute values of the Walsh transform and the autocorrelation
function restricted only to the vectors respectively having Hamming
weight at most t and l.

The first fitness function fit1 considers the three properties of non-
linearity, deviation from first order correlation immunity and devia-
tion from the SAC:

fit1(f) = Nl(f) −
cidev1(f)

4
−
pcdev1(f)

8
.

Since the values of the Walsh and autocorrelation spectra of a bal-
anced Boolean function are respectively multiples of 4 and 8, the two
deviations in fit1 are normalized by these two factors. This fitness
function closely resembles those defined in [123] for Genetic Algo-
rithms, where it is proposed either to minimize the normalized devia-
tion of the Boolean function, defined as the maximum value between
cidevt(f)/4 and pcdevl(f)/8, or to maximize the difference between
nonlinearity and cidevt(f). We adopted the latter as our second fit-
ness function, with t = 2:

fit2(f) = Nl(f) − cidev2(f) .

Finally, our third fitness function targets the nonlinearity and the ab-
solute indicator of Boolean functions, two criteria which have been
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optimized together by several heuristic methods proposed in the lit-
erature [43, 2, 142]:

fit3(f) = Nl(f) −ACmax(f) .

It can be observed that none of the above fitness functions takes into
account the algebraic degree, as opposed for example to the ones
employed in [142]. The motivation for this choice is twofold. First,
algebraic degree is a property which is easier to optimize than non-
linearity or correlation immunity, the reason being that as n → ∞,
the algebraic degree of a random Boolean function of n variables is
almost surely n − 1 [30]. Hence, heuristic methods using algebraic
degree in their fitness functions are likely to find Boolean functions
having maximum degree but which are not CI(t) or PC(l). Second,
as we show in Section 8.3.2, our PSO algorithm is able to discover
Boolean functions reaching Siegenthaler’s bound, despite the fact that
our fitness functions do not consider the algebraic degree.

8.1.3 Overall PSO Algorithm

To further improve the performance of our Particle Swarm Optimizer,
we combined it with the Hill Climbing (HC) algorithm designed by
Millan, Clark and Dawson [123]. This technique works by swapping a
pair of bits in the truth table of a balanced Boolean function in order
to increase its nonlinearity and decrease its deviation from CI(k). In
what follows, we denote by Nl-Ci(k)-Hc the HC procedure which in-
creases nonlinearity while decreasing cidevk(f), while Nl-Hc stands
for the HC targeted only at increasing nonlinearity. The reader is re-
ferred to [123] for further details about the general HC method.

The type of Hill Climbing performed by our PSO algorithm de-
pends on the underlying fitness function: in the case of fit1 and fit2
respectively Nl-Ci(1)-Hc and Nl-Ci(2)-Hc are applied, while for fit3
Nl-Hc is used.

We now summarise the overall procedure of our discrete Particle
Swarm Optimizer:

1. Given a swarm of size N, for all i ∈ {1, · · · ,N} initialize the i-th
particle by randomly creating a balanced binary vector xi ∈ Fm2
and a probability vector pi ∈ [0, 1]m, where m = 2n and n is
the number of variables of the Boolean functions.

2. Given k ∈ {1, 2, 3}, for all i ∈ N compute the fitness value fitk
of solution xi found by particle i.

3. Update the global best solution g and the local best solutions
bi, for all i ∈ {1, · · · ,N}.

4. For all i ∈ {1, · · · ,N}, update the probability vector vi using the
PSO velocity recurrence, and then normalize each coordinate
through the logistic function.
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5. For all i ∈ {1, · · · ,N}, update the position vector xi. If xi = g

or xi = bi, swap a random pair of bits in xi, otherwise in-
voke Update-Bal-Pos(xi, g, pi, m) and then apply procedure
Update-Bal-Pos(xi, bi, pi, m).

6. Depending on the fitness function, apply to all particles the hill
climbing optimization step Nl-Ci(k)-Hc or Nl-Hc described
in [123].

7. If the maximum number of iterations has been reached, output
the global best solution g, otherwise return to step 2.

8.2 parameters tuning

8.2.1 Problem Statement

It has been widely shown in the literature that the choice of the veloc-
ity parameters greatly influences the performance of PSO [165, 182].
Instead of searching by trial-and-error a good combination of param-
eters for our PSO algorithm, we tackled the problem in a systematic
way using a meta-optimization approach.

The main idea behind meta-optimization is to consider the selec-
tion of the parameters governing an optimizer O as an optimization
problem itself. An overlaying meta-optimizer M is then applied to ex-
plore the parameters space, using a meta-fitness function to assess
the performance of O under a given combination of parameters.

A candidate solution for the meta-optimization problem of our dis-
crete PSO is thus a vector (w,ϕ,ψ, vmax) ∈ R4 which specifies the
four parameters to be used in the velocity equation. Considering the
observations reported in [94], we chose to limit the value of each
parameter in the interval [0, 10]. For the choice of the overlaying meta-
optimizer, we decided to test Local Unimodal Sampling (LUS) and Con-
tinuous Genetic Algorithms (CGA).

8.2.2 Local Unimodal Sampling

LUS is a local search technique which iteratively improves the cur-
rent solution x by sampling with uniform probability a point y in its
neighborhood N(x). Considering a maximization problem, if the fit-
ness value of y is higher than that of x, the current solution is set to
y. Otherwise, the size of N(x) is decreased by a discount factor β, the
rationale being that by sampling with a constant-size neighborhood
the algorithm is not guaranteed to converge to a local optimum. The
sampling process is then repeated until a termination criterion is met,
which is usually a minimum threshold τ for the size of the neigh-
borhood. Pedersen and Chipperfield [134] employed LUS to tune the
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velocity parameters of a Particle Swarm Optimizer aimed at training
the weights of artificial neural networks.

8.2.3 Continuous Genetic Algorithms

CGA are a generalization of Genetic Algorithms to continuous opti-
mization problems, which represent the chromosome of a candidate
solution using a vector of real numbers in place of a binary string.
To our knowledge, CGA have never been applied to tune PSO pa-
rameters. In the context of our meta-optimization problem, we em-
ployed the flat operator introduced by Radcliffe [151] as the crossover
method of our CGA, while for the mutation procedure we relied on
the simple random operator proposed by Michalewicz [120]. The re-
production operator is implemented using the roulette wheel method,
which stochastically selects an individual with a probability propor-
tional to its fitness. Specifically, given a population of P chromosomes,
the next generation is created as follows. Using the roulette wheel
method, P/2 pairs of chromosomes are formed, and for each pair
(x,y) an offspring of two chromosomes (c1, c2) is created by apply-
ing with probability pc the flat crossover operator (if it is not applied,
the chromosome pair (x,y) is simply reproduced unaltered). The ran-
dom mutation operator is then employed with probability pm to each
locus of the chromosomes in the offspring. We also used an elitist
strategy to ensure that the best individual is preserved in the next
generation.

8.2.4 Meta-Fitness Function

The meta-fitness function, used to drive the search for a good combina-
tion of PSO parameters, is clearly the most intensive step from a com-
putational point of view. In fact, given a vector x ∈ R4 several runs
of our discrete PSO algorithm must be performed, in order to have a
statistically significant measure of its performance under the param-
eters specified by x. In particular, we chose to test the case of bal-
anced Boolean functions defined on n = 7 variables, using a swarm
of N = 50 particles evolved for I = 100 iterations. The PSO algorithm
is executed for R = 30 independent runs, and at each run the fitness
of the global best solution g at the last iteration is recorded. Accord-
ing to Pedersen and Chipperfield [134], the average fitness value µg
of the global best over all R optimization runs should be used as the
meta-fitness function. Since from a cryptographic point of view we
are interested in Boolean functions satisfying the best possible prop-
erties, we also considered the maximum fitness value maxg achieved
by the global best over R runs. It is known that for Boolean functions
of 7 variables the maximum value of nonlinearity isNlmax = 56 [132],
which corresponds to the quadratic bound mentioned in Section 5.2.3.



8.2 parameters tuning 91

Hence, the maximum value achievable by maxg is 56 with respect to
fitness functions fit1 and fit2. No function of 7 variables having ab-
solute indicator ACmax < 16 has ever been reported in the literature,
and it has been conjectured that 16 is the best lower bound [199]. As
a consequence, under the current state of knowledge the maximum
value reachable by maxg with respect to fit3 is 56− 16 = 40.

Given a parameter vector x ∈ R4, our meta-fitness function can
thus be defined as

mfitk(x) = µg +maxg ,

where k ∈ {1, 2, 3} indicates the fitness function fitk which is being
optimized by the PSO algorithm.

8.2.5 Meta-Optimization Results

Following the methodology described in [134], for each underlying
fitness function fitk we performed M = 6 runs to assess the per-
formances of both LUS and CGA, thus carrying out a total of 36
meta-optimization experiments. In the case of LUS we adopted the
value β = 0.33 for the discount factor and τ = 0.001 for the minimum
threshold of the neighborhood size. On the other hand, for the CGA
meta-optimizer we used a population of P = 20 individuals evolved
for G = 100 generations, setting the crossover and mutation probabil-
ity respectively to pc = 0.95 and pm = 0.05.

Table 1 compares the best parameters combinations found by LUS
and CGA over the 6 meta-optimization runs for each fitness function.

Table 1: Comparison of Best PSO Parameters

fitk Method µg maxg mfitk(f)

fit1
LUS 52.7 56 108.7

CGA 53 56 109

fit2
LUS 46 52 98

CGA 46.27 56 102.27

fit3
LUS 30.87 40 70.86

CGA 38.4 40 78.4

It can be observed that CGA outperforms LUS with respect to
all three fitness functions. While in the case of fit1 there is only a
slight difference concerning the average fitness values µg, for fit2
the best parameter combination found by LUS did not allow the Par-
ticle Swarm Optimizer to reach the maximum fitness value of 56,
whereas for fit3 the mean fitness µg of LUS is remarkably lower than
that achieved by CGA. However, the higher performance of CGA
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is associated with a higher computational cost, since Genetic Algo-
rithms are a population-based heuristic. As a matter of fact, in our
experimental setting a single CGA meta-optimization run required
P · G · R ·N · I = 3.0 · 108 fitness evaluations, which took almost 17
hours to complete on a 64-bit Linux machine, with a Core i5 archi-
tecture and a CPU running at 2.8 GHz. On the other hand, with the
selected β and τ parameters LUS performed an average of 4971 fit-
ness evaluations per single meta-optimization run before reaching
the minimum threshold, roughly corresponding to 1.3 hours of CPU
time on the same machine.

8.3 pso experiments

8.3.1 Experimental Setting

We now describe the experiments performed with our Particle Swarm
Optimizer. Regarding the velocity parameters, we adopted the best
combination evolved by the CGA meta-optimizer, since it achieved
an higher meta-fitness value with respect to the ones obtained by
LUS. The values of the selected parameters for each fitness function
are reported in Table 2.

Table 2: CGA-Evolved PSO Parameters

fitk w ϕ ψ vmax

fit1 0.5067 2.8751 1.3587 3.5008

fit2 0.7614 2.0073 2.0273 2.7183

fit3 0.2828 2.1824 0.8951 4.2639

We applied our PSO algorithm on the spaces of balanced Boolean
functions from n = 7 to n = 12 variables. The number of particles
and iterations were set to P = 200 and I = 400 respectively. Finally,
for each value of n and fitness function fitk, we carried out R = 100

PSO runs.

8.3.2 Best Solutions Found

Tables 3 to 5 show for each fitness function the cryptographic proper-
ties of the best balanced Boolean functions discovered by PSO, that is,
the properties of the global best solution g which scored the highest
fitness value among all the R = 100 optimization runs. We reported
the algebraic degree as well, even if we did not adopt this criterion in
any of the three fitness functions. As a general observation, one can
notice in Tables 3 and 4 that the Boolean functions discovered by PSO
satisfying CI(k) always have an algebraic degree of n− 1−k, which is
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Table 3: Best Boolean Functions Found, fit1

Property 7 8 9 10 11 12

Nl 56 112 236 480 972 1972

deg 5 6 7 8 9 10

cidev1 0 0 0 0 0 0

pcdev1 0 0 8 8 8 8

Table 4: Best Boolean Functions Found, fit2

Property 7 8 9 10 11 12

Nl 56 112 232 476 972 1972

deg 4 6 7 8 9 10

cidev1 0 8 8 8 8 16

cidev2 0 8 8 8 8 16

the maximum allowed by Siegenthaler’s bound. Hence, these results
empirically confirm that it is not necessary to consider the algebraic
degree in the definition of the PSO fitness functions, as we mentioned
in Section 8.1.2. Looking in particular at Table 3, we can see that our

Table 5: Best Boolean Functions Found, fit3

Property 7 8 9 10 11 12

Nl 56 116 236 480 976 1972

deg 5 6 7 9 10 11

ACmax 16 32 48 80 128 208

PSO algorithm scales fairly well to higher numbers of variables with
respect to the optimization of cidev1, even if the CGA parameters
were evolved only for the case n = 7. As a matter of fact, all the best
Boolean functions found by PSO with fit1 are first order correlation
immune (and thus 1-resilient, since they are also balanced). Moreover,
for n = 7 and n = 8 they also satisfy the Strict Avalanche Criterion
PC(1), while for higher values of n they reach the minimum devia-
tion pcdev1 = 8. Nevertheless, our Particle Swarm Optimizer is able
to find Boolean functions of up to n = 11 variables which satisfy both
CI(1) and PC(1), even if their nonlinearity is lower (for a detailed
comparison with other heuristic methods, see Section 8.3.3).

On the other hand, Table 4 shows that by using fitness function fit2
the Particle Swarm Optimizer does not perform well when the num-
ber of variables is higher than 7. In fact, 2-resilient functions are found
only for n = 7, while in all other cases the deviation from CI(2) is at
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least 8. However, it is worth noticing that the best solution of 7 vari-
ables, besides satisfying with equality Siegenthaler’s bound, achieves
Tarannikov’s bound on nonlinearity as well, since 56 = 27−1 − 22+1.
Hence, as mentioned in Section 5.2.6, this is a (7, 2, 4, 56) plateaued
Boolean function.

Finally, another different behaviour of the PSO algorithm can be
observed using fitness function fit3. Indeed, one can see from Table 5

that as the number of variables grows the absolute indicator of the
best solution gets worse. Nonetheless, for n = 8 and n = 11 the
nonlinearity values achieved with fit3 are greater than those obtained
using fit1, while they are equal in all other cases.

8.3.3 Comparison with other Heuristics

We now compare the results of our Particle Swarm Optimizer with
those obtained by other heuristic methods. Due to the great hetero-
geneity in the experimental settings and the parameters adopted in
the relevant literature, a comprehensive comparison is not possible.
For this reason, in Tables 6 to 9 we summarise the results separately
for each class of cryptographically significant balanced Boolean func-
tions discovered by the PSO algorithm. A dash symbol in the tables
indicates that the corresponding data is not available, either because
the heuristic failed to discover Boolean functions with those crypto-
graphic properties or because that specific case was not considered.

Table 6 reports the maximum nonlinearity achieved by CI(1) func-
tions. In this case, we used Genetic Algorithms (GA) [123], Directed
Search Algorithm (DSA) [131] and Simulated Annealing (SA) [43] for
the comparison. It can be seen that for n = 7 variables our PSO algo-
rithm manages to find 1-resilient functions having maximum nonlin-
earity 56, while SA stops at 52. For 8 6 n 6 12, the results achieved by
PSO are globally similar to those of the other optimization methods,
except in the case of n = 11 variables where it reaches a maximum
nonlinearity of 972 instead of 976. In particular, our PSO outperforms
both Genetic Algorithms and Simulated Annealing for n = 9 and
n = 10 variables.

Table 6: Maximum Nonlinearity Achieved by CI(1) Functions

Method 7 8 9 10 11 12

GA [123] − 112 232 476 976 1972

DSA [131] − 112 236 480 976 −

SA [43] 52 112 232 476 − −

PSO 56 112 236 480 972 1972
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In Table 7 the maximum nonlinearity of balanced Boolean functions
which satisfy both CI(1) and PC(1) is considered. By comparing the
results achieved by PSO and SA, we can see that also in this case
the former reaches a higher value of nonlinearity for n = 7 variables,
while for n = 8 it is equal to SA. To our knowledge, no heuristic
method has ever been applied to discover functions satisfying both
CI(1) and PC(1) of n > 8 variables. However, our PSO algorithm
managed to find this kind of functions for up to n = 11 variables,
even though for n > 8 they were not the best solutions among all the
optimization runs with respect to fitness function fit1. The nonlinear-
ity of these functions is reported in Table 7 for completeness.

Table 7: Maximum Nonlinearity Achieved by CI(1) and PC(1) functions

Method 7 8 9 10 11 12

SA [43] 52 112 − − − −

PSO 56 112 232 476 968 −

Table 8 reports the maximum nonlinearity achieved by Boolean
functions with minimal deviation from second order correlation im-
munity. In particular, the performances of PSO and GA are compared,
since in this case we used the same fitness function defined in [123].
As we already discussed in Section 8.3.2, we can observe that our PSO
algorithm does not generalize well to higher numbers of variables. As
a matter of fact, PSO manages to reach the same results achieved by
GA only for n = 8 variables, while in all other cases either the nonlin-
earity or the deviation from CI(2) is worse. We remark however that
for n = 7 the 2-resilient functions found by PSO have the same value
of nonlinearity as the ones discovered by SA in [43].

Table 8: Comparison of Nl and cidev2 Values

Method 7 8 9 10 11 12

GA [123]
Nl − 112 232 480 976 1972

cidev2 − 4 8 8 8 8

PSO
Nl 56 112 232 476 972 1972

cidev2 0 8 8 8 8 16

Similar considerations can be made for the comparisons in Table 9,
which reports the maximum nonlinearity reached by Boolean func-
tions having minimal absolute indicator. The benchmark heuristics in
this case are Multi-Objective Random Bit Climber (RBC) [2], Genetic
Programming (GP) [142] and again SA. It can be observed that for
n = 7 variables PSO obtained the same results as RBC and SA, while
for n = 8 it discovered the same combination of Nl and ACmax fea-
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Table 9: Comparison of Nl and ACmax Values

Method 7 8 9 10 11 12

RBC [2]
Nl 56 116 − − − −

ACmax 16 24 − − − −

GP [142]
Nl − 116 − − − −

ACmax − 32 − − − −

SA [43]
Nl 56 116 238 484 982 1986

ACmax 16 24 40 56 88 128

PSO Nl 56 116 236 480 976 1972

ACmax 16 32 48 80 128 208

tured by GP. However, for n > 8 our PSO scored worse values than
SA with respect to both nonlinearity and absolute indicator.

8.4 conclusions

In this chapter, we applied a new PSO algorithm to search for bal-
anced Boolean functions from n = 7 to n = 12 variables with good
cryptographic properties. The performed experiments lead us to con-
clude that our PSO is able to generate Boolean functions having sim-
ilar or better combinations of nonlinearity, first order correlation im-
munity and Strict Avalanche Criterion than those obtained by other
optimization methods, while it does not perform well when it mini-
mizes deviation from CI(2) or the absolute indicator. The only notable
exception is that the best solution found by PSO under fit2 for 7 vari-
ables is a (7, 2, 4, 56) plateaued Boolean function, which thus satisfies
with equality both Siegenthaler’s and Tarannikov’s bounds.

The reason of the poor performances of PSO with the second and
third fitness functions could lie in the fact that the velocity parameters
were evolved only for the case of n = 7 variables. This suggests that
further parameters tuning is required for n > 8. Considering the high
computational cost of our meta-fitness function, it may be preferable
to use the LUS meta-optimizer for this task instead of CGA.
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E V O LV I N G P L AT E A U E D B O O L E A N F U N C T I O N S B Y
G E N E T I C A L G O R I T H M S

An interesting approach for designing Boolean functions with good
cryptographic properties is spectral inversion, which we overviewed
in Chapter 7. Originally introduced by Clark et al. [42], this method
uses a dual representation of the optimization problem where the
candidate solutions are Walsh spectra instead of truth tables encoded
by bitstrings. The advantage of this representation is that several in-
teresting cryptographic properties of Boolean functions can be easily
characterized over the Walsh spectrum, such as resiliency and non-
linearity. The problem is that applying the inverse Walsh transform
to a generic spectrum that satisfies these properties does not yield a
Boolean function in general, but rather a pseudoboolean function from
Fn2 to R. Thence, the objective of this dual optimization problem
is to minimize the deviation of the candidate pseudoboolean func-
tions. The optimal solutions are thus Boolean functions f : Fn2 → F2

which already satisfy by design the desired cryptographic properties
encoded by their Walsh spectra.

The goal of this chapter is to investigate the application of permuta-
tion based Genetic Algorithms for evolving cryptographic Boolean func-
tions by spectral inversion, a method which was conjectured to be
more efficient than Simulated Annealing in [42].

In particular, we design a GA in which the chromosomes of the
evolved solutions are Walsh spectra of plateaued pseudoboolean func-
tions. The motivation for this choice is twofold. First, the spectra of
plateaued pseudoboolean functions are three-valued, hence they have
an easy combinatorial characterization. Moreover, plateaued Boolean
functions are optimal with respect to both Siegenthaler’s and Taran-
nikov’s bounds on the maximum achievable algebraic degree and
nonlinearity for a given resiliency order. Since our GA manipulates
permutations of repeated values, we propose a crossover and a muta-
tion operator which ensure that the modified genes in the offspring
correspond to different values in the Walsh spectrum.

Let us recall that, as the number of Boolean functions of n vari-
ables is 22

n
, exhaustively searching for plateaued Boolean functions

(or, more in general, cryptographically relevant Boolean functions)
becomes unfeasible for n > 5. For this reason, we assess the perfor-
mance of our GA in generating plateaued Boolean functions of n = 6

and n = 7 variables. The results show that our GA outperforms Sim-
ulated Annealing in finding plateaued Boolean functions of n = 6

variables, while for n = 7 SA still yields better average fitness val-

97



98 evolving plateaued boolean functions by genetic algorithms

ues, even if neither technique is able to generate a plateaued Boolean
function in this case.

The remainder of this chapter is organized as follows. Section 9.1
describes our permutation-based Genetic Algorithm, defining the so-
lution encoding, the fitness function and the adopted genetic opera-
tors. Section 9.2 presents the results obtained by our GA on the opti-
mization of pseudoboolean plateaued functions for n = 6 and n = 7

variables, and compares them with the results achieved by the SA al-
gorithm described in [42]. Finally, Section 9.3 recaps the contributions
of this chapter.

9.1 genetic algorithm description

9.1.1 Chromosomes Encoding

The main idea underlying the chromosome encoding of our GA is to
represent a candidate solution as a permutation of a Walsh spectrum
S ∈ R2

n
. This spectral inversion approach to heuristic design of crypto-

graphic Boolean functions was originally introduced by Clark, Jacob,
Maitra and Stanica in [42].

As a first observation, notice that representing the chromosome as
a permutation of the spectrum positions would allow us to employ
classic permutation-based GA, such as those designed for the Trav-
eling Salesman Problem [71]. However, the Walsh spectrum is gen-
erally composed of repeated values. This means that a position-based
encoding would make the GA search into a space which is much big-
ger than what is actually needed, since several swaps performed by
permutation-based genetic operators would map to the same values
in the Walsh spectrum. Hence, we represent our candidate solution
directly by its Walsh spectrum values, which is equivalent to perform-
ing permutations over a multiset M.

Recall from Section 5.1 that, by Parseval’s identity, the sum of the
squared Walsh coefficients of any n-variable Boolean function equals
22n. Moreover, the values occurring in Equation (54) of the Walsh
transform are all integers, hence we can start to model a candidate
solution as a vector of 2n integers which sum to 22n. Additionally, we
are interested only in plateaued Boolean functions, so that each Walsh
coefficient can only take its value in the set V = {−L(f), 0,+L(f)},
where the spectral radius is defined as L(f) = 2r, with dn2 e 6 r 6 n.
We thus need to determine the multiplicities of the elements of V in
order to characterize the multiset M required to build the spectrum.
Using the approach sketched in [42], these multiplicities can be de-
rived from the following observations:

(1) Since a plateaued Boolean function is t–resilient with t = r− 2,
all positions which correspond to input vectors having at most
t nonzero coordinates must be set to zero. Therefore, in order
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to meet t–resiliency there must be at least #0res =
∑t
i=0

(
n
i

)
zero-valued positions in the spectrum.

(2) Each nonzero position in the spectrum contributes by a term of
(±2r)2 = 22r in Parseval’s identity. Thus, the total number of
nonzero positions in the spectrum is given by #± 2r = 22n

22r
.

(3) From (1) and (2) we deduce that the number of additional po-
sitions set to zero other than the ones for satisfying t–resiliency
is #0add = 2n − ((#± 2r) + (#0res))

(4) Setting f̂(0) = 1 yields that
∑
ω∈Fn2

Wf(ω) = 2n. Notice that this
is an arbitrary assumption, since we are considering only those
functions mapping the null vector to 0. However, this does not
bias the final search space, since by setting f̂(0) = −1 one would
always get plateaued functions having the same profile.

(5) By combining observations (2) and (4), we finally obtain the
number of positions to be set to −2r and +2r by solving the
following system:(# + 2r) + (# − 2r) = 22n

22r

(# + 2r) − (# − 2r) = 2n

which gives # + 2r = 2n−1(2n−2r + 1)

# − 2r = 2n−1(2n−2r − 1)

In what follows, we denote by x[i] the element at position i of vec-
tor x. Since there are #0res positions in the spectrum which are set to
zero for the resiliency constraint, we can restrict our representation
only to those positions whose binary expansions have more than t
nonzero coordinates. Hence, let us consider the restricted ordered spec-
trum defined as Sro = (z1, · · · , zl) having length l = 2n − #0res and
whose first #0add positions are set to zero, the next # − 2r are set to
−2r and the final # + 2r are set to +2r. Additionally, let us denote
by Pr = {j1, · · · , jl} the set of positions ji such that wH(bin(ji)) > t,
where wH(·) is the Hamming weight of the binary string passed as
argument. Clearly, by permuting the components in Sro the result-
ing spectrum maintains the desired cryptographic properties, since
the multiplicities #0add, # − 2r and # + 2r are permutation invariant.
However, we are interested only in those permutations which swap
different values in the restricted spectrum. To address this problem,
we employ the following equivalence relation ∼p on the symmetric
group Sl: given two permutations π1,π2 ∈ Sl, define π1 ∼p π2 if and
only if zπ1(i) = zπ2(i) for all i ∈ {1, · · · , l}, where zπ1(i), zπ2(i) are
components of Sro. We can thus characterize the permutations which
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map different values in the restricted spectrum as the representatives
of the equivalence classes in the quotient set Sl/∼p. With a little abuse
of notation, in what follows we write π ∈ Sl/∼p to directly denote the
representative permutation π instead of the equivalence class [π]∼p .

The chromosome which encodes a candidate solution evolved by our
GA is a permutation c = (zπ(1), · · · , zπ(l)) of the restricted ordered
spectrum Sro, where π ∈ Sl/∼p. The decoding of chromosome c which
yields the corresponding pseudoboolean function f : Fn2 → R, de-
noted by dec(c), is carried out using the following procedure:

1. Initialize the Walsh spectrum Sf to the null vector 0 ∈ R2
n

.

2. For all i ∈ {1, · · · , l} set Sf[ji] = c[i], where ji = Pr[i].

3. Perform spectral inversion: apply to Sf the inverse Walsh trans-
form defined in Equation (53) in order to obtain the polar form
f̂ of function f.

9.1.2 Objective and Fitness Functions

In order to measure how good a pseudoboolean function is, the au-
thors of [42] proposed an objective function based on the distance
from the nearest Boolean function. Formally, given the polar form f̂ of
f : Fn2 → R, the polar truth table of the nearest Boolean function
b̂ : Fn2 → {−1,+1} is obtained for all x ∈ Fn2 as follows:

b̂(x) =


+1 , if f̂(x) > 0

−1 , if f̂(x) < 0

+1 or − 1 (chosen randomly) , if f̂(x) = 0

(88)

Given a chromosome c and the corresponding pseudoboolean func-
tion f = dec(c), the objective function to be minimized proposed in [42]
is defined as:

obj(f) =
∑
x∈Fn2

(f̂(x) − b̂(x))2 . (89)

This objective function measures the deviation of f from being a true
Boolean function. Hence, an optimal solution to our problem is en-
coded by a chromosome c such that obj(dec(c)) = 0. Given how
we designed the Walsh spectrum, such a solution corresponds to a
plateaued Boolean function.

The fitness function fit(·) maximized by our GA is simply defined
as the opposite of the objective function (89), that is, fit(f) = −obj(f).

9.1.3 Genetic Operators

Considering the chromosome encoding adopted for the candidate so-
lutions, an appropriate crossover operator for our GA has to preserve
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the multiplicities #0add, # − 2r and # + 2r of the restricted spectrum,
so that Parseval’s identity and the other properties of plateaued func-
tions are maintained. To this end, we designed a crossover operator
loosely inspired by the one proposed in [123].

The main idea is to work at the loci level, and to use counters in
order to keep track of the multiplicities of the three values 0, −2r

and +2r inserted in the offspring during the crossover phase. More
precisely, given two parent chromosomes c1 and c2, our crossover
operator builds an offspring chromosome o as follows:

1. Initialize to zero the counters cnt_z, cnt_n and cnt_p respec-
tively associated to the spectral values 0, −2r and +2r.

2. For all i ∈ {1, · · · , l} such that c1[i] = c2[i], copy either c1[i] or
c2[i] in o[i]. Depending on the copied value, update the relevant
counter.

3. For all i ∈ {1, · · · , l} such that c1[i] 6= c2[i], determine the value
to be copied in o[i] as follows:

a) If all three counters are below their maximum values (that
is, cnt_z < #0add, cnt_n < #− 2r and cnt_p < #+ 2r), ran-
domly select c1[i] or c2[i] with probability 1/2, and copy it
in o[i]. Depending on the copied value, update the relevant
counter.

b) If one of the three counters reached its maximum value,
check if either c1[i] or c2[i] is equal to the value associated
to that counter. If so, copy the gene of the other parent in
o[i]. Otherwise, randomly select c1[i] or c2[i] with proba-
bility 1/2, and copy it in o[i]. In both cases, depending on
the copied value, update the relevant counter.

c) If two out of three counters reached their respective max-
imum values, copy the value associated to the remaining
counter in o[i].

4. Return the offspring chromosome o.

Concerning the mutation operator, we adopted a simple swap pro-
cedure which checks that the swapped values are different. In partic-
ular, let us assume that c is a chromosome of length l and that pos0,
pos−2r and pos+2r are the vectors specifying the positions of the ze-
ros, −2rs and +2rs in c, respectively. Then, our mutation operator is
applied to each locus i ∈ {1, · · · , l} of c with probability pµ ∈ [0, 1],
and it performs the following steps:

1. Setting v = c[i], randomly select with probability 1/2 one of the
two positions vectors post or posu, where t 6= v and u 6= v.

2. Denoting by poss the selected positions vector, randomly draw
with uniform probability an index j of poss.
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3. Swap the values c[i] and c[poss[j]].

4. Swap the occurrence of i in posv with poss[j].

Finally, for the selection operators we tested both roulette wheel selec-
tion and deterministic tournament selection. In roulette wheel selection,
each candidate is selected with probability proportional to its fitness.
Tournament selections, on the other hand, chooses the best individual
from a set of T individuals randomly drawn from the population.

9.1.4 Overall GA Procedure

We can now summarize the overall procedure of our genetic algo-
rithm. The input parameters are the number of variables n and the
index r > n

2 of the target plateaued functions, the size of the popu-
lation N (where N is even), the number of generations G to be per-
formed, the crossover and mutation probabilities pχ and pµ, and the
selection operator S.

1. Initialization: Set the profile (n, r− 2,n− r− 3, 2n−1 − 2r−1) of
the target functions and the multiplicities #0res, #0add, # − 2r

and # + 2r of the Walsh spectrum.

2. Create Population: For i ∈ {1, · · · ,N}, create a chromosome c =

(zπ(1), · · · , zπ(l)) of length l = 2n − #0res, where π is a random
permutation of Sl/∼p, and add it to the current population P.

3. Initial Fitness Evaluation: For each chromosome c ∈ P, decode
its respective pseudoboolean function f = dec(c) and compute
the fitness value fit(f) = −obj(f), where obj(·) is defined as in
Equation (89). Set the best solution B to the individual scoring
the highest fitness value.

4. Selection Phase: Apply N times the selection operator S on the
current population P, thus creating a candidate population C of
(eventually repeated) N chromosomes which will produce the
next generation.

5. Crossover Phase: For all i ∈ {1, 3, · · · ,N − 1}, sample a random
number r ∈ [0, 1]. If r < pχ, apply the crossover operator twice to
the pair ci, ci+1 ∈ C, and copy the two offspring chromosomes
(oi,oi+1) in the new population N. Otherwise, set oi = ci and
oi+1 = ci+1, and copy them in N.

6. Mutation Phase: For each chromosome o ∈ N and j ∈ {1, · · · , l},
sample a random number r ∈ [0, 1]. If r < pµ, apply the muta-
tion operator to o[j].

7. Fitness Evaluation: For each chromosome o ∈ N, compute the
fitness value of f = dec(o), and find the current best individual
Bc having the highest fitness value in N.
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8. Elitism: If fit(Bc) 6 fit(B), replace a random individual in N

with B. Otherwise, update the best solution found so far by
setting B = Bc.

9. Population Update: Set the current population P equal to N.

10. Termination Condition: If the best solution found is optimal (i. e.
obj(B) = 0) or the maximum number of generations G has been
reached, output the best solution B found by the GA. Otherwise,
return to Step 4.

9.2 ga experiments

9.2.1 Experimental Setting

We tested our GA on the spaces of pseudoboolean functions of n = 6

and n = 7 variables, adopting in both cases index r = 4. This is
the smallest integer value, yielding maximum nonlinearity, such that
the resulting functions are not bent for n = 6. Table 10 reports the
profiles and the multiplicities of the spectrum values for the corre-
sponding plateaued Boolean functions. We limited our experimen-

Table 10: Cryptographic profiles and spectral multiplicities for plateaued
functions of n = 6 and n = 7 variables

(n,m,d,nl) #0res #0add # − 2r # + 2r

(6, 2, 3, 24) 22 26 6 10

(7, 2, 4, 56) 29 35 28 36

tation to these two problem instances in order to compare our GA
with Simulated Annealing. As a matter of fact, the basic SA algo-
rithm described in [42] was able to find only 5 plateaued functions
with profile (7, 2, 4, 56) out of 500 optimization runs, and a change of
basis procedure [43] had to be applied in order to convert some gener-
ated sub-optimal solutions into actual Boolean functions. Further, for
n = 6 only bent functions were considered, but not generic plateaued
functions. On the other hand, for higher number of variables the basic
version of SA always failed to generate Boolean functions, hence the
authors of [42] restricted their search space to the family of rotation
symmetric Boolean functions, which we did not consider in this chapter.

For each value of n and selection operator considered, we per-
formed R = 500 independent runs of our GA, using a population of
N = 30 chromosomes evolved for G = 500000 generations. Thus, each
GA run consisted of F = 1.5 · 107 fitness evaluations. The crossover
and mutation probabilities were respectively set to pχ = 0.95 and
pµ = 0.05, while in the case where tournament selection was used we
adopted a tournament size of k = 3.
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Table 11: Statistics of the best solutions found by GA and SA

n Stat GA(RWS) GA(DTS) SA(T1,α1) SA(T2,α2)

6

avgo 14.08 13.02 19.01 19.03

mino 0 0 0 0

maxo 16 16 28 28

stdo 5.21 6.23 4.89 4.81

#opt 60 93 11 10

avgt 83.3 79.2 79.1 79.4

7

avgo 53.44 52.6 45.09 44.85

mino 47 44 32 27

maxo 58 59 63 57

stdo 2.40 2.77 4.39 4.18

#opt 0 0 0 0

avgt 204.2 204.5 180.3 180.2

Concerning the comparison with Simulated Annealing, we imple-
mented the algorithm described in [42] and tested it for n = 6 and
n = 7 by setting the number of inner loops MaxIL and moves within
an inner loop MIL respectively to MaxIL = 5000 and MIL = 3000,
thus yielding the same number F = 1.5 · 107 of fitness evaluations per-
formed by our GA. Since the authors of [42] did not mention the ini-
tial temperature which they adopted for their experiments, we tested
the values T1 = 100 and T2 = 1000 with cooling parameter respec-
tively set to α1 = 0.95 and α2 = 0.99. As in the case of our GA, for
each combination of parameters (n, T0,α) we performed 500 runs of
the SA algorithm.

9.2.2 Results

We performed all our experiments on a 64-bit Linux machine with
a Core i5 architecture and a CPU running at 2.8 GHz. For n = 6, a
set of 500 runs of GA or SA took approximately 11.5 hours to com-
plete, while for n = 7 it took about 28.3 hours and 25 hours for
GA and SA, respectively. Table 11 reports the results of the experi-
ments. By GA(RWS) and GA(DTS) we denote our GA respectively
with roulette wheel selection and deterministic tournament selection,
while SA(Ti,αi) stands for the SA algorithm run with initial temper-
ature Ti and cooling parameter αi, for i ∈ {1, 2}. For each parameters
combination, Table 11 reports the average (avgo), minimum (mino),
maximum (maxo) and standard deviation (stdo) values of the objec-
tive function obj(·) computed on the best solutions found, along with
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the numbers of optimal solutions generated (#opt) and the average
time per run in seconds (avgt).

For n = 6 it can be observed that both versions of our GA outper-
forms SA with respect to the ratio of generated (6, 2, 3, 24) functions
versus the total number of optimization runs. In particular, the adop-
tion of tournament selection produces better results than roulette
wheel selection, with 93 plateaued functions achieved using the for-
mer operator against the 60 obtained using the latter one. On the
other hand, changing the initial temperature and the cooling param-
eter α does not seem to influence the SA performances, with only
11 plateaued functions generated by SA(T1,α1) and 10 functions gen-
erated by SA(T2,α2). Notice also that the computational overhead
introduced by our GA is not very high: for example, using roulette
wheel selection the average time per run of our GA is 83.3 seconds,
while with tournament selection a single run takes 79.2 seconds on
average, which is in the same range as that employed by SA.

In the case of n = 7 variables, neither version of our GA nor SA
is able to generate a plateaued Boolean function of profile (7, 2, 4, 56).
However, it can be seen that SA outperforms both versions of our GA.
In particular, the GA obtains slightly better results using tournament
selection than roulette wheel selection, but SA scores lower average
objective function values than GA. The same difference can also be
observed by comparing the minimum objective function values.

9.3 conclusions

In this chapter, we proposed a genetic algorithm to evolve plateaued
Boolean functions which satisfy good cryptographic properties. In-
stead of searching the space of Boolean functions (as it is usually done
in the existing literature), we adopted the spectral inversion approach
set forth by Clark, Jacob, Maitra and Stanica in [42], which represents
a candidate solution as a Walsh spectrum already satisfying the de-
sired cryptographic properties. The search space thus becomes the set
of all plateaued pseudoboolean functions, and the objective function
to be minimized is the distance of the candidate solution from the
nearest Boolean function. The representation adopted for the chro-
mosomes of our GA consists in a permutation of a restricted Walsh
spectrum, in which the positions related to t–resiliency are not con-
sidered, being constantly set to zero. Since the coefficients in the spec-
trum of a plateaued Boolean function can take only three values, the
chromosome actually encodes a permutation on a multiset. The de-
coding process first maps the loci of the chromosome to the positions
in the Walsh spectrum having Hamming weight higher than t, and
then the inverse Walsh transform is applied to obtain the associated
pseudoboolean function. We designed a specialized crossover opera-
tor which employs counters in order to preserve the multiplicities of
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the three values characterizing the spectrum of plateaued functions,
while for mutation we adopted a simple swap-based operator that
only exchanges those positions in the chromosome corresponding to
different spectral values.

The performed experiments show that in the case of n = 6 vari-
ables our GA achieves better results than the Simulated Annealing
algorithm proposed in [42] with respect to the ratio of generated
(6, 2, 3, 24) Boolean functions per number of optimization runs. In par-
ticular, our GA performs better when adopting deterministic tourna-
ment selection instead of basic roulette wheel selection, while modify-
ing the initial temperature and the cooling parameter does not signif-
icantly change the SA performances. On the other hand, for n = 7 no
heuristic technique is able to generate a (7, 2, 4, 56) plateaued Boolean
function, but SA scores on average lower objective function values
than GA.

Extending the comparison to other direct heuristic methods (that
is, heuristics which directly explore the space of Boolean functions)
is not a straightforward task. The reason for this difficulty is twofold.
First, there are no obvious ways to compare the sub-optimal solutions
found, due to the different representations adopted. In particular, in
our GA a sub-optimal solution is a pseudoboolean function which
already satisfies the desired cryptographic properties, while in direct
methods it is a Boolean function which do not satisfy these criteria.
Second, to our knowledge only two direct heuristic methods have
been reported in the literature to generate (6, 2, 3, 24) plateaued func-
tions [43, 27], but no information on the ratio of optimal solutions
found per number of optimization runs are available. Nonetheless,
these methods were also able to locate (7, 2, 4, 56) functions.
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P R E I M A G E S P E R I O D S I N S U R J E C T I V E C A

In Chapter 7 we overviewed the secret sharing scheme based on biper-
mutive CA proposed in [112]. In particular, we remarked that deter-
mining the maximum number of players in the cyclic access structure
of this scheme is equivalent to characterizing the periods of preim-
ages of spatially periodic configurations in bipermutive CA (BCA).

However, much of the literature on the periodic behavior of CA
concerns their temporal periodicity [20, 21, 55]: namely, characterizing
those integers t ∈ N such that, starting from a given configuration x
of the cells, the orbit of the CA returns to x after t applications of its
global rule F, i. e. Ft(x) = x.

Spatial periodicity, on the other hand, is a much less researched topic
in the CA literature. As we reviewed in Chapter 2, one of the basic
results in this case is that if F is a surjective infinite CA and y ∈ ΣZ

is a SPC then every preimage x ∈ F−1(y) is spatially periodic as well.
This is a direct consequence of the balancing property of surjective CA,
which implies that every configuration can only have a finite number
of preimages (see Lemmas 2 and 1 in Section 2.3).

To our knowledge, there are no works in the literature that address
the problem of actually characterizing the periods of SPC preimages.
The aim of this chapter is to fill this gap by investigating the relation
between the periods of SPC and the periods of their preimages under
the action of several classes of surjective CA.

Besides being interesting from the perspective of CA theory and for
CA-based secret sharing schemes, this research also has applications
in bioinformatics. In fact, the theory of concatenated linear recurring
sequences, which is a key tool used in the present chapter to character-
ize the periods of preimages in linear bipermutive CA, turns out to be
useful also for studying the dynamics of additive flowers, a particular
class of genetic regulatory networks introduced in [64].

A summary of the main contributions of the chapter follows. Given
a SPC y ∈ ΣZ of least period p ∈ N, we observe that in generic sur-
jective CA the least period of a preimage x ∈ F−1(y) is a multiple of
p, where the multiplier h ranges in {1, · · · ,qd−1}, with q being the
size of the alphabet and d the diameter of the CA (Lemma 5 and 6).
From this result, we also determine a first lower bound on the mul-
tiplicity of the least period of x, that is, how many other preimages
of y have the same least period of x (Lemma 7). Successively, using
the de Bruijn graph representation of CA, we introduce the notion of
u-closure graph of a SPC y, whose cycles lengths turn out to be equiv-
alent to the least periods of the preimages of y (Lemma 8). We thus

109
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describe an algorithm to build the u-closure graph starting from any
surjective CA F and SPC y. The complexity of this procedure turns
out to be exponential in the least period of y and in the diameter of
the CA. Remarking that the u-closure graph of a SPC under a BCA
is composed only of disjoint cycles (Lemma 9), we narrow our atten-
tion to the special case of linear bipermutive CA (LBCA) defined over
the finite field Fq. In particular, we show that a preimage x ∈ F−1(y)
is equivalent to a concatenated linear recurring sequence (CLRS), whose
characteristic polynomial is the product of the characteristic polyno-
mials respectively induced by the CA local rule and by configura-
tion y (Theorem 19). Additionally, we present a procedure that given
a (d − 1)–cell block of a preimage x ∈ F−1(y) as input determines
the least period of x. Moreover, we characterize the multiplicities of
the least periods under the t-th iterate F−t(y) when the characteristic
polynomial of the local rule is irreducible and does not divide the
characteristic polynomial of y (Theorem 21). Finally, these results are
generalized to LBCA defined over the finite ring Zm (Theorem 22),
using the product CA conjugacy described in [33].

The rest of this chapter is organized as follows. Section 10.1 shows
that the least periods of SPC preimages are multiples of the periods of
their respective images, and introduces the notion of u-closure graph
of a SPC along with the algorithm to compute the multiplicities of the
least periods in surjective CA. Section 10.2 characterizes preimages of
LBCA as concatenated linear recurring sequences and derives a char-
acteristic polynomial for the latter. Section 10.3 presents an algorithm
to compute the least period of a single LBCA preimage, characterizes
the multiplicities of the least periods in the particular case where the
characteristic polynomial of the local rule is irreducible and general-
izes the previous results to LBCA defined over finite rings as alpha-
bets. Finally, Section 10.4 summarizes the results of this chapter.

10.1 problems statement and basic results

In this section, we present some basic results concerning the periods
of preimages of spatially periodic configurations in surjective CA. To
this end, we begin by formally stating the first main problem ana-
lyzed in this chapter, generalized to the t-th iterate case:

Problem 1. Let F : ΣZ → ΣZ be a surjective CA defined by a local rule
f : Σd → Σ, let y ∈ ΣZ be a SPC of least period p ∈ N and x ∈ F−t(y) be
a t-th ancestor of y, for t ∈N. What is the least period of x?

Besides computing the period of a single preimage, we are also
interested in counting the multiplicities of all least periods appearing
in the set of preimages of a spatially periodic configuration:

Problem 2. Let F : ΣZ → ΣZ be a surjective CA defined by a local rule
f : Σd → Σ, with |Σ| = q, and y ∈ ΣZ be a SPC of least period p ∈ N.
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For all multipliers h ∈ {1, · · · ,qd−1}, what is the number of preimages
Nh(y, F) of y under F having least period hp?

10.1.1 Periods of SPC Preimages in Surjective CA

We begin our analysis of Problem 1 by considering the general case
where the CA is only surjective. To this end, we first show that if
y ∈ ΣZ is a SPC having least period p ∈ N, then the least periods of
its preimages are multiples of p.

Lemma 5. Let F : ΣZ → ΣZ be a surjective CA, y ∈ ΣZ be a spatially
periodic configuration of least period p ∈ N and x ∈ F−1(y) be a preimage
of y. Then, the least period k ∈N of x is a multiple of p.

Proof. Suppose that k is not a multiple of p, and let k = jp+ r with
j = bk/pc and 0 < r < p. Since x is spatially periodic of least period
x, it follows that σk(x) = x. Moreover, by Hedlund’s theorem it holds
that F(σt(x)) = σt(F(x)) for all t ∈ Z. Hence,

y = F(x) = F(σk(x)) = σk(F(x)) = σk(y) =

= σjp+r(y) = σr(σjp(y)) = σr(y) 6= y

where the last inequality follows from the fact that r < p. Having
obtained a contradiction, k is a multiple of p.

By employing the balancing condition of surjective CA, the follow-
ing result gives an upper bound on the value of the least period mul-
tiplier:

Lemma 6. Let |Σ| = q and let F : ΣZ → ΣZ be a surjective CA defined
by a local rule f of diameter d. Further, let y ∈ ΣZ be a SPC of least period
p ∈ N and x ∈ F−1(y) be a preimage of y having least period k = hp.
Then, h ∈ {1, · · · ,qd−1}.

Proof. The proof of Lemma 5 already implies that h > 1, so it suffices
to show that h 6 qd−1. In what follows, by Fm : Σm+d−1 → Σm we
denote the NBCA of length m+ d− 1 induced by F.

Let u ∈ Σp be a block of length p taken from y (hence y = ωuω),
and let s = d− 1 andQ = qs. By Lemma 2, we have that |F−1m (u)| = Q,
where m = p+ s. Hence, there are Q blocks x1, x2, · · · , xQ ∈ Σm such
that Fm(xi) = u for all i ∈ {1, · · · ,Q}. Since x ∈ F−1(y) is a SPC of least
period hp, there exists v ∈ Σhp+s with v = w1zw1 and w1 ∈ Σs such
that x = �v� and Fhp+s(v) = uh (see Figure 22). As a consequence,
block v is obtained by “gluing” together h blocks of F−1m (u) using
the s-fusion operator. Formally, this means that v =

⊙
xj∈S xj, where

S ⊆ F−1m (u) and |S| = h. Recalling that |F−1m (u)| = Q = |Σ|s = |Σ|d−1,
it follows that h 6 qd−1.

The following Corollary straightforwardly generalizes Lemma 6 to
preimages under the t-th iterate of F:
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u· · · u · · ·

· · ·

u · · ·

w1· · · w2 w3 · · · wh w1 · · ·

uh ∈ Σhp

v = w1zw1 ∈ Σhp+s

xj1 ∈ Σm xj2 ∈ Σm xjh ∈ Σm

Figure 22: Construction of a preimage by s-fusion of finite blocks.

Corollary 1. Let |Σ| = q, and let F : ΣZ → ΣZ be a surjective CA defined
by a local rule of diameter r. Further, let y ∈ ΣZ be a SPC of least period
p ∈ N and x ∈ F−t(y) be a t-th ancestor of y. Then, the least period of x
equals k =

(∏t
i=1 hi

)
· p, where hi ∈ {1, · · · ,qd−1} for all i ∈ {1, · · · , t}.

Proof. We prove the result by induction on t ∈ N. First, remark that
the base case t = 1 corresponds to Lemma 6. For the induction step,
assume that the condition holds up to t− 1, and consider a t-th an-
cestor x ∈ F−t(y). Clearly, x can be expressed as a preimage of a
preimage xt−1 ∈ F−(t−1)(y) under the (t − 1)-th iterate of F, i. e.
x ∈ F−1(xt−1). By Lemma 6 we know that the least period of x is
k = htkt−1, where ht ∈ {1, · · · ,qd−1} and kt−1 is the least period of
kt−1. Further, by induction hypothesis we have kt−1 =

(∏t−1
i=1 hi

)
·p,

where hi ∈ {1, · · · ,qd−1} for all i ∈ {1, · · · , t− 1}. Hence, it follows
that k = ht ·

(∏t−1
i=1 hi

)
· p =

(∏t
i=1 hi

)
· p.

The following lemma gives a first lower bound on Nh(y, F):

Lemma 7. Let F : ΣZ → ΣZ be a surjective CA such that |Σ| = q, y ∈ ΣZ

a SPC of least period p ∈ N, and x ∈ F−1(y) a preimage of y having least
period hp, with h ∈ {1, · · · ,qd−1}. Then, Nh(y, F) > h.

Proof. Since x is a preimage of y, we have to show that there are
at least h − 1 other preimages of y having least period hp. Given
that σp(y) = y, by Hedlund’s theorem we know that the following
identity stands for all i ∈ Z:

F(σip(x)) = σip(F(x)) = σip(y) = y ,

In particular, if i ∈ {1, · · · ,h − 1} then σip(x) 6= x (otherwise, this
would contradict the hypothesis that x has least period hp). Thus, we
can construct h − 1 distinct preimages of y by simply shifting x of
ip coordinates, for i ∈ {1, · · · ,h− 1}. All these preimages have least
period hp, hence it follows that Nh(y, F) > 1+ h− 1 = h.

10.1.2 Graph Characterization of Preimages

We now introduce a graph-based method to study the periods of
preimages in surjective CA. Given a CA F : ΣZ → ΣZ defined on
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an alphabet A such that |Σ| = q, and a configuration y ∈ ΣZ, a preim-
age x ∈ F−1(y) can be viewed as a bi-infinite path π labeled by y on
the associated de Bruijn graph GDB(f), i. e. π = {vi}i∈Z such that
l(vi, vi+1) = yi for all i ∈ Z. In particular, by setting s = d− 2, preim-
age x can be defined as the bi-infinite s-fusion of the vertices visited
by π, that is, x =

⊙
vi∈π vi. If F is surjective, for all configurations

y ∈ ΣZ we can always find at least one bi-infinite path on GDB(f)
labeled by y.

We now define a second graph which will be used to determine the
least periods of the preimages and their multiplicities:

Definition 31. Let F : ΣZ → ΣZ be a surjective CA and let GDB(f) be
its de Bruijn graph. Additionally, let y ∈ ΣZ be spatially periodic of least
period p ∈ N, and let u ∈ Σp be a block of length p of y, i. e. y = ωuω.
The u-closure of GDB(f) (also called the unfolding of GDB(f) along u) is
the graph GuDB(f) = (V ,E), where:

• V = Σd−1

• Given v1, v2 ∈ V , (v1, v2) ∈ E if and only if there exists a finite path
π = v1, · · · , v2 labeled by u on the de Bruijn graph GDB(f)

As the next Lemma shows, the cycle structure of the u-closure
graph is directly related to the least periods of the preimages of
y = ωuω and their multiplicities.

Lemma 8. Let F : ΣZ → ΣZ be a CA defined by local rule f : Σd → Σ, and
let y = ωuω ∈ ΣZ for u ∈ Σp be a SPC of least period p ∈ N. Given
h ∈ {1, · · · ,qd−1}, denote by Cuh(f) the (possibly empty) set of distinct
cycles of length h in the u-closure graph GuDB(f). Then, the number of
preimages x ∈ F−1(y) of least period hp equals Nh(y, F) = h · |Cuh(f)|.

Proof. Remark that an edge (w1,w2) of GuDB(f) represents the first
and the last (d− 1)–cell blocks of a finite preimage v ∈ F−1p+d−1(u).
Considering Figure 22, this means that the blocks w1, · · · ,wh,w1 oc-
curring in x ∈ F−1(y) between the end and the beginning of a copy
of u correspond to a cycle c ∈ Cuh(f) of length h in GuDB(f). Thus,
by Lemma 7 a single cycle c ∈ Cuh(f) identifies h possible preim-
ages of least period hp, depending from which vertex the path starts.
Therefore, the number of preimages of least period hp is given by the
number of distinct cycles of length h multiplied by h.

In order to build the u-closure graph, it is possible to use a variation
of depth-first search (DFS) in which the de Bruijn graph is explored up
to depth p following only the paths labeled by u, without checking
if a node has already been visited or not. In order to assess the time
complexity of this procedure, observe first that the out-degree of each
vertex v ∈ Σd−1 in GDB(f) is |Σ| = q, and thus v can have at most
q outgoing edges labeled by the same symbol s ∈ A. Consequently,
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Figure 25: Examples of u-closure graphs for the elementary CA 106.

starting from v ∈ Σd−1 the DFS can visit at most the following num-
ber of vertices:

1+ q+ q2 + · · ·+ qp =

p∑
i=0

qi =
qp+1 − 1

q− 1
= O(qp) .

In particular, the worst case occurs when for each symbol ui of u each
node in the i-th level of the DFS tree has q outgoing edges labeled by
ui. Since the DFS must be called for all v ∈ Σd−1, the time complexity
for building the u-closure graph is thus O(qd−1 · qp) = O(qp+d−1).

The u-closure graph contains at most qd−1 edges, since u has ex-
actly qd−1 preimages under F−1p+d−1(u) and there can be at most a
one-to-one correspondence between the prefixes and the suffixes of
length d − 1 of these preimages. Thus, once the u-closure graph is
built, a DFS visit can be employed to determine its cycles and their
respective lengths inO(qd−1) steps. Starting from the de Bruijn graph
of a surjective CA as input, this means that the overall procedure to
compute the least periods of the preimages of y and their cardinalities
takes O(qp+d−1 + qd−1) steps.

Notice that, in general, the u-closure of GDB(f) is not composed of
disjoint cycles. Figures 23 and 24 report two examples of u-closure
graphs for the CA F based on rule 106, the former corresponding to
the configuration y = ω011ω and the latter for y = ω1000ω.

In both cases, the resulting u-closure graphs have cycles with prepe-
riods, and all (d− 1)–cell blocks in the preperiods cannot appear in
any preimage of y (otherwise, the preimages containing them would
not be spatially periodic, contradicting Lemma 2).

We now show that if the local rule is bipermutive then GuDB(f) is
composed only of disjoint cycles:
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Figure 28: Examples of u-closure graphs for the elementary CA 150.

Lemma 9. Let F : ΣZ → ΣZ be a surjective CA defined by a bipermutive
local rule f : Σd → A. Then, for all SPC y = ωuω of least period p ∈ N

with u ∈ Σp, the u-closure graph GuDB(f) is composed only of disjoint
cycles.

Proof. Let v ∈ Σd−1 be a vertex of the de Bruijn graph GDB(f). Since f
is right permutive, the set of labelings l(v,wi) of the outgoing edges
of v is a permutation on Σ. Hence, there exists exactly one path start-
ing from v and labeled by u on the de Bruijn graph, which means
that v has exactly one outgoing edge in the u-closure graph GuDB(f).
Analogously, since f is also left permutive, the set of labelings l(wi, v)
of the incoming edges of v is a permutation on Σ as well. As a con-
sequence, there is exactly one path ending in v and labeled by u on
GDB(f), meaning that v has exactly one incoming edge GuDB(f). Since
each vertex of the u-closure graph GuDB(f) has both in-degree and
out-degree equal to 1, the thesis follows.

A consequence of Lemma 9 is that the construction of the u-closure
graph takes Θ(qd−1 · p) steps for bipermutive CA, since each DFS
call on the de Bruijn graph returns only one path labeled by u. Fig-
ures 26 and 27 depict the u-closure graphs for y = ω011ω and
y = ω1000ω under the elementary bipermutive rule 150, defined
as f150(xi−1, xi, xi+1) = xi−1 ⊕ xi ⊕ xi+1.

As a concluding remark for this section, observe that the construc-
tion of the u-closure graph, as well as Lemma 8, can be generalized
by induction to the t-th iterate Ft. Of course, in this case both the
construction of the graph and its visit become exponential in t, thus
yielding a total complexity of O(qp+(d−1)t + q(d−1)t) for determin-
ing the multiplicities of the least periods in F−t(y). On the other hand,
once the u-closure graph of F−t(y) has been built, it is not difficult
to see that the number of t-th ancestors x ∈ F−t(y) having least
period hp are h · |Cuh(f)|, where by Corollary 1 h =

∏t
i=1 hi, with

hi ∈ {1, · · · ,qd−1} for all i ∈ {1, · · · , t}.
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10.2 linear ca and linear recurring sequences

Lemma 9 suggests that both Problems 1 and 2 are easier to analyze in
the bipermutive context, since BCA do not feature paths with preperi-
ods in the u-closure graph. In this section, we narrow our attention to
the class of LBCA, showing that in this case further information about
the periods of preimages can be obtained. In particular, we character-
ize the preimages of LBCA as a particular kind of concatenated lin-
ear recurring sequences, and determine the corresponding characteristic
polynomials.

10.2.1 LBCA Preimages and Concatenated LRS

Let F : FZ
q → FZ

q be a LBCA of diameter d, offset ω = 0 and local rule
f : Fdq → Fq defined by a vector (c0, · · · , cd−1) ∈ Fdq, where c0 6= 0

and cd−1 6= 0. Given x ∈ Fdq and y = f(x), it holds that:

y = c0x0 + c1x1 + · · ·+ cd−2xd−2 + cd−1xd−1
xd−1 = c

−1
d−1(−c0x0 − c1x1 − · · ·− cd−2xd−2 + y) .

Setting d = c−1d−1 and ai = −d · ci for all i ∈ {0, · · · ,d− 2}, we obtain

xd−1 = a0x0 + a1x1 + · · ·+ ad−2xd−2 + ey . (90)

Equation (90) defines the inverse permutation f−1R,z of fR,z : Fq → Fq,
obtained by fixing the first d − 1 coordinates of f to the values of
z = (x0, · · · , xd−2). Hence, given a configuration y ∈ FZ

q and the
(d− 1)–cell block x[0,d−2] ∈ Fd−1q in a preimage x ∈ F−1(y), for all
n > d− 1 it results that:

xn = a0xn−(d−1) + a1xn−d + · · ·+ ad−2xn−1 + eyn , (91)

and by setting k = d− 1 and vn = yn for all n ∈ N, Equation (91)
can be rewritten as

xn+k = a0xn + a1xn+1 + · · ·+ ak−1xn+k−1 + evn . (92)

Equation (92) reminds the definition of a linear recurring sequence
of order k = d − 1, with the exception of term evn. However, if y
is a spatially periodic configuration of period p then it is possible to
describe the sequence v = v0, v1, · · · as a linear recurring sequence of
order l 6 p defined by

vn+l = b0vn + b1vn+1 + · · ·+ bl−1vn+l−1 , (93)

where bi ∈ Fq for all i ∈ {0, · · · , l− 1}, and the initial terms of the
sequence are v0 = y0, v1 = y1, · · · , vl−1 = yl−1. In the worst case,
the LRS v will have order l = p, and it will be generated by the trivial
LFSR which cyclically shifts a word of length p.
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As a consequence, preimage x ∈ F−1(y) is a linear recurring se-
quence of a special kind, where xn+k is determined not only by the
previous k = d − 1 terms, but it is also “disturbed” by the LRS v.
In particular, we define x as the concatenation of sequences s and v,
which we denote by x = s  v, where s = s0, s1, · · · is the k-th order
LRS satisfying the recurrence

sn+k = a0sn + a1sn+1 + · · ·+ ak−1sn+k−1 , (94)

and whose initial values are s0 = x0, s1 = x1, · · · , sk−1 = xk−1.
Equivalently, a preimage x ∈ F−1(y) is generated by a LFSR of

order k = d− 1 where the feedback is summed with the output of an
LFSR of order lmultiplied by e = c−1d−1, which produces the sequence
v. Similarly to concatenated LRS, we call this system a concatenation
of LFSR. Figure 29 depicts the block diagram of this concatenation.

E0
e

b0 b1

+

E1

· · ·

bl−2

+· · ·

El−2

bl−1

+

El−1

D0

x

a0 a1

+

D1

· · ·

ak−2

+· · ·

Dk−2

ak−1

+

Dk−1

+

Figure 29: Diagram of two concatenated LFSR.

In conclusion, we have shown that the periods of the preimages
x ∈ F−1(y) are equivalent to the periods of the concatenated LRS
generated by the LFSR in Figure 29, where the disturbing LFSR is ini-
tialized with the values y0, · · · , yl−1. In particular, since multiplying
the terms of a LRS by a constant does not change its period, in what
follows we will assume e = 1.

10.2.2 Sum Decomposition of Concatenated LRS

In order to study the period of the concatenated linear recurring se-
quence s  v giving rise to preimage x ∈ F−1(y), we first prove that
it can be decomposed into the sum of two LRS: namely, sequence s
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and the 0-concatenation u = s  0 v satisfying the same recurrence
Equation (92), but whose k initial terms u0, · · · , uk−1 are set to 0.

Theorem 18. Let s = s0, s1, · · · and v = v0, v1, · · · be the LRS respectively
satisfying Equations (94) and (93), with s0 = x0, · · · , sk−1 = xk−1 and
v0 = y0, · · · , vl−1 = yl−1. Further, let x = s  v be the concatenation of
s and v defined by Equation (92), where e = 1, and let u = s  0 v be the
0-concatenation of sequences s and v, where u0 = u1 = · · · = uk−1 = 0.
Then, xn = sn + un for all n ∈N.

Proof. Since u0 = · · · = uk−1 = 0, for all n ∈ {0, · · · ,k− 1} it holds

sn + un = sn + 0 = xn .

Therefore, it remains to prove xn = sn+un for all n > k. We proceed
by induction on n. For n = k, we have

sk + uk = a0s0 + · · ·+ ak−1sk−1+
+ a0u0 + · · ·+ ak−1uk−1 + v0

= a0x0 + · · ·+ ak−1xk−1 + v0 = xk .

For the induction step we assume sn +un = xn for all n in the range
{k, · · · ,m}. For n = m+ 1, the sum sm+1 + um+1 is equal to:

sm+1 + um+1 = a0sm−k+1 + · · ·+ ak−1sm+

+ a0um−k+1 + · · ·+ ak−1um + vm−k+1

= a0(sm−k+1 + um−k+1) + · · ·+
+ ak−1(sm + um) + vm−k+1 . (95)

By induction hypothesis, sm−k+i+um−k+i = xm−k+i for each index
i ∈ {1, · · · ,k}. Hence, Equation (95) can be rewritten as

sm+1 + um+1 = a0xm−k+1 + · · ·+ ak−1xm + vm−k+1 = xm+1 .

10.2.3 Characteristic Polynomial of Concatenated LRS

Theorem 18 tells us that a preimage x ∈ F−1(y) can be generated by
the sum of two LRS: the LRS generated by the concatenated LFSR of
Figure 29, where the disturbed LFSR is initialized to zero, and the
LRS produced by the non-disturbed LFSR, that is, the leftmost LFSR in
Figure 29 initialized to the values x0, · · · , xk−1 without the feedback
from the rightmost LFSR.

We now show that this sum decomposition allows one to determine
a characteristic polynomial of the concatenated sequence x = s  v.
To this end, we first need a result proved by Chassé[37], which con-
cerns the generating function of the 0-concatenation u = s  0 v. The
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proof stands on the observation that for all n ∈ N, the n-th term of
u is given by the linear combination

∑n−1
i=0 A

(i)
n · vi, where the terms

A
(i)
n depend only on the coefficients aj which define Equation (94).

In particular, we will need the values of A(0)
n for n > 0, which can be

computed by the following recurrence equation:

A
(0)
n =


∑k−1
j=0 ajA

(0)
n−k+j , if n > 1

1 , if n = 1

0 , if n = 0

(96)

where k = d− 1 and A(0)
n−k+j = 0 if n− k+ j < 0. Using our notation

and terminology, Chassé’s result can thus be stated as follows:

Lemma 10. Let u = s  0 v be the 0-concatenation of the LRS s and v
defined in Theorem 18, and let V(x) be the generating function of v. Denot-
ing by A(x) the generating function of the sequence A = {A

(0)
n+1}n∈N, the

generating function of u is equal to

U(x) = x ·A(x) · V(x) . (97)

Moreover, if a(x) ∈ Fq[x] is the characteristic polynomial of the sequence s
associated to the recurrence equation (94), then a(x) is also a characteristic
polynomial of A.

We now prove that the characteristic polynomial of s  v is the
product of the characteristic polynomials of s and v.

Theorem 19. Let s  v be the concatenation of LRS s and v defined by
Equation (92) with e = 1, and let a(x),b(x) ∈ Fq[x] be the characteris-
tic polynomials of s and v, respectively associated to the linear recurring
sequences respectively defined by Equation (94) and (93). Then, a(x) · b(x)
is a characteristic polynomial of s  v.

Proof. By Theorem 18 the concatenation of LRS s and v can be written
as s  v = s+ u, where u = s  0 v is the 0-concatenation associated
to s  v. By applying the fundamental identity of formal power series
(Equation (16)) and Lemma 10, the following equalities hold:

S(x) =
gs(x)

a∗(x)
(98)

U(x) =
x · gA(x) · gv(x)
a∗(x) · b∗(x)

, (99)

where gs(x), gA(x) and gv(x) are polynomials whose coefficients are
computed according to the numerator in the right hand side of Equa-
tion (16). Hence, the generating function of s  v is:

G(x) = S(x) +U(x) =
gs(x) · b∗(x) + x · gA(x) · gv(x)

a∗(x) · b∗(x)
. (100)
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By applying again the fundamental identity of formal power series to
Equation (100), we deduce that the reciprocal of c(x) = a∗(x) ·b∗(x) is
a characteristic polynomial of s  v. Denoting by k and l the degrees
of a(x) and b(x) respectively, it follows that c(x) = xk+l · a(1/x) ·
b(1/x), and thus the reciprocal of c(x) is

c∗(x) = xk+l · 1

xk+l
· a(x) · b(x) = a(x) · b(x) . (101)

Therefore, a(x) · b(x) is a characteristic polynomial of s  v.

Theorem (19) thus gives a characteristic polynomial for all preim-
ages x ∈ F−1(y) of a spatially periodic configuration y ∈ FZ

q . As a
matter of fact, the polynomials a(x) and b(x) do not depend on the
particular value of the block x[0,d−2], but only on the local rule f and
on configuration y, respectively. From the LFSR point of view, this
means that a preimage x ∈ F−1(y) can be generated by a single LFSR
implementing the (k+ l)-th order recurrence equation

σn+k+l = c0σn + c1σn+1 + · · ·+ ck+l−1σn+k+l−1 , (102)

where for all µ ∈ {0, · · · ,k+ l− 1} the term cµ is the µ-th convolution
coefficient in the product a(x) · b(x) given by

cµ =
∑
i+j=µ

aibj, for i ∈ {0, · · · ,k} and j ∈ {0, · · · , l} . (103)

Additionally, the first k = d − 1 initial terms σ0, · · · ,σk−1 in Equa-
tion (102) are initialized to the values in x[0,d−2], while the remaining
l ones are obtained using the recurrence equation (92). Hence, by
applying the fundamental identity of formal power series, the numer-
ator of Equation (100) can also be expressed as:

g(x) = −

k−1∑
j=0

j∑
i=0

ci+k−jσix
j . (104)

As in the case of Lemmas 6 and 8, Theorem 19 can be easily ex-
tended to the t-th iterate Ft for any t > 1. In this case, a t-th ancestor
x ∈ F−t(y) can be expressed by the following sequence of concate-
nated LRS:

x = s(t)  s(t− 1)  · · ·  s(1)  v , (105)

where s(i) belongs to the family of LRS S(a(x)) for all i ∈ {1, · · · , t}.
In other words, the t-th ancestor x ∈ F−t(y) is obtained by concate-
nating t sequences generated by the characteristic polynomial a(x)
of the CA local rule, which are in turn concatenated with configura-
tion y. Notice that preimage computation, in this case, can be carried
out by a cascade of concatenated LFSR, where the leftmost t ones all
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have the same characteristic polynomial but possibly different initial-
ization values, while the rightmost one generates v.

Consequently, by iteratively applying Theorem 19, we obtain that
the characteristic polynomial of x ∈ F−t(y) is

c(x) = a(x)t · b(x) . (106)

10.3 applications to periods computation, multiplicities

count and finite rings alphabets

To summarize the results discussed so far, in this section we explore
the applications of the equivalence between LBCA preimages and
CLRS presented in Section 10.2, starting from the most specific one
and then generalizing. Specifically, in Section 10.3.1 we describe an
algorithm which, given as inputs a SPC y of a LBCA over Fq and
a (d − 1)–cell block of one of its preimages x ∈ F−1(y), computes
the least period of x. On the other hand, Section 10.3.2 characterizes
the multiplicities of the preimages of a SPC y in the particular case
where the characteristic polynomial of the local rule is irreducible
and does not factorize the polynomial of y. Finally, Section 10.3.3
generalizes the results presented in Section 10.2 to the case where the
CA alphabet is a finite ring.

10.3.1 Computing the Period of a Single Preimage

We now present a high-level procedure to compute the period of a
single preimage. Given a LBCA F : FZ

q → FZ
q defined by a local rule

f : Fdq → Fq of diameter d and offset ω = 0, a spatially periodic
configuration y ∈ FZ

q and a (d− 1)–cell block x[0,d−2] ∈ Fd−1q of a
preimage x ∈ F−1(y), the procedure can be described as follows:

1. Compute the minimal polynomial b(x) of the linear recurring
sequence v, where vn = yn for all n ∈N.

2. Set the characteristic polynomial a(x) associated to the inverse
permutation f−1R,z to a(x) = xk − ak−1x

k−1 − · · · − a0, where
k = d − 1 and the coefficients ai are those appearing in the
recurrence equation (94).

3. Compute the polynomial g(x) given by Equation (104), and set
h(x) = −g∗(x).

4. Determine the minimal polynomial of x by computing

m(x) =
a(x) · b(x)

gcd(a(x) · b(x),h(x))
. (107)

5. Compute the order of m(x), and output it as the least period of
preimage x.
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For step 1, the minimal polynomial of v can be found using the
Berlekamp-Massey algorithm [115], by giving as input to it the string
composed by the first 2p elements of v, where p is the period of y (and
hence the period of v as well). The time complexity of this algorithm
is O(p2). Step 4 requires the computation of a greatest common divi-
sor, which can be performed using the Euclidean division algorithm
inO(n2) steps, where n = max{deg(a(x)b(x)),deg(h(x))}. Finally, the
order ofm(x) in step 5 can be determined by first factorizing the poly-
nomial, for example by using Berlekamp’s algorithm [12], which has a
time complexity of O(D3) where D is the degree of m(x), if the char-
acteristic ρ of Fq is sufficiently small. Once the factorization of m(x)

is known, ord(m(x)) can be computed using the following theorem
proved in [107]:

Theorem 20. Let m(x) ∈ Fq[x] be a polynomial of positive degree such
that m(0) 6= 0. Let m(x) = a ·

∏n
i=0 fi(x)

bi be the canonical factorization
of m(x), where a ∈ Fq, b1, · · · ,bn ∈ N and f1(x), · · · , fn(x) ∈ Fq[x]

are distinct monic irreducible polynomials. Then ord(m(x)) = ερt, where
ρ is the characteristic of Fq, ε = lcm(ord(f1(x)), · · · ,ord(fn(x))) and t
is the smallest integer such that ρt > max{b1, · · · ,bn}.

Notice that Theorem 20 depends on the orders of the irreducible
polynomials involved in the factorization of m(x). A method to find
the order of an irreducible polynomial that relies on the factorization
of qD − 1 is reported in [107]. There exist several factorization tables
for numbers in this form, especially for small values of q (see [189]).

We now present a practical application of the procedure described
above. The computations in the following example have been carried
out with the computer algebra system MAGMA.

Example 1. Let F : FZ
2 → FZ

2 be the LBCA with offset ω = 1 and local
rule 150, defined as f(x1, x2, x3) = x1⊕ x2⊕ x3 for all x ∈ F32. Let y ∈ FZ

2

be a spatially periodic configuration of least period p = 4 generated by the
block y[0,3] = (0, 0, 1, 1), and let x[0,1] = (1, 0) be the initial 2-cell block of
a preimage x ∈ F−1(y). Since ω = 1, we have to shift y one place to the left,
thus sequence v is generated by block v[1,3] = (0, 1, 1, 0). Feeding the string
(0, 1, 1, 0, 0, 1, 1, 0) to the Berlekamp-Massey algorithm yields the minimal
polynomial b(x) = x3 + x2 + x + 1, while the characteristic polynomial
associated to rule 150 is a(x) = x2 + x+ 1. Hence, it follows that c(x) =

a(x) ·b(x) = x5+x3+x2+1 is a characteristic polynomial of the preimage.
Since the first 5 elements of preimage x are 1, 0, 1, 0, 0, the initialization
polynomial of Equation (104) is g(x) = x4 + x3 + 1, from which we deduce
that h(x) = x4 + x+ 1. Considering that h(x) is irreducible, the greatest
common divisor of c(x) and f(x) is 1, and thus by Equation (107) c(x) is
also the minimal polynomial of the preimage. The factorization of c(x) is
(x+ 1)3(x2+ x+ 1), and the orders of x+ 1 and x2+ x+ 1 are respectively
1 and 3, from which it follows that the least common multiple ε is 3. Finally,
the smallest integer t such that 2t > 3 is t = 2. Therefore, by applying
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Figure 30: Block x[0,11] which generates preimage x ∈ F−1(y) under rule
150.

Theorem 20 the least period of preimage x is ε2t = 12. Figure 30 shows the
actual value of the block x[0,11] which generates preimage x.

The above procedure can be adapted to the case of t-th ancestors
x ∈ F−t(y) by setting the characteristic polynomial in step 2 to a(x)t,
according to Equation (106). Clearly, at step 3 the computation of
polynomial g(x) defined in Equation (104) becomes more expensive,
since the sequence σ of Equation (102) is now a (kt+ l)-order LRS.
Additionally, the complexity of step 5 grows exponentially in the de-
gree D of the minimal polynomial m(x) computed at step 4, since it
depends on the factorization of qD − 1.

10.3.2 Periods Multiplicities

As a further application of Theorem 19, we characterize the least pe-
riods of preimages with respect to the t-th iterate of LBCA in the
special case where a(x) is irreducible and relatively prime to b(x).

Our characterization result, which is analogous to Theorem 6, is
the following:

Theorem 21. Let F : FZ
q → FZ

q be a LBCA having local rule f : Fdq → Fq,
and let a(x) = xk − ak−1xk−1 − · · ·− a0 be the characteristic polynomial
associated to f, where k = d− 1, and ord(a(x)) = ε. For t ∈N, let s ∈N

be the smallest integer such that ρs > t, where ρ is the characteristic of Fq.
Further, let y ∈ FZ

q be a SPC of least period p ∈ N, and let b(x) be the
minimal polynomial of sequence v defined as vn = yn+r for all n ∈ N. If
a(x) is irreducible and does not divide b(x), then:

• If t = 1, F−t(y) is composed of one sequence with least period p and
qk − 1 sequences with least period lcm(ε,p).

• If t > 2, F−t(y) also contains qkρ
j
− qkρ

j−1
sequences with least

period lcm(ερj,p) for j ∈ {1, · · · , s− 1}, and qkt − qkρ
s

sequences
with least period lcm(ερs,p).

Proof. By Equation (106), recall that a(x)t ·b(x) is a characteristic poly-
nomial for all x ∈ F−t(y), which means that

F−t(y) ⊆ S(a(x)t · b(x)) . (108)

Since a(x) and b(x) are coprime, it holds that

lcm(a(x)t,b(x)) = a(x)t · b(x) . (109)
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Consequently, on account of Theorem 4 and Equation (109), the fol-
lowing equality holds:

S(a(x)t · b(x)) = S(a(x)t) + S(b(x)) . (110)

Thus, by (108) and (110) we conclude that F−t(y) = S(a(x)) + v, i. e.
the set of preimages of y under F−t is a coset of the vector space
S(a(x)t) + S(b(x)). In particular, F−t(y) is obtained by forming all
possible sums u+ v for u ∈ S(a(x)). Since a(x) and b(x) are coprime,
Theorem 5 states that the least period of u+ v is lcm(l,p), where l
is the least period of u. Finally, since a(x) is irreducible, Theorem 6

characterizes the possible values of l and the corresponding numbers
of sequences in S(a(x)t) attaining those values of l as least period,
thus concluding the proof.

10.3.3 LBCA over Finite Rings Alphabets

In this section, we assume that Σ = Zm, where Zm is the finite ring
of residue classes modulo m ∈ N. A CA F : ZZ

m → ZZ
m is linear and

bipermutive if and only if the coefficients c0 and cd−1 of its local rule
are invertible over Zm, i. e. gcd(c0,m) = gcd(cd−1,m) = 1.

Let us first consider the case where m = q1q2 with q1 and q2
coprime. In [33], the authors showed that a LBCA F : ZZ

m → ZZ
m

is conjugated to the function G : ZZ
q1
×ZZ

q2
→ ZZ

q1
×ZZ

q2
, which is

defined for all (x1, x2) ∈ ZZ
q1
×ZZ

q2
as

G(x1, x2) = (Fq1(x1), Fq2(x2)) , (111)

where Fq1 and Fq2 denote the application of rule F respectively re-
duced modulo q1 and q2. The homomorphism which maps a config-
uration x ∈ ZZ

m to its pair of factor configurations (x1, x2) ∈ ZZ
q1
×ZZ

q2

is defined as
ψ(x) = ([x]q1 , [x]q2) , (112)

where [x]q1 and [x]q2 respectively denote componentwise reduction
modulo q1 and q2 of configuration x. The inverse homomorphism
which recomposes a pair of configurations (x1, x2) ∈ ZZ

q1
×ZZ

q2
into

a configuration x ∈ ZZ
m is defined as

ψ−1(x1, x2) = x2 + q2[(x1 − x2)q̂2]q1 , (113)

where addition and subtraction are performed componentwise, and
q̂2 is the multiplicative inverse of q2 over Zq1 . Notice that q̂2 exists
since gcd(q1,q2) = 1.

The conjugacy can be extended to any m ∈ N as follows. First,
let m =

∏s
i=1 ρ

αi
i be the prime power factorization of m, and let

qi = ραii for all i ∈ {1, · · · , s}. It follows that gcd(qi,qj) = 1 for all
i 6= j, since ρi and ρj are distinct prime numbers. The homomorphism
ψs : ZZ

m → ZZ
q1
× · · · ×ZZ

qs
is defined for all x ∈ ZZ

m as:

ψs(x) = ([x]q1 , · · · , [x]qs) . (114)
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For the inverse homomorphism, observe that q1, · · · ,qs induce two
sequences of rings {R2, · · · ,Rs} and {Q2, · · · ,Qs}, where Rj and Qj
are defined for j ∈ {2, · · · , s} as:

Rj = ZZ
q1
× · · · ×ZZ

qj
, (115)

Qj = ZZ
mj

, mj =
j∏
i=1

qi . (116)

Likewise, q1, · · · ,qs induce a sequence of mappings {ψ−1
2 , · · · ,ψ−1

s }

where for j ∈ {2, · · · , s} the inverse homomorphism ψ−1
j : Rj → Qj is

defined for all (x1, · · · , xj) ∈ Rj as follows:

ψ−1
j (x1, · · · , xj) =

ψ−1(x1, x2), if j = 2

ψ−1(ψ−1
j−1(x1, · · · , xj−1), xj), if j > 2

(117)

The following theorem shows how to compute the least periods of
the preimages of a spatially periodic configuration under a linear and
bipermutive CA F : ZZ

m → ZZ
m.

Theorem 22. Let m =
∏s
i=1 qi be a positive integer where qi = ραii

with ρi prime and αi > 1 for all i ∈ {1, · · · , s}. Let F : ZZ
m → ZZ

m be a
linear bipermutive CA, and let y ∈ ZZ

m be a spatially periodic configuration
having least period p ∈ N, with p1, · · · ,ps ∈ N respectively being the
least periods of the factor configurations y1 = [y]q1 , · · · ,ys = [y]qs . Then,
given a preimage x ∈ F−1(y), the least period of x is k = lcm(k1, · · · ,ks),
where ki = hipi and hi ∈ {1, · · · ,qd−1i } for all i ∈ {1, · · · , s}.

Proof. We prove only the case m = q1q2, the general case following
by induction on the values qi. Since F is linear and bipermutive, it
follows that F is conjugated to the product CA G of Equation (111)
through the isomorphism defined in Equations (112) and (113). Thus,

F−1(y) = F−1(ψ−1(y1,y2)) = ψ−1(G−1(y1,y2)) .

As a consequence, the least period of x ∈ F−1(y) equals the least
period of ψ(x) = (x1, x2) ∈ G−1(y1,y2).

Remark that P ∈ N is a period of (x1, x2) if and only if P is a
period of both x1 and x2. By Lemma 6, x1 and x2 have least period
k1 = h1p1 and k2 = h2p2 respectively, with h1 ∈ {1, · · · ,qd−11 } and
h2 ∈ {1, · · · ,qd−12 }. Since k = lcm(k1,k2) is a common multiple of k1
and k2, it follows that k is a period of both x1 and x2, and thus it is a
period of (x1, x2). Let us now suppose that k is not the least period of
(x1, x2), i. e. there exists k ′ < k such that σk

′
(x1, x2) = (x1, x2). From

the discussion above, it follows that k ′ is a period of both x1 and x2
as well, and thus k ′ is a common multiple of k1 and k2, contradicting
the fact that k = lcm(x1, x2).
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As a final remark, observe that if ρ is prime then the ring of residue
classes Zρ is a finite field. Consequently, if m has a square-free fac-
torization m =

∏s
i=1 ρ

αi
i with αi = 1 for all i ∈ {1, · · · , s}, and

F : ZZ
m → ZZ

m is a LBCA over Zm, the least periods of the t-th ances-
tors x ∈ F−t(y) can be characterized by first finding the least periods
of the factor preimages [x]ρ1 , · · · , [x]ρs using Theorem 21, and then by
computing their least common multiple according to Theorem 22.

10.4 conclusions

In this work, we studied the relation between the periods of spa-
tially periodic configurations of surjective CA and the periods of their
preimages. In the generic surjective case the periods of preimages
are multiples of the periods of their respective images. Starting from
this fact, we introduced a graph-theoretic method based on the de
Bruijn representation of CA that allows one to compute the least peri-
ods of preimages and their multiplicities. Successively, by focusing on
the linear and bipermutive case, we showed that every LBCA preim-
age can be characterized as a concatenated LRS, whose characteristic
polynomial is the product of the characteristic polynomials which are
associated to the component sequences. From this result, we derived
an algorithm to compute the least period of a single LBCA preimage
and we characterized the periods of all preimages along with their
multiplicities, in the case where the characteristic polynomial of the
local rule is irreducible. We finally showed how to generalize these
results to LBCA defined over the finite ring Zm as state alphabet.
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S - B O X E S B A S E D O N C E L L U L A R A U T O M ATA

As we remarked in Chapter 7, one can see that most of the litera-
ture pertaining the applications of CA in cryptography is centered
on the design of stream ciphers and pseudorandom number genera-
tors. This can be explained by observing that even though Wolfram’s
PRNG was shown to be insecure (due to the weaknesses of rule 30),
its overall structure is quite simple. This lead some researchers (see
for instance [114, 106, 63]) to focus on the search of CA local rules
having good cryptographic profiles in order to thwart the attacks dis-
covered by Meier and Staffelbach [118] and Koc and Apohan [100],
but retaining Wolfram’s overall design of CA pseudorandom genera-
tor.

On the other hand, the design of S-boxes based on CA for block
ciphers is a research topic which has received relatively little atten-
tion in the literature. This could be the reason why, at least as far as
our knowledge goes, there are comparatively fewer works concerning
the cryptographic properties of CA global rules as opposed to CA lo-
cal rules. As we noted in Section 7.2, one remarkable exception in
this regard is [52], where the authors analyzed the propagation and
correlation characteristics of a CA equipped with rule 210 in Wol-
fram’s numbering convention, denoted as χ. Interestingly, rule χ is
an example of S-box based on CA which is employed in real-world
applications, since it is the only nonlinear component of the Keccak

sponge construction [15]. Moreover, the rotation symmetric S-boxes
(see Section 7.3) can be considered as CA-based S-boxes, since they
are basically defined by a CA whose diameter equals the cellular ar-
ray size. Even in this case, however, little work has been carried out
to analyze their cryptographic properties in a systematic way.

The aim of this chapter is thus to undertake an investigation of the
cryptographic properties of CA global rules by considering them as
vectorial Boolean functions, and to relate them to the properties of
the underlying local rules. To this end, we consider criteria that are
relevant for the design of S-boxes in block ciphers, i. e. balancedness,
algebraic degree, nonlinearity and differential uniformity, leaving re-
siliency and its connection with linear codes for the next chapter.

We carry out our analysis of CA-based S-boxes both from a the-
oretical and an experimental point of view. For the theoretical part,
we first observe that the algebraic degree of the global rule of a CA
equals the algebraic degree of its local rule, leveraging on the fact that
the coordinate functions of a CA correspond to its local rule applied
to different neighborhoods. We then prove two upper bounds on the

127
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nonlinearity and differential uniformity of S-boxes based on CA, both
for no boundary and periodic boundary conditions. Next, we com-
pare our nonlinearity bound with the Sidelnikov-Chabaud-Vaudenay
bound for generic S-boxes reported in Section 5.5.3, observing that
rule χ is optimal with respect to the former.

For the experimental part we employ Genetic Programming (GP) to
construct CA-based S-boxes with good cryptographic properties. In
particular, we evolve Boolean functions in the form of GP trees, which
are then used as CA local rules where the diameter equals the length
of the cellular array. As already discussed, this setting corresponds
to the case of rotation symmetric S-boxes, and finds its motivation in
the nonlinearity bound proved in the theoretical part. The problem in-
stances considered in our experiments ranges from 4× 4 to 8× 8 sizes,
and the results show that our GP algorithm manages to find optimal
S-boxes up to size 7× 7. We then report an exhaustive classification
of all CA-based S-boxes from sizes 3× 3 to 5× 5 with respect to their
bijectivity, nonlinearity and differential uniformity. Finally, we give
a classification up to affine equivalence for the 3× 3 and 4× 4 cases,
since for 5× 5 the resulting number of equivalence classes is too large
to be exhaustively checked.

The rest of the chapter is organized as follows. Section 11.1 is de-
voted to the analysis of the global rules of CA, focusing on their al-
gebraic degree, nonlinearity and differential uniformity. Section 11.2
describes the structure of our GP algorithm and the experimental
results obtained by evolving CA-based S-boxes of sizes up to 8× 8,
as well as an exhaustive classification up to size 5× 5. Finally, Sec-
tion 11.3 summarizes the contributions of the chapter.

11.1 cryptographic properties of ca global rules

In the rest of this chapter, we will consider finite CA defined over
the binary alphabet Σ = F2, both with no boundary and periodic
boundary conditions. In this section we investigate the cryptographic
properties of such CA, starting from their algebraic degree. We then
prove two upper bounds on the nonlinearity and differential unifor-
mity achievable by these CA.

11.1.1 Algebraic Degree

The results reported in this section are for no boundary CA, but they
can easily adapted to the PBCA case.

Recall from Remark 1 that, given a NBCA F : Fn2 → Fm2 with
m = n−d+ 1 and defined by a local rule f : Fd2 → F2, the coordinate
function fi : Fn2 → F2 corresponds to local rule f applied on the
neighborhood {i, · · · , i+ d− 1} for all i ∈ {1, · · · ,n− d+ 1}.
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Since the algebraic degree of a (n,m)–function equals the maximal
degree of its coordinate functions, we obtain the following result:

Lemma 11. Let F : Fn2 → Fm2 be a NBCA with m = n− d+ 1 defined by
a local rule f : Fd2 → F2. Then, the degree of F equals the degree of f.

Proof. For k ∈ {1, · · · ,m}, define Nk = {k, · · · ,k+ d− 1} and let us
denote by P(Nk) the power set of Nk. Notice that N1 = N, where N
is the index set for the ANF of f. For all I = {I1, · · · , Ij} ∈ P(N), let
us define the shifted subset of I as σk(I) = {I1 + k− 1, · · · , Ij + k− 1},
which ranges in the power set P(Nk). On the other hand, given an
index set L ∈ P(Nk) one can recover the original subset I ∈ P(N)

by computing I = σ−k(L) = {L1 − k + 1, · · · ,Lj − k + 1}. Then, by
Equation (49) we have that

Pfk(x) =
⊕

L∈P(Nk)

aL

(∏
l∈L

xl

)
. (118)

Since for every L ∈ P(Nk) there exists I ∈ P(N) such that I = σ−k(L),
by Remark 1 it also follows that aL = aI , so we can rewrite (118) as:

Pfk(x) =
⊕

L∈P(Nk)

aI

(∏
l∈L

xl

)
, where I = σ−k(L). (119)

Since the shifting operation does not change the cardinality of subsets,
it follows that

maxI∈P(N){|I| : aI 6= 0} = maxL∈P(Nk){|L| : aI 6= 0} , (120)

from which one obtains that deg(fk) = deg(f1) = deg(f).

11.1.2 Bounds on Nonlinearity and Differential Uniformity

We now show two upper bounds on the nonlinearity and differential
uniformity of S-boxes defined by CA, relating them to the correspond-
ing properties of the underlying local rules. To prove our results, we
make use of the following theorem by Nyberg [129], concerning how
the nonlinearity and the differential uniformity of an S-box are af-
fected by adding a coordinate function while maintaining fixed the
number of input variables.

Theorem 23. Let F : Fn2 → Fm2 be a (n,m)–function defined by m coordi-
nate functions f1, · · · , fm : Fn2 → F2. Additionally, let g : Fn2 → F2, and
define F̃ : Fn2 → Fm+1

2 as follows:

F̃(x1, · · · , xn) = (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn),g(x1, · · · , xn)) .
(121)

Then, the following upper bounds hold:

NF(F̃) 6 min{NF(F),NF(g)} . (122)
1

2
δF 6 δF̃ 6 δF . (123)
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Consider now a CA (either with no boundary or periodic boundary
conditions) with n cells and local rule f : Fd2 → F2. How do the non-
linearity and differential uniformity of F change by adding a new cell,
thus obtaining a new CA F̃ of n+ 1 cells? Observe that Theorem 23

cannot be directly applied here, because we need to address the case
where both a coordinate function and an input variable are added to
the original CA. We first address this situation for generic S-boxes
(i. e. not necessarily defined by a CA rule) in the following result:

Theorem 24. Let F : Fn2 → Fm2 be an S-box defined by m coordinate
functions f1, · · · , fm : Fm2 → F2, and let g : Fn+12 → F2 be a Boolean
function defined on n+ 1 variables. Define F̃ : Fn+12 → Fm+1

2 as follows:

F̃(x1, · · · , xn) = (f1(x1, · · · , xn), · · · , fm(x1, · · · , xn),g(x1, · · · , xn+1)) .
(124)

Then, F̃ satisfies the following bounds:

NF̃ 6 min{2 ·NF,Ng} , (125)

δF 6 min{2 · δF, δg} . (126)

Proof. We begin by addressing the bound on nonlinearity. We are go-
ing to analyze the Walsh-Hadamard transform of F̃ by classifying its
component functions as follows:

(i) The 2m − 1 component functions that do not select the new co-
ordinate g, i. e. those described by the vectors ṽ = (v, 0) ∈ Fm+1

2 ,
where v ∈ Fm∗2 .

(ii) The single component function that just selects g, defined by
the vector (0, 1) where 0 ∈ Fm2 .

(iii) Finally, the 2m− 1 component functions that select g and whose
first m coordinates are not all zeros, which are defined by the
vectors ṽ = (v, 1) ∈ Fm+1

2 , where v ∈ Fm∗2 .

Consider the component functions of type (i). Let ṽ = (v, 0) ∈ Fm+1
2 ,

where v ∈ Fm∗2 . Then, the Walsh-Hadamard transform of ṽ · F̃ com-
puted on ω ∈ Fn+12 equals

Wṽ·F̃(ω̃) =
∑

x̃∈Fn+12

(−1)ṽ·F̃(x̃) ⊕ ω̃·x̃ =

=
∑

(x,xn+1)∈Fn+12

(−1)(v,0)·(F(x),g(xn+1)) ⊕ (ω,ωn+1)·(x,xn+1) =

=
∑

(x,xn+1)∈Fn+12

(−1)v·F(x̃) ⊕ ω·x · (−1)ωn+1·xn+1 . (127)
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Let us rewrite the right hand side of Equation (127) by dividing the
sum with respect to the value of xn+1:

Wṽ·F̃(ω̃) =
∑

(x,0)∈Fn+12

(−1)v·F(v)⊕ω·x +
∑

(x,1)∈Fn+12

(−1)v·F(x)⊕ω·x⊕ωn+1 =

=
∑
x∈Fn2

(−1)v·F(x)⊕ω·x + (−1)ωn+1 ·
∑
x∈Fn2

(−1)v·F(x)⊕ω·x .

(128)

Notice that the two sums in Equation (128) correspond to the Walsh-
Hadamard coefficient Wv·F(ω). Thus, it holds that

Wṽ·F̃(ω̃) =

0 , if ωn+1 = 0

2 ·Wv·F(ω) , if ωn+1 = 1
(129)

Hence, by Equation (129) we have that the linearity of F̃ will be at
least twice the linearity of F, from which it follows that

NF̃ 6 2 ·NF . (130)

Let us now consider the component of type (ii), i. e. the one defined
by ṽ = (0, 1). In this case, it is easy to see thatNṽ·F̃ = Ng, which yields

NF̃ 6 Ng . (131)

Since the nonlinearity of F̃ is defined as the minimum nonlinearity
among all its component functions, by combining Equations (130)
and (131) we get

NF̃ 6 min{2 ·NF,Ng} .

We finally address the differential uniformity bound. Given the vec-
tors ã = (a,an+1) ∈ Fn+12 and b̃ = (b,bm+1) ∈ Fm+1

2 , the delta
difference set of F̃ with respect to ã and b̃ is

DF̃(a,b) = {x̃ = (x, xn+1) ∈ Fn+12 : F̃(x̃⊕ ã)⊕ F̃(x̃) = b̃} =
= {x̃ ∈ Fn+12 : [F(x⊕ a),g(x̃⊕ ã)]⊕ [F(x),g(x̃)] = (b,bm+1)} ,

(132)

Where we can further rewrite the right hand side of (132) as:

{x̃ ∈ Fn+12 : [F(x⊕ a)⊕ F(x) = b]∧ [g(x̃⊕ ã)⊕ g(x̃) = bm+1]} =

= {x̃ ∈ Fn+12 : [x ∈ DF(a,b)]∧ [x̃ ∈ Dg(ã, b̃)]} =

= {x̃ ∈ Fn+12 : x ∈ DF(a,b)}∩ {(x, xn+1) ∈ Fn+12 : x̃ ∈ Dg(ã, b̃)} =

= A∩B . (133)

From Equation (133) we have that B = Dg(ã, b̃), and thus its car-
dinality is |B| = δg(ã, b̃). On the other hand, for set A we obtain
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|A| = 2 · |DF(a,b)| = 2 · δF(a,b), since the vectors x̃ in A are con-
structed by taking all vectors x belonging to DF(a,b) and by append-
ing to their right a 0 and a 1. Consequently, it holds that

δF̃(ã, b̃) = |A∩B| 6 min{2 · δF(a,b), δg(ã, b̃)} . (134)

Finally, observe that one can construct the delta difference tables of
maximum cardinality of F̃ by taking all possible intersections between
the delta difference sets of maximum cardinality of F and g. Hence,
the differential uniformity of F̃ satisfies

δF̃ 6 min{2 · δF, δg} . (135)

Of course, the upper bounds given in Equation (125) are not tight.
In fact, the component functions of type (iii) could yield a lower non-
linearity and differential uniformity than those featured by the com-
ponents of types (i) and (ii) considered in the proof of Theorem 24.

Before turning our attention to the CA case, we still need one more
preliminary result about how the nonlinearity and differential unifor-
mity of a Boolean function change by adding dummy variables:

Lemma 12. Let f : Fn2 → F2 be a Boolean function with nonlinearity Nf
and differential uniformity δf. Given t ∈ N, define f̃ : Fn+t2 → F2 for all
x ∈ Fn+t2 as follows:

f̃(x1, · · · , xn, xn+1, · · · , xn+t) = f(x1, · · · , xn) . (136)

Then, the following equalities hold:

Nf̃ = 2
t ·Nf , δf̃ = 2

t · δf . (137)

Proof. We proceed by induction on t.
For t = 1, one can easily see that f̃ is a special case of the vecto-

rial function F̃ considered in Theorem 24 with m = 1, with the dif-
ference that no new output coordinates are added. Hence, the Walsh-
Hadamard transform of f̃ is described by Equation (129), which yields
Nf̃ = 2 ·Nf. On the other hand, for ã = (a,an+1) ∈ Fn+12 and b ∈ F2,
the delta difference set of f̃ is

Df̃(ã,b) = {(x, xn+1) ∈ Fn+12 : f(x⊕ a)⊕ f(x) = b} ,

from which it follows that δf̃(ã,b) = 2 · δf(a,b), and thus δf̃ = 2 · δf.
Next, assume t > 1 and consider the case t+1, with f ′ : Fn+t2 → F2

indicating the function truncated at n+ t variables. Then, by induc-
tion hypothesis the following equalities are satisfied:

NF(f
′) = 2t ·NF(f) ,

δf ′ = 2
t · δf .
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Similarly to the case t = 1, the Walsh coefficients of f̃ : Fn+t+12 → F2

are as in Equation (129), from which one obtains

Nf̃ = 2 ·Nf ′ = 2 · 2
t ·Nf = 2t+1 ·Nf .

(138)

Finally, the delta difference set Df̃(ã,b) is again constructed by ap-
pending a 0 and a 1 to all vectors in Df ′(a,b). Hence, the equality
δf̃(ã,b) = 2 · δf ′(a,b) holds for all ã = (a,an+t+1) ∈ Fn+t+12 , from
which it finally follows that

δf̃ = 2 · δf ′ = 2 · 2
tδf = 2

t+1 · δf .

Leveraging on the above results, we can now prove upper bounds
on the nonlinearity and differential uniformity of S-boxes defined by
CA, both in the no boundary and the periodic settings:

Theorem 25. Let f : Fd2 → F2 and n > d. Then, the NBCA and PBCA F̃

with n input cells and local rule f satisfy the following bounds:

NF̃ 6 2
n−d ·Nf (139)

δF̃ 6 2
n−d · δf . (140)

Proof. We first address the no boundary case. Let F̃ : Fn2 → Fn−d+12 be
a NBCA with local rule f. We proceed by induction on m = n−d+ 1.

For m = 2, we can apply Theorem 24 by setting function F = f and
g : Fd+12 → F2 defined as follows:

g(x1, x2, · · · , xd+1) = f(x2, · · · , xd+1) .

Thus, Theorem 24 yields that

NF̃ 6 min{2 ·Nf,Ng} ,

δf̃ 6 min{2 · δf, δg} .

Additionally, by Lemma 12 we know that

Ng = 2 ·Nf ,

δg = 2 · δf .

Since m− 1 = n− d+ 1− 1 = 1, the three bounds are satisfied in the
base case.

Next, let us assume that m > 2 and consider the case m+ 1, with
F̃ : Fn+12 → Fm+1

2 being the NBCA with n + 1 cells. In particular,
define F : Fn2 → Fm2 as the NBCA with n cells, and g : Fn+12 → F2 as
g(x1, · · · , xn+1) = f(xn−d, · · · , xn+1). Again, Theorem 24 yields

NF̃ 6 min{2 ·NF,Ng} ,

δF̃ 6 min{2 · δF, δg} .
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Figure 31: PBCA S-Boxes

Rule size d

3 4 5 6 7

C
A

si
ze
n

3 2 – – – –

4 4 4 – – –

5 8 8 12 – –

6 16 16 24 24 –

7 32 32 48 48 56

Figure 32: Generic (n,n)-functions

n×n NF

3× 3 2

4× 4 4

5× 5 12

6× 6 24

7× 7 56

Figure 33: Best attainable nonlinearity for PBCA S-boxes and generic S-
boxes up to n = 7 variables.

while by Lemma 12 we obtain

Ng = 2m ·Nf ,

δg = 2m · δf .

Remarking that m+ 1 = n− d+ 1, by induction hypothesis we get

NF̃ 6 2
m ·Nf = 2n−d ·Nf ,

δF̃ 6 2
m · δf = 2n−d · δf ,

which concludes the proof for the NBCA case. Finally, for the peri-
odic case it just suffices to observe that the PBCA is constructed by
adding n − d coordinate functions to the NBCA F̃ without extend-
ing the number of input variables, where the new coordinates always
coincide with the local rule f applied on the rightmost and leftmost
d− 1 cells. Hence, Theorem 23 can be applied here, from which one
deduces that the same bounds for nonlinearity and differential uni-
formity also hold for the PBCA case.

Tables 31 and 32 report the best nonlinearity values respectively
reachable by PBCA as given by Theorem 25, for various values of
d and n, and by generic bijective (n,n)-functions. Table 31 is lower
triangular because the bound of Theorem 25 is meaningful only if
n > d. For the maximum nonlinearity of Nf of the local rule we
considered the quadratic bound, since it is known to be optimal for
balanced Boolean functions of sizes up to d = 7 variables [30]. By
comparing Tables 31 and 32 one can see that the only case where CA
are able to reach the same best values as generic (n,n)-functions is
when d = n, i. e. the rotation symmetric case which corresponds to
the diagonal of Table 31. This also explains from a theoretical point of
view why the nonlinearity of the CA χ used in Keccak is suboptimal
with respect to the Sidelnikov-Chabaud-Vaudenay bound, since the
neighborhood size of the rule is d = 3while n = 5. Rule χ is, however,
optimal with respect to the nonlinearity bound given in Theorem 25.
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11.2 heuristic design of ca-based s-boxes

The number of S-boxes induced by CA is much smaller than the total
number of S-boxes. In fact, as a CA is defined by a single Boolean
function f : Fd2 → F2, the number of CA-based S-boxes is 22

d
for any

size n ∈N of the cellular array. On the other hand, generic S-boxes of
size n×n can be exhaustively searched only up to n = 4, since their
total number is n ·2n. This has been done by Leander and Poschmann
in [104], where the authors classified the nonlinearity and differential
uniformity of all 4× 4 S-boxes up to affine equivalence.

In the case of cellular automata, the truth table approach would
allow to exhaustively search the set of all n× n S-boxes up to diam-
eter d = 5, since this corresponds to the set of Boolean functions of
5 variables. As we have seen in the previous section, the truth table
approach yields a lot of information about the cryptographic proper-
ties of the resulting S-boxes; on the other hand, it does not give many
insights about their implementation properties such as area, latency and
power, which are equally important in the design of real-world block
ciphers. As argued in [145], using a tree representation of a CA local
rule gives a better approximation of the implementation cost of the
resulting S-box. The downside of this solution is that the space of
Boolean trees is too huge to be exhaustively searched even for small
sizes such as 4× 4.

To address this problem, in this section we design a Genetic Pro-
gramming algorithm to heuristically search for CA-based S-boxes with
good cryptographic properties. The experimental results show that
GP is able to evolve S-boxes with optimal cryptographic properties
for sizes up to 7× 7. Finally, we perform an exhaustive search of all
CA-based S-boxes of sizes 3× 3 and 4× 4 using the truth table ap-
proach, and then classify them up to affine equivalence with respect
to their nonlinearity and differential uniformity.

11.2.1 Genetic Programming Approach

We saw in Section 6.2.2 that Genetic Programming (GP) is a heuris-
tic optimization algorithm especially suited for solutions that can be
encoded as trees. In our quest of good S-boxes based on CA, we em-
ployed GP to evolve trees representing Boolean functions of n vari-
ables used as CA local rules. In particular, we assumed the following:
the state of the CA is represented with a periodic array of size n. The
elements of the binary array are used as Boolean variables in a GP
tree (GP leaves), where the variable c0 denotes the value that is being
updated. The variables c1, · · · , cn−1 denote the cells to the right of
the current cell. Additionally, the neighborhood of a cell is formed by
the cell itself and the n− 1 cells to its right, so each value in the cur-
rent state can be used in a local update rule, which corresponds to the
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case of rotation symmetric S-boxes (i. e. d = n). As discussed in the
previous section, this is motivated by the fact that the CA nonlinearity
bound given by Theorem 25 coincides with the Sidelnikov-Chabaud-
Vaudenay bound in this case.

For the function set, we adopted the following operators: NOT ,
which inverts its single argument, XOR, NAND, NOR, each of which
takes two input arguments. Additionally, we used the function IF,
which takes three arguments and returns the second one if the first
one evaluates to true, and the third one otherwise. This function cor-
responds to the multiplexer gate (MUX).

Our GP algorithm evaluates a candidate solution in the following
manner: all the possible 2n input states are considered, and for each
state the same local rule is applied in parallel to each of the variables
to determine the next state. The obtained global rule represents a
candidate S-box that is then evaluated according to the desired cryp-
tographic criteria.

For the fitness function, we required that the evolved S-boxes are
balanced (i. e. bijective), with high nonlinearity and low differential
uniformity. We structured our fitness function in two stages as fol-
lows. First, the balancedness is verified, and if an S-box is balanced,
we assign it a value of 0, otherwise the value equals −1; this is de-
noted with the label BAL. We then calculate the nonlinearity and
differential uniformity only if the S-box is balanced. In particular, the
differential uniformity is subtracted from the value 2n, since the ob-
jective is to minimize this property.

The fitness function maximized by our GP algorithm is thus the
following:

fitness = BAL+∆BAL,0

(
NF +

(
1−

nMinNF
2n

)
+ (2n − δF)

)
,

(141)
where ∆BAL,0 represents the Kronecker delta function that equals one
when the function is balanced (i. e. BAL = 0) and zero otherwise and
nMinNF represents the number of occurrences of the current value
of NF in the population. Since the difference in neighboring levels of
nonlinearity is always at least 2 (due to the fact that we considered
only bijective S-boxes), the part of the expression including nMinNF
acts as a secondary criterion which is effectively being minimized and
assumes values in the range [0, 1].

For the selection operator, we used a modified version of tourna-
ment selection with t = 3, where the worst of three randomly selected
individuals is eliminated and then crossover is applied to the remain-
ing two individuals from the tournament. The rationale behind this
variant is that it does not require specifying a crossover probability.
The new individual is then mutated with a probability of 0.5. We note
that we used the mutation probability to select whether an individ-
ual would be mutated or not, and the mutation operator is executed
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only once on a given individual; e. g. if the mutation probability is 0.5,
then on average 5 out of every 10 new individuals will be mutated
and one mutation will be performed on each of those 5 individuals.

As variation operators we adopted simple tree crossover, uniform
crossover, size fair, one-point, and context preserving crossover (se-
lected at random), and subtree mutation [148]. All our experiments
suggested that having a maximum tree depth equal to the size n of
the S-box is sufficient. The initial population is created at random and
every experiment is repeated 50 times.

Algorithm 2 reports the pseudocode of our overall GP heuristic.

Algorithm 2 Genetic Programming for evolving CA-based S-boxes
repeat

randomly select 3 individuals;
remove the worst of 3 individuals;
child = crossover (remaining two individuals);
perform mutation on child, with given individual mutation
probability;
generate CA-based S-box using child Boolean function
evaluate S-box
assign fitness to child
insert child into population;

until stopping criterion reached

In order to examine the influence of the GP parameters, we car-
ried out a tuning phase for the stopping criterion and the popula-
tion size. The starting set of parameters was tested on S-boxes of size
n = 6, with population 500, 1000, and 2000, for which 30 runs were
executed. Although there were no significant differences, the best re-
sults in terms of average fitness value and number of optimal solu-
tions were obtained with a population size of 2000, which we used in
the subsequent experiments. Finally, we set the stopping criterion to
2000000 fitness evaluations, since no change of the best solution was
detected afterwards.

11.2.2 GP Results

Table 12 reports the statistical results of our heuristic search, averaged
over the best obtained values for each run. Column T_max denotes
the theoretical maximal value of our fitness function, determined by
the Sidelnikov-Chabaud-Vaudenay bound for nonlinearity and the
APN bound for differential uniformity. This column serves as an in-
dicator of the performance of our search technique.

By observing the table, one can see that the problem is easy for
S-boxes of sizes 4 × 4 and 5 × 5. Indeed, in the former case all ex-
periments finished with the optimal value, while in the latter most
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of the runs reached an optimal solution. For the 6× 6 case, we ob-
serve a larger standard deviation, but the obtained value is still high.
Subsequently, one can remark that the problem becomes difficult for
S-boxes of size 7× 7, although there are a few runs reaching the op-
timal value. Finally, for the 8× 8 size the results do not even come
close to the optimal value.

Observe that for 4× 4, 5× 5, and 7× 7 sizes we obtained S-boxes
with the best possible values of nonlinearity and differential unifor-
mity, i. e. Almost Perfect Nonlinear (APN) permutations. In the 6× 6
case, our best solution is just slightly suboptimal with respect to the
differential uniformity property. As a matter of fact, the permutation
discovered by Dillon [23] is APN, and thus its differential uniformity
equals 2, while our solution has differential uniformity equal to 4.

Table 12: Statistical results and comparison.

S-box size T_max GP NF δF

Max Avg Std dev

4× 4 16 16 16 0 4 4

5× 5 42 42 41.73 1.01 12 2

6× 6 86 84 80.47 4.72 24 4

7× 7 182 182 155.07 8.86 56 2

8× 8 364 318 281.87 13.86 82 20

In Table 13 we display statistics for the tree sizes for every S-box
dimension. Note that the values are averaged over all runs and not
only over those that resulted in S-boxes with optimal values. The two
most interesting cases seem to be 4× 4 and 8× 8. In the former case,
it appears to be easy to obtain optimal values (note that in all runs
we obtained optimal solutions as given in Table 12), and therefore GP
easily found even longer rules that result in optimal S-boxes. In the
latter case, we see that even finding solutions that result in bijective S-
boxes with suboptimal properties requires on average long trees. We
consider this to be one of the reasons for relative lack of success in
the 8× 8 case. In other terms, one would need much larger trees and
consequently much longer evolution time to obtain better solutions.

11.2.3 Exhaustive Search Results

In this section, we concentrate on S-boxes up to 5× 5 size, i. e. those
that can be exhaustively checked under the truth table representation.
First, in Table 14 we classify CA-based S-boxes of sizes 3× 3, 4× 4,
and 5× 5. Column SnCA represents the number of S-boxes defined by
PBCA with diameter equal to the array length (d = n, i. e. the number
of Boolean functions of n variables). Furthermore, columns BnCA and
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Table 13: Tree sizes, Equation (141)

S-box size Min Max Avg Std dev

4× 4 8 103 48.77 25.03

5× 5 6 67 26.27 11.93

6× 6 9 82 35.13 18.71

7× 7 6 64 30.63 14.77

8× 8 15 119 68.7 28.93

Opt(BnCA) stand for the number of bijective CA-based S-boxes of size
n and the number of optimal bijective CA-based S-boxes, respectively.
Here, by optimal we consider having the largest possible nonlinearity
and the smallest possible differential uniformity.

Table 14: Exhaustive classification of CA-based S-boxes up to size 5× 5
n×n SnCA Opt(BnCA)

3× 3 256 36 12

4× 4 65536 1536 512

5× 5 4294967296 22500002 2880

As one can see from the table, only a small part of these CA-based
S-boxes is bijective. Moreover, the number of optimal S-boxes which
are also bijective is even smaller. We emphasize that Opt(BnCA) is
the number of optimal CA-based S-boxes, since other generic S-boxes
which are affine equivalent to these cannot be defined by a CA.

For sizes larger than 5 × 5, an exhaustive search is not possible.
Still, a simple estimation can be made. The total number of CA-based
S-boxes equals the number of Boolean functions of the corresponding
size, i. e. 22

n
. Next, the number of balanced Boolean functions of size

n equals
(
2n

2n−1

)
, which also represents a trivial upper bound on the

number of bijective CA-based S-boxes, due to the balancing property
of surjective CA (see Section 2.3). As an example, for size 5× 5, the
number of bijective S-boxes defined by CA represents only the 26.7%
of the possible balanced Boolean functions of size 5.

We now give a classification of bijective CA-based S-boxes up to
affine equivalence for n = 3, 4, since in the 5× 5 case the resulting
quotient space is too large to be exhaustively searched. Tables 15

and 16 report the results of this classification. Each row of these ta-
bles specifies the number of the class, the truth table of its representa-
tive in hexadecimal format, the number of CA S-boxes inside it, and
whether this class is optimal or not with respect to nonlinearity and
differential uniformity.
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Table 15: Equivalence classes of bijective 3× 3 CA S-boxes

Class Representative #S-boxes Optimal

0 0, 1, 2, 3, 4, 5, 6, 7 6 No

1 0, 1, 2, 3, 4, 5, 7, 6 6 No

2 0, 1, 2, 3, 4, 6, 7, 5 12 No

3 0, 1, 2, 4, 3, 6, 7, 5 12 Yes

The optimal trade-off of nonlinearity and differential uniformity
for 3× 3 S-boxes is reached when both of them equal 2. On the other
hand, for the 4× 4 size an optimal S-box has both nonlinearity and
differential uniformity equal to 4. There are in total 16 equivalence
classes of 4× 4 generic S-boxes with such properties, which are de-
noted as G0, . . . ,G15 by Leander and Poschmann [104].

As it can be observed from Tables15 and 16, in the 3× 3 case one of
the classes is optimal, while for 4× 4 size there are 4 optimal classes
out of 18.

11.3 conclusions

In this chapter we considered the S-boxes arising from cellular au-
tomata. Specifically, we first showed upper bounds for the nonlin-
earity and differential uniformity achievable by CA, both in the no
boundary and periodic boundary settings. Seeing that the nonlin-
earity bound equals the Sidelnikov-Chabaud-Vaudenay bound only
when the local rule diameter equals the CA length, we then applied
a heuristic approach based on Genetic Programming to evolve CA
rules correspnding to rotation symmetric S-boxes with good crypto-
graphic properties. The experimental results suggest that our method
has a great potential, since it is able to produce optimal S-boxes up to
dimension 7× 7.

On the basis of the presented results one can observe that for di-
mensions from 4 × 4 up to 7 × 7 it is possible to find CA rules
that result in S-boxes with very good cryptographic properties. Here,
only the 6× 6 case remains slightly suboptimal when compared to
the APN permutation found by Dillon [23].

When considering the 8× 8 case, the obtained CA rules resulted in
suboptimal S-boxes which are far from the results achieved by other
heuristics techniques (see e. g. [139]). We also observed that the av-
erage tree sizes of 8× 8 rules are significantly larger when compared
with the other considered dimensions, which is likely an indicator of
a more complicated evolution process.

Naturally, since not all S-boxes can be represented with a cellular
automaton rule, our technique cannot be used to design all optimal
S-boxes of the corresponding size. Nevertheless, we are confident that
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Table 16: Equivalence classes of bijective 4× 4 CA S-boxes

Class Representative #S-boxes Optimal

0 F,D,B, 9, 7, 5, 3, 1,E,C,A, 8, 6, 4, 2, 0 16 No

1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C,D, F,E 32 No

3 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,D,E, F,C 32 No

4 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,D,C, F,E 16 No

6 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,C,B,D, F,E 32 No

9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,C,D,E,B, F 64 No

41 0, 1, 2, 3, 4, 5, 7, 6, 8,A, 9,C,B, F,E,D 128 No

193 0, 1, 2, 3, 4, 5, 8,A, 6,C, 7, F,D,B, 9,E 128 No

270 0, 1, 2, 3, 4, 6, 8,B, 5,C, 9,D,E,A, 7, F 128 Yes (G4)

272 0, 1, 2, 3, 4, 6, 8,B, 5,C,D, 7, 9, F,A,E 128 Yes (G6)

273 0, 1, 2, 3, 4, 5, 8,A, 6,C, 7, F,E,B, 9,D 128 No

278 0, 1, 2, 3, 4, 6, 8,B, 5,C,D, 7,A, F, 9,E 128 Yes (G5)

279 0, 1, 2, 3, 4, 5, 8,A, 6,B,C, 7,D, F,E, 9 128 No

281 0, 1, 2, 3, 4, 5, 7, 8, 6, 9,A,C, F,B,D,E 128 No

282 0, 1, 2, 3, 4, 6, 8,B, 5,C,D, 7, F, 9,E,A 128 Yes (G3)

288 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,C,E, F,B,D,A 32 No

289 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,C,E,B, F,D,A 64 No

291 0, 1, 2, 3, 4, 5, 7, 6, 8,A, 9,B,C, F,E,D 64 No

294 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,B,A,E, F,D,C 32 No

the corpus of obtainable functions is still large enough to give a suf-
ficient diversity in the design of future block ciphers. As a closing
remark, we note that the GP approach also offers easy handling of
the resulting S-box latency and area when implemented in hardware,
a property which makes our methodology even more usable.





12

R E S I L I E N T A N D A S Y N C H R O N O U S I M M U N E C A

This chapter is divided in two parts. In the first one, we conclude
our analysis of the cryptographic properties of CA global rules by
addressing their resiliency. As we saw in Chapter 3, the resiliency
criterion of vectorial Boolean functions is relevant in the context of
pseudorandom generation for stream ciphers. Beside that, we also re-
marked that the resiliency order of vectorial functions is linked to the
minimum distance of linear codes. Our motivation for studying error-
correcting codes induced by CA is always of cryptographic nature: as
we observed in Chapter 4, MDS codes play an important role in the
diffusion layers of block ciphers.

We first show that the global rules of bipermutive NBCA are always
at least 1–resilient, thus generalizing the result in [106] about biper-
mutive local rules. We then prove an equivalence between linear CA
and linear cyclic codes. Leveraging on our discussion in Chapter 10,
we show how the systematic encoding of cyclic codes actually corre-
sponds to the preimage computation process of the all-zeros configu-
ration in linear CA, the latter being equivalent to the concatenation of
a LFSR disturbed by the null linear recurring sequence. On the other
hand, syndrome computation is equivalent to the application of the
NBCA global rule. To sum up these results, we show how the (7, 4, 3)
cyclic Hamming code can be implemented using a NBCA of length
n = 7 and diameter d = 5.

In the second part of this chapter, we introduce a new crypto-
graphic criterion related to asynchronous cellular automata, a general-
ized CA model where some cells do not update their state. The prop-
erty that we consider is asynchrony immunity (AI), which could be of
interest in the context of side-channel attacks, where the targeted vul-
nerability does not involve the mathematical structure of the cipher,
but rather its implementation. In particular, the side-channel attack
model motivating our investigation of AI is the following. Suppose
that a CA of length n is used as an S-box in a block cipher, and that an
attacker is able to inject clock faults by making t cells not updating. If
the CA is not (t,n)–AI, then the attacker could gain some information
on the internal state of the cipher by analyzing the differences of the
output distributions in the original CA and the asynchronous CA. We
remark that, as far as we know, this kind of side-channel attacks have
also been applied in the literature to stream ciphers based on clock-
controlled LFSRs [78]. Hence, this could represent another motivation
for investigating asynchrony immunity in CA, given the equivalence
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between concatenated LFSRs and preimage computation of linear CA
uncovered in Chapter 10.

The rest of this chapter is structured as follows. In Section 12.1,
we prove that the global rules of bipermutive CA are always at least
1–resilient. We then show the connection between linear cyclic codes
and linear CA, and exemplify the presented results by showing how
to simulate the (7, 4, 3) cyclic Hamming codes using a linear NBCA.
Next, in Section 12.2 we define the considered model of asynchronous
CA and formally introduce the definition of asynchrony immunity,
giving some basic theoretical results regarding this property. Sub-
sequently, we perform a computer search of (3, 10)–asynchrony im-
mune CA up to diameter d = 4, classifying them with respect to
their nonlinearity. We finally summarize the results of this chapter in
Section 12.3.

12.1 resilient functions and cyclic codes from ca

12.1.1 1–Resiliency of Bipermutive NBCA

We now show that bipermutive no boundary CA are always at least
1–resilient when considered as vectorial Boolean functions. To this
end, recall that a rule f : Fd2 → F2 of diameter d ∈N is bipermutive if
it is defined as

f(x1, x2, · · · , xd−1, xd) = x1 ⊕ g(x2, · · · , xd−1)⊕ xd (142)

for all x = (x1, x2, · · · , xd−1, xd) ∈ Fd2 , where g : Fd−22 → F2.
In what follows, we will make use of the following secondary con-

struction of resilient Boolean functions, originally proved by Siegen-
thaler [167]:

Lemma 13. Let I = {i1, · · · , it+1} ⊆ [n] and J = {j1, · · · , jn−t−1} =

[n] \ I be complementary sets of indices. Additionally, let f : Fn2 → F2 be a
Boolean function of n variables defined as

f(x1, · · · , xn) = g(xj1 , · · · , xjn−t−1)⊕ xi1 ⊕ · · · ⊕ xit+1 ,

where g : Fn−t−12 → F2 is a Boolean function of n− t− 1 variables. Then,
f is t–resilient.

Hence, XORing a new variable increases by 1 the resiliency order
of f. Clearly, this means that any bipermutive local rule is also a 1–
resilient Boolean function1.

The following result characterizes the component functions of a
cellular automaton based on a bipermutive rule:

1 This fact was independently rediscovered much later in the context of CA by Lepo-
rati and Mariot [105], without using Siegenthaler’s construction.
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Lemma 14. Let n,d ∈ N and let F : Fn2 → Fn−d+12 be a CA of length n
defined by a bipermutive local rule f : Fd2 → F2. Given m = n− d+ 1, the
component function v · F is bipermutive for all v ∈ Fm2 \ {0} as well.

Proof. Let f be defined as in Equation (142). Given v ∈ Fm2 \ {0}, recall
that the support of v is supp(v) = {i : vi 6= 0}. Then, the component
function v · F can be expressed as:

v · F = xi1 ⊕ g(xi1+1, · · · , xi1+1+d−2)⊕
⊕ xi1+d−1 ⊕ · · · ⊕ xik⊕
⊕ g(xik+1, · · · , xik+d−2)⊕ xik+d−1 . (143)

Notice that the leftmost and rightmost variables xi1 and xik+d−1 ap-
pear exactly once in Equation (143), thus they are never canceled. Let
G be the Boolean function defined as:

G(xi1+1, · · · , xik+d−2) = g(xi1+1, · · · , xi1+d−2)⊕
⊕ xi1+d−1 ⊕ · · · ⊕ xik⊕
⊕ g(xik+1, · · · , xik+d−2) . (144)

Hence, the component function v · F has the form:

v · F = xi1 ⊕G(xi1+1, · · · , xik+d−2)⊕ xik+d−1 . (145)

As a consequence, v · F is bipermutive.

By combining Lemmas 13 and 14, we get the following result:

Theorem 26. Let n,d ∈ N with n > d and let F : Fn2 → Fn−d+12 be a
NBCA of length n defined by a bipermutive local rule f : Fd2 → F2. Then,
F is at least 1–resilient.

12.1.2 Linear CA and Cyclic Codes

Recall that a NBCA F : Fnq → Fn−d+1q is called linear over the finite
field Fq if its local rule is defined as f(x1, · · · xd) = a1x1⊕ · · · ⊕adxd,
with ai ∈ Fq for all i ∈ {1, · · · ,d}. In this case, we can define the
polynomial associated to f as follows:

pf(x) = a1 + a2x+ · · ·+ ad−1xd−2 + adxd−1 , 0 (146)

i. e. pf(x) ∈ F2[x] is a polynomial of degree d − 1 with coefficients
over Fq. The global rule of F is described by a (n−d+1)×n transition
matrix MF of the following form:

MF =


a1 · · · ad 0 · · · · · · · · · · · · 0

0 a1 · · · ad 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 a1 · · · ad

 . (147)
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Figure 34: Concatenation of a LFSR with a n−m zeros.

In particular, when the CA is both bipermutive and linear we have
a1 6= 0 and ad 6= 0. The application of the CA global rule F to a
configuration x ∈ Fnq corresponds to the multiplication y =MFx

>. In
what follows, we cosider only the case of binary linear CA, i. e. q = 2.

One can notice that the generator and parity check matrices of
Equation (24) in Theorem 8 have the same form of the linear CA
matrix in Equation (147). In particular, the systematic encoding for
cyclic codes described above can be simulated through cellular au-
tomata. As observed in Chapter 10, computing a preimage of a spa-
tially periodic configuration in a linear bipermutive CA is equivalent
to a concatenation of LFSR, where the LFSR associated to the local
rule is disturbed by the LFSR which generates the spatially periodic
configuration. In our case, we are only interested in a preimage of
a finite configuration. Thus, the general scheme consists of the LFSR
associated to the rule where the feedback is additively disturbed by
the bits of the configuration. If one takes the all-zeros configuration 0,
it can be observed that the resulting concatenated LFSR of Figure 34

is equivalent to the LFSR used for the systematic encoding of a cyclic
code (see e. g. [117, 75]). As a matter of fact, adding a sequence of
zeros to the feedback of a LFSR does not change its dynamics. In the
context of cellular automata, the system represented in Figure 34 is
equivalent to the computation of a preimage of 0 ∈ Fn−m2 , in particu-
lar the preimage determined by the m-bit block µ.

We have thus proved the following result:

Theorem 27. Let F : F
m+ρ
2 → Fm2 be a linear cellular automaton defined

by a local rule f(x) = a1x1 ⊕ · · · ⊕ adxd of diameter d = ρ + 1 with
ρ ∈ N, and let g(x) = a1 + a2x+ · · ·+ adxρ be the polynomial associ-
ated to f. If g(x) divides xn − 1 where n = m + ρ, then F is equivalent
to a cyclic code C of length n and dimension m. The generator matrix of
C is the CA matrix MF associated to F, while g(x) is the generator poly-
nomial of C. Additionally, let h̃(x) = hm + hm−1x+ · · ·+ h0xm be the
reciprocal of the parity check polynomial h(x) = (xn − 1)/g(x), and let
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f̃(x) = hmx1 ⊕ · · · ⊕ h0xm+1 be the corresponding local rule. Then, the
matrix MF̃ associated to the linear CA F̃ : F

m+ρ
2 → F

ρ
2 induced by rule f̃

is a parity check matrix for C, and C = F̃−1(0).

In other words, by Theorem 27 we can implement a linear cyclic
code of length n and dimension m with a no boundary cellular au-
tomaton as follows:

1. Given m and n = m+ ρ with ρ ∈ N, determine a local rule f
of diameter d = ρ+ 1 such that the associated polynomial g(x)
divides xn − 1.

2. Compute the reciprocal h̃(x) of the parity check polynomial
h(x) = (xn − 1)/g(x), and determine the corresponding local
rule f̃ of diameter m+ 1.

3. Systematic encoding: Let F̃ : F
m+ρ
2 → F

ρ
2 be the linear CA of

length n induced by f̃. A message µ ∈ Fm2 is encoded by com-
puting the preimage x ∈ F̃−1(0) whose leftmost m-bit block
equals µ. This preimage is computed by the LFSR in Figure 34.

4. Syndrome computation: given x ∈ F
m+ρ
2 , the syndrome of vector

x is s = F̃(x). If the syndrome s equals 0 ∈ F
ρ
2 then x is a code-

word of C. Otherwise, one can apply the syndrome decoding
procedure to retrieve the original codeword.

Notice that up to now we did not consider the minimum distance of
the cyclic codes generated through linear CA, which is necessary in
order to assess their error-correction capability. This is where the CA
resiliency order comes into play. We already know from Section 12.1.1
that all bipermutive CA are always at least 1–resilient, thus a linear
and bipermutive CA which satisfies the hypotheses of Theorem 27 is
equivalent to a linear cyclic code with minimum distance at least 2.
More in general, we can refine Theorem 27 on account of Theorem 16

reported in Chapter 3 as follows:

Theorem 28. Let F : F
m+ρ
2 → Fm2 be a linear CA satisfying the hypotheses

of Theorem 27. If F is (d− 1)–resilient, then the cyclic code associated to F
has minimum distance d.

12.1.3 Cyclic Hamming Codes through Linear CA

To sum up the results presented in the previous section, we show an
example of cyclic code generated by a linear CA. In particular we
focus on cyclic Hamming codes, which have minimum distance 3 and
can thus correct up to 1 error [75]. The main reason for this choice is
the simplicity of syndrome decoding. As a matter of fact, the position
of the column that includes the value of the syndrome in the parity
check matrix H of a Hamming code is the position where the error
occurred.
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Example 2 (The (7, 4, 3) cyclic Hamming code). Let F : F72 → F42 be the
linear CA induced by the local rule f : F42 → F2 defined for all x ∈ F42 as
f(x) = x1⊕ x2⊕ x4. The associated polynomial is g(x) = 1+ x+ x3, while
the CA matrix is:

MF =


1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

 . (148)

The polynomial g(x) divides x7 − 1, and we have h(x) = (x7 − 1)/g(x) =

1+x+x2+x4. Further, we can deduce from matrixMF that F is 2–resilient.
As a matter of fact, it is not difficult to see by exhaustive enumeration that
each nonzero vector v results in a sum of rows which always have at least 3
ones. Hence, by Theorem 28 the code C associated to F is the (7, 4, 3) cyclic
Hamming code. Remark that h̃(x) = 1+ x2+ x3+ x4 is the reciprocal of the
parity check polynomial h(x). The local rule f̃ associated to the polynomial
h̃(x) is f̃(x) = x1 ⊕ x3 ⊕ x4 ⊕ x5, and thus it has diameter d = 2. The
Wolfram code representing the truth table of f̃ is 1768527510, while the
transition matrix of the linear CA F̃ : F72 → F32 induced by f̃ is:

MF̃ =

1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

 . (149)

Let µ = (0, 1, 1, 0) ∈ F42 be a 4-bit message. The systematic encoding of
µ under the Hamming code (7, 4, 3) can be accomplished by computing the
preimage x of (0, 0, 0) under the action of F̃, with the leftmost 4 bits of x
initialized to µ. This process is depicted in Figure 37. Hence, the codeword
corresponding to µ is x = (0, 1, 1, 0, 1, 0, 0).

Let us now assume that x is transmitted through a noisy channel and the
fourth bit of x is flipped, thus yielding the word x̃ = (0, 1, 1, 1, 1, 0, 0). The
receiver applies to x̃ the CA F̃ defined by rule 1768527510, thus obtaining
the syndrome s = F(x) = (1, 1, 0), as shown in Figure 40(a). To correct the
error, the receiver looks at the CA matrix MF̃ and finds that the syndrome
appears in the fourth column. Thus, the receiver knows that a transmission
error has occurred in the fourth position of x̃, and the original codeword can
be recovered as x̃⊕ (0, 0, 0, 1, 0, 0, 0) = x.

0 = 0 0 0

110x = 0 ? ? ?

µ

Figure 35: Initialization

0 = 0 0 0

110x = 0 1 0 0

µ

Figure 36: Complete codeword

Figure 37: Example of systematic encoding of using rule 1768527510.
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s = 1 1 0

110x = 1 1 0 0

∗

Figure 38: Syndrome computation

1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1


↑

Figure 39: Error correction

Figure 40: Example of error correction using rule 1768527510. The cell
marked by ∗ indicates where the error occurred.

12.2 asynchronous immune ca

12.2.1 Basic Definition and Properties of Asynchrony Immunity

Let F : Fn2 → Fn−d+12 be a no boundary CA of length n and local
rule f : Fd2 → F2. Additionally, let I = {i1, · · · , it} ⊆ [m] be a subset
of indices of the output variables of the CA, where m = n− d+ 1.
The t–asynchronous CA (t–ACA) F̃I induced by I on F is obtained by
preventing the input variables xi1 , · · · , xit to update. In particular, for
all indices ik ∈ I the coordinate function fik equals the identity, while
fj still corresponds to the local rule f applied to the neighborhood
{j, · · · , j+ d− 1} for all remaining indices j ∈ J = [m] \ I.

The property of asynchrony immunity can be described by a three-
move game between a user and an adversary. Let d,m ∈ N, with
m = n− d+ 1 and t 6 m. The game works as follows:

1. The user chooses a local rule f : Fd2 → F2 of diameter d

2. The adversary chooses j 6 t cells in the range [m].

3. The user evaluates the output distribution D of the no bound-
ary CA F : Fn2 → Fn−d+12 and the distribution D̃ of the asyn-
chronous CA F̃ : Fn2 → Fn−d+12 where the t cells selected by the
adversary are not updated

4. Outcome: if both D and D̃ equal the uniform distribution, the
user wins. Otherwise, the adversary wins

Recall that a CA F : Fn2 → Fn−d+12 is balanced if for all y ∈ Fm2
it holds that |F−1(y)| = 2d−1. Then, F is called (t,n)–asynchrony im-
mune if, for all j 6 t, the asynchronous CA F̃ : Fn2 → Fn−d+12 result-
ing from not updating any subset of j cells of F is balanced as well.
Thus, asynchrony immune CA rules represent the winning strategies
of the user in the above game.

Notice the difference between the asynchrony immunity game and
the t–resilient functions game introduced in [41]: in the latter, generic
vectorial Boolean functions F : Fn2 → Fm2 are considered instead of
cellular automata, and the adversary selects both values and positions
of the t input variables. As a matter of fact, the winning strategies
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of that game actually correspond to the usual definition of resilient
(n,m)–functions.

We formally define asynchrony immunity in CA as follows:

Definition 32. Let m,n,d, t ∈N withm = n−d+ 1 and t 6 m, and let
f : Fd2 → F2 be a local rule of diameter d. The NBCA F : Fn2 → Fn−d+12

defined by rule f is (t,n)–asynchrony immune ((t,n)–AI) if, for all sets
I ⊆ {0} ∪ [m] with |I| 6 t, the t–ACA F̃I : Fn2 → Fm2 is balanced, i. e.
|F̃−1I (y)| = 2d−1 holds for all y ∈ Fm2 .

Remark 2. The definition of (t,n)–asynchrony immunity implies in par-
ticular that the CA itself is balanced, since if |I| = 0 then we get the syn-
chronous global rule F. This also means that the local rule must be a balanced
Boolean function as well.

Among all possible 22
d

rules of diameter d, we are interested in
finding all local rules inducing asynchrony immune CA that satisfy
additional useful cryptographic properties, such as high nonlinearity.
As a consequence, proving necessary conditions for (t,n)–AI helps
one to prune the search space for possible candidates.

We begin by showing that asynchrony immunity is invariant under
reflection and complement. To this end, recall that the reverse of a
vector x = (x1, · · · , xn) is the same vector arranged in reverse order,
i. e. xR = (xn, · · · , x1), while the complement of x is defined as the
vector xC = (1⊕ x0, · · · , 1⊕ xn). Given f : Fd2 → F2, the reflected and
complemented rules fR and fC are respectively defined as fR(x) = f(xR)
and fC(x) = 1⊕ f(x), for all x ∈ Fd2 . For all n > d, the reflected and
complemented NBCA FR : Fn2 → Fn−d+12 and FC : Fn2 → Fn−d+12

are respectively defined for all x ∈ Fn2 as follows:

FR(x) = F(xR)R = (f(xd, · · · , x1), · · · , f(xn, · · · , xn−d+1)) , (150)

FC(x) = 1⊕ F(x) = (1⊕ f(x1, · · · , xd), · · · , 1⊕ f(xn−d+1, · · · , xn)) .
(151)

The following result shows that asynchrony immunity is preserved
under reflection and complement.

Lemma 15. Let f : Fd2 → F2 be a local rule inducing a (t,n)–AI NBCA
F : Fn2 → Fm2 , with m = n− d+ 1 and t 6 m. Then, the reflected and
complemented rules fR and fC are (t,n)–AI as well.

Proof. Let I = {i1, · · · , il} ⊆ [m], with l 6 t. For the reflected rule fR,
we know by (150) that FR(x) = F(xR)R. It follows that the reflection of
the l-ACA F̃I is defined as:

F̃RI (x) = F̃J(x
R)R = (f(xd, · · · , x1), · · · , xj1 , · · · , xjl , · · · , f(xn, · · · , xm)) ,

(152)
where J = {j1, · · · , jl} and js = m − is for all 1 6 s 6 l. Rule f
induces a (t,n)–AI NBCA and J is still a set of l 6 t indices, thus
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|F−1(y)| = |F̃−1J (y)| = 2d−1 for all y ∈ Fm2 . Since the reverse operator
is a bijection over both Fn2 and Fm2 , by Equation (152) it results that
|(FR)−1(y)| = |F−1(y)| and |(F̃RI )

−1(y)| = |F̃−1J (y)|. Thus, the reflected
CA FR is (t,n)–AI as well.

Analogously, with rule fC the l-ACA F̃I is defined as:

F̃CI (x) = (1⊕ f(x1, · · · , xd), · · · , xi1 , · · · , xil , · · · , 1⊕ f(xm, · · · , xn)) .
(153)

Hence we can compute F̃CI by XORing F̃I with a bitmask composed of
all 1s excepts in the positions i1, · · · , il. Since this operation is again
a bijection over Fm2 and F is (t,n)–asynchrony immune, it means that
|(FC)−1(y)| = |F−1(y)| = 2d−1 and |(F̃CI )

−1(y)| = |F̃−1I (y)| = 2d−1 for
all y ∈ Fm2 . Thus, FC is also (t,n)–AI.

12.2.2 Search of AI Rules up to 4 Variables

In order to search for asynchrony immune NBCA having additional
cryptographic properties, by Remark 2 and Lemma 15 we only need
to explore balanced rules under the equivalence classes induced by re-
flection and complement. We performed an exhaustive search among
all elementary rules of diameter d = 3 in order to find those inducing
(t,n)–asynchrony immune CA with t = 3 and n < 10. The reason
why we limited our analysis to these particular values is twofold.
First, checking for asynchrony immunity is a computationally cum-
bersome task, since it requires to determine the output distribution
of the t-ACA for all possible choices of at most t blocked cells. Second,
the S-boxes employed as nonlinear components in several real-world
cryptographic primitives, such as Keccak [15], are not large: usually,
their size do not exceed 8.

In our quest for asynchrony immune CA we also took into ac-
count the nonlinearity property of the underlying local rules. Up to
reflection and complement, and neglecting the identity rule that triv-
ially satisfies AI for every length n and order t, we found that only
rule 60 generates asynchrony immune CA for all lengths n < 10.
Since rule 60 is linear, however, it is not interesting from the cryp-
tographic standpoint. We thus extended the search by considering
all local rules of diameter d = 4. The search returned a total of 18
rules that generate (t,n)–asynchrony immune CA with t = 3 and
n 6 10, among which several of them are nonlinear. Table 1 reports
the Wolfram codes of the discovered rules, along with their nonlin-
earity values and algebraic normal form (ANF). One can notice from
the ANF column in Table 17 that all discovered rules depend on the
input variable x1 in a linear way. Hence, each rule can be written as
f(x1, x2, x3, x4) = x2 ⊕ g(x1, x3, x4), where g : F32 → F2. This means
that the discovered rules are all center permutive, i. e. by fixing the
values of all variables except x2 the resulting restrictions of the func-
tions are permutations over F2. Remark that the elementary rule 60
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Rule Nl(f) f(x0, x1, x2, x3)

13107 0 1⊕ x1
13116 4 x1 ⊕ x2 ⊕ x3 ⊕ x2x3
13155 2 1⊕ x1 ⊕ x2 ⊕ x0x2 ⊕ x2x3 ⊕ x0x2x3
13164 2 x1 ⊕ x0x2 ⊕ x3 ⊕ x0x2x3
13203 2 1⊕ x1 ⊕ x0x2 ⊕ x0x2x3
13212 2 x1 ⊕ x2 ⊕ x0x2 ⊕ x3 ⊕ x2x3 ⊕ x0x2x3
13251 4 1⊕ x1 ⊕ x2 ⊕ x2x3
13260 0 x1 ⊕ x3
13875 2 1⊕ x1 ⊕ x3 ⊕ x0x3 ⊕ x2x3 ⊕ x0x2x3
14028 2 x1 ⊕ x0x3 ⊕ x2x3 ⊕ x0x2x3
14643 2 1⊕ x1 ⊕ x0x3 ⊕ x0x2x3
14796 2 x1 ⊕ x3 ⊕ x0x3 ⊕ x0x2x3
15411 4 1⊕ x1 ⊕ x3 ⊕ x2x3
15420 0 x1 ⊕ x2
15555 0 1⊕ x1 ⊕ x2 ⊕ x3
15564 4 x1 ⊕ x2x3
26214 0 x0 ⊕ x1
26265 0 1⊕ x0 ⊕ x1 ⊕ x3

Table 17: List of d = 4 rules inducing (t,n)–AI CA with t = 3 and n 6 10.

is center permutive as well, being defined as f(x1, x2, x3) = x2 ⊕ x3.
This seems to suggest that center permutivity is a necessary condition
for asynchrony immunity, a property that would greatly reduce the
search space of possible AI candidates with interesting cryptographic
properties. We formalize this remark in the following conjecture:

Conjecture 1. Let f : Fd2 → F2 be a local rule of d variables inducing a
(t,n)–asynchrony immune CA. Then, rule f is center-permutive.

We strongly suspect that this conjecture is true, since Manzoni [110]
showed that center permutivity is related to the surjectivity (and thus
to the balancing property) of asynchronous infinite CA.

12.3 conclusions

In this chapter, we investigated the resiliency property of bipermutive
CA and then introduced the new criterion of asynchrony immunity,
motivating it as a possible countermeasure for clock-fault attacks in
CA-based ciphers.
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In particular, we proved that the global rule of a bipermutive NBCA
F is always at least 1–resilient, since each component of F is still a
bipermutive Boolean function. We then presented an equivalence be-
tween linear cyclic codes and linear NBCA, showing that syndrome
computation in the former is equivalent to applying the global rule
to the received word in the latter. The resiliency order of a linear and
bipermutive CA can thus be used to determine the minimum distance
of the corresponding cyclic code. We then applied these results by
showing how the (7, 4, 3) cyclic Hamming code can be implemented
using a linear NBCA of diameter r = 2.

Next, we formally introduced the property of asynchrony immu-
nity in NBCA, proving some basic theoretical results about invariance
under reflection and complement operations. We finally performed a
computer search of all (t,n)–asynchrony immune CA with t = 3 and
n 6 10 defined by local rules of diameter up to d = 4, classifying
them with respect to their nonlinearity.
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O RT H O G O N A L L AT I N S Q U A R E S A R I S I N G F R O M
L I N E A R C A

In Chapter 10 we analyzed the periods of preimages of spatially pe-
riodic configurations under the action of surjective CA. This problem
turned out to be related to the maximum number of players allowed
in the secret sharing scheme based on bipermutive CA described
in [112], which induces a cyclic access structure. In particular, beside
reaching a minimum threshold, the shares of the players must satisfy
an adjacency constraint, since they are blocks of a CA preimage.

As we discussed in Section 4.4, (t,n)–threshold schemes are equiva-
lent to t−(v,n+1, 1) orthogonal arrays. Hence, a possible direction to
design a CA-based threshold scheme without adjacency constraints is
to investigate under which conditions CA are able to generate orthog-
onal arrays. This would improve on the state of the art: as remarked
in Section 7.4, the current SSS based on CA proposed in the litera-
ture all feature a sequential threshold access structure. Remark also
that, even though the problem of (t,n) threshold secret sharing has al-
ready been solved with solutions not based on CA (see e. g. Shamir’s
scheme [163]), we deem interesting to investigate the orthogonal ar-
rays engendered by CA, due also to their connections with coding
theory and Boolean functions.

To make our research question more concrete, we consider orthog-
onal arrays of the form OA(k,n), i. e. with t = 2. The reason for this
choice is twofold. First, as we observed in Section 3.2 OA(k,n) corre-
sponds to sets of mutually orthogonal Latin squares (MOLS), which
have a simpler combinatorial description. Second, beside being equiv-
alent to a (2,n)–threshold schemes, a OA(k,n) can also be used to
generate a perfect authentication code, as explained in Section 4.3.

As a consequence, in this chapter and the next one we undertake
an investigation of orthogonal Latin squares generated by cellular au-
tomata. More precisely, in this chapter we focus on the characteriza-
tion and enumeration of orthogonal Latin squares generated by linear
CA, while in the next one we generalize the problem to nonlinear CA.

In particular, in the first part of this chapter we start by showing
that every bipermutive cellular automaton of diameter d and length
n = 2(d− 1) induces a Latin square of order qd−1, where q is the
cardinality of the CA state alphabet. We then prove that two biper-
mutive CA with linear local rules generate a pair of orthogonal Latin
squares if and only if their associated Sylvester matrix is invertible, i. e.
if and only if the polynomials corresponding to their local rules are
relatively prime. Leveraging on this characterization result, we then
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describe a (2,n)–threshold scheme and a perfect authentication code
based on linear CA.

In the second part of this chapter we focus on counting pairs of
linear CA generating OLS. This problem turns out to be equivalent
to the enumeration of coprime pairs of polynomials with degree n
and nonzero constant term. We first show an approach to count such
pair by defining an equivalence relation based on Euclid’s algorithm.
Then, we completely solve the counting problem for q = 2 through a
recurrence equation, remarking that the resulting integer sequence is
already known in the OEIS for several other facts. Finally, we present
a construction for sets of MOLS based on linear CA, conjecturing its
optimality as a closing remark.

The remainder of this chapter is organized as follows. Section 13.1
presents the proof that a pair of linear CA induce orthogonal Latin
squares if and only if the associated polynomials are coprime, and
describes a (2,n)-threshold scheme and a perfect authentication code
which are based on this characterization result. Section 13.2 addresses
the enumeration of coprime polynomial pairs. Section 13.3 describes
a construction for sets of linear CA-based MOLS. Finally, Section 13.4
briefly summarizes the content of this chapter.

13.1 characterization results

In this section, we first observe that any bipermutive CA can be used
to generate a Latin square. We then prove a necessary and sufficient
condition which characterizes when the Latin squares associated to
two linear bipermutive CA are orthogonal. Finally, we use these find-
ings to describe a (2,n)–threshold scheme and an authentication code
based on linear CA.

13.1.1 Latin Squares from Bipermutive CA

We begin by showing that any bipermutive NBCA of diameter d and
length n = 2m generates a Latin square of order N = qm, where
m = d− 1. To this end, we first need some additional notation and
definitions.

Given an alphabet Σ of q symbols, in what follows we assume that
a total order 6 is defined over Σm, and that φ : Σm → [N] is a
monotone one-to-one mapping between Σm and [N] = {1, · · · ,qm},
where [N] is endowed with the usual order of natural numbers. We
denote by ψ the inverse mapping of φ.

We now formally define the notion of square associated to a CA:

Definition 33. Let f : Σd → Σ be a local rule of diameter d over an alphabet
Σ of q symbols. The square associated to the NBCA F : Σ2m → Am with
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m = d − 1 defined by rule f : Σd → Σ is the square matrix SF of size
qm × qm with entries from Σm defined for all 1 6 i, j 6 qm as

SF(i, j) = φ(F(ψ(i)||ψ(j))) , (154)

where ψ(i)||ψ(j) ∈ Σ2m denotes the concatenation of ψ(i),ψ(j) ∈ Σm.

Hence, the square SF is defined by encoding the first half of the CA
configuration as the row coordinate i, the second half as the column
coordinate j and the output F(ψ(i)||ψ(j)) as the entry at (i, j).

We remark that this representation has been adopted in several
works in the CA literature, even though under a different guise. In-
deed, one can consider the square associated to a CA as the Cayley
table of an algebraic structure (A, ◦), where A is a set of size 2n−1

isomorphic to Σd−1, and ◦ is a binary operation over A. The two
operands x,y ∈ A are represented by the vectors respectively com-
posed of the leftmost and rightmost d− 1 input cells of the CA, while
the d− 1 output cells represent the result z = x ◦ y. To the best of our
knowledge, the first researchers who employed this algebraic charac-
terization of cellular automata were Pedersen [133] and Eloranta [59],
respectively for investigating their periodicity and partial reversibil-
ity properties. Other works in this line of research include Moore and
Drisko [126], which studied the algebraic properties of the square rep-
resentation of CA, and Moore [125], which considered the computa-
tional complexity of predicting CA whose local rules define solvable
and nilpotent groups.

The next Lemma proved in [112] states that fixing at least d−1 adja-
cent cells in the global rule of a bipermutive CA yields a permutation
between the remaining variables and the output:

Lemma 16. Let F : Σn → Σn−d+1) be a NBCA defined by a bipermutive
local rule f : Σd → Σ. Then, by fixing at least b > 2(d − 1) adjacent
coordinates of x ∈ Σn to x̃ ∈ Σb, the restriction F|x̃ : Σn−b → Σn−b of the
global rule is a permutation over Σn−b.

On account of Lemma 16, it is now straightforward to prove that
the squares associated to bipermutive CA are indeed Latin squares:

Lemma 17. Let f : Σd → Σ be a bipermutive local rule defined over Σ
with |Σ| = q, and let m = 2(d− 1). Then, the square LF of the bipermutive
NBCA F : Σ2m → Σm is a Latin square of order N = qm over X = [N].

Proof. Let i ∈ [N] be a row of LF, and let ψ(i) = (x0, · · · , xm−1) ∈ Σm
be the vector associated to i with respect to the total order 6 on Σm.
Consider now the set C = {c ∈ Σ2m : (c1, · · · , cm) = ψ(i), i. e. the
set of configurations of length 2m whose first m coordinates coincide
with ψ(i), and let F|C : Σm → Σm be the restriction of global rule F
determined by C. Then, F|C is a permutation over Σm by Lemma 16

.As a consequence, the i-th row of LF is a permutation of X = [N].
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A symmetric argument holds when considering a column j of LF
with 1 6 j 6 N, which fixes the rightmost m variables of F to ψ(j).
Hence, every column of LF is also a permutation of X, and thus LF is
a Latin square of order N.

As an example, for Σ = F2 and diameter d = 3, Figure 43 reports
the Latin square LF associated to the NBCA F150 : F42 → F22 defined
by rule 150, i. e. f150(x1, x2, x3) = x1 ⊕ x2 ⊕ x3. The mapping φ is
defined as φ(00) 7→ 1, φ(10) 7→ 2, φ(01) 7→ 3 and φ(11) 7→ 4.

13.1.2 Orthogonal Latin Squares from Linear Bipermutive CA

We now aim at characterizing pairs of CA which generate orthogonal
Latin squares. For alphabet Σ = F2 and diameter d = 3 there exist
only two bipermutive rules up to reflection and complement, i. e. rule
150 and rule 90, the latter defined as f90(x1, x2, x3) = x1 ⊕ x3. Both
rules are linear and their associated Latin squares of order N = 4 are
orthogonal, as shown in Figure 47.

In what follows, we narrow our investigation to linear rules over
the finite field Fq. Recall from Section 12.1.2 that we can associate a
polynomial pf(x) of degree d− 1 defined as in Equation (146) to any
linear rule f of diameter d over Fq. Additionally, the global rule of
a linear NBCA of length n and diameter d is defined by a transition
matrix of size (n−d+ 1)×n defined as in Equation (147), where each
row corresponds to a shift of the local rule coefficients.

The following result gives a necessary and sufficient condition on
the transition matrices of linear bipermutive NBCA that generate or-
thogonal Latin squares:

Lemma 18. Let F : F
2(d−1)
q → Fd−1q and G : F

2(d−1)
q → Fd−1q be linear

CA of diameter d with linear rules f(x1, · · · , xd) = a1x1 + · · ·adxd and
g(x1, · · · , xd) = b1x1 + · · ·bdxd respectively, where a1,b1,ad,bd 6= 0.
Additionally, let MF and MG be the d− 1× 2(d− 1) matrices associated

0 0 0 0
0 0

0 0 1 0
1 1

0 0 0 1
0 1

0 0 1 1
1 0

1 0 0 0
1 0

1 0 1 0
0 1

1 0 0 1
1 1

1 0 1 1
0 0

0 1 0 0
1 1

0 1 1 0
0 0

0 1 0 1
1 0

0 1 1 1
0 1

1 1 0 0
0 1

1 1 1 0
1 0

1 1 0 1
0 0

1 1 1 1
1 1

Figure 41: Truth table of F150

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

Figure 42: Latin square LF150

Figure 43: Example of Latin square of order 4 induced by rule 150.
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1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

Figure 44: Rule 150

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

Figure 45: Rule 90

1,1 4, 2 3, 3 2, 4

2, 2 3, 1 4, 4 1, 3

4, 3 1, 4 2, 1 3, 2

3, 4 2, 3 1, 2 4, 1

Figure 46: Overlay

Figure 47: OLS generated by bipermutive CA with rule 150 and 90.

to the global rules F and G respectively, and define the 2(d− 1)× 2(d− 1)
matrix M as

M =



a1 · · · ad 0 · · · · · · · · · · · · 0

0 a1 · · · ad 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 a1 · · · ad
b1 · · · bd 0 · · · · · · · · · · · · 0

0 b1 · · · bd 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 b1 · · · bd


, (155)

i. e. , M is obtained by superposing the transition matrices MF and MG.
Then, the Latin squares LF and LG generated by F and G are orthogonal if
and only if the determinant of M over Fq is not null.

Proof. Denote by z = x||y the concatenation of vectors x and y. We
show that the function H : F

2(d−1)
q ×F

2(d−1)
q → F

2(d−1)
q ×F

2(d−1)
q ,

defined for all (x,y) ∈ F
2(d−1)
q ×F

2(d−1)
q as

H(x,y) = (F(z),G(z)) = (x̃, ỹ) (156)

is bijective. Let us rewrite Equation (156) as a system of two equations:F(z) =MFz
> = x̃

G(z) =MGz
> = ỹ

. (157)

As M consists of the superposition of MF and MG, Equation (157)
defines a linear system in 2(d− 1) equations and 2(d− 1) unknowns
with associated matrix M. Thus, we have that H(x,y) =Mz>, and H

is bijective if and only if the determinant of M is not null.

Remark that matrixM in Equation (155) is a Sylvester matrix, and its
determinant is the resultant of the two polynomials pf(x) and pg(x)
associated to f and g respectively. The resultant of two polynomials
is nonzero if and only if they are relatively prime (see [107]). We thus
have the following result:
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Theorem 29. Let f,g : Fdq → Fq be linear bipermutive rules of diameter
d ∈ N, and let m = d − 1. Then, the squares LF and LG of order qm

respectively associated to the NBCA F : F2mq → Fmq and G : F2mq → Fmq
are orthogonal if and only if the polynomials pf(x) and pg(x) are relatively
prime, i. e. if and only if gcd(pf(x),pg(x)) = 1.

Hence, combining Theorem 29 with the construction of orthogonal
arrays based on MOLS which we described in Section 3.2, we obtain
the following characterization theorem:

Theorem 30. Let f1, · · · fn be linear bipermutive local rules over Fq of
diameter d whose associated polynomials are pairwise coprime. Then, given
m = d− 1, there exists a set of n MOLS of order N = qm, or equivalently
an OA(n+ 2,N).

13.1.3 Threshold Schemes and Authentication Codes from Linear CA

Given the equivalence between MOLS and OA, Theorem 30 gives
some additional insights on how to design a CA-based secret sharing
scheme with threshold t = 2. The same goes also for perfect authen-
tication codes, since they are equivalent to orthogonal arrays of the
form OA(k,n), as shown in Section 4.3.

Let the secret S be a vector of Fmq where m = d− 1, and assume
that there are n players P1, · · · ,Pn. Then, the setup phase of the secret
sharing scheme is as follows:

setup phase

initialization :

1. Pick n relatively prime polynomials pf1(x), · · · ,pfn(x) over
Fq with degree d−1 and nonzero constant term, and build
the corresponding linear rules f1, · · · , fn of diameter d

2. Concatenate secret S with a random vector R ∈ Fmq , thus
obtaining a configuration C ∈ F2mq of length 2(d− 1)

loop : For all i ∈ {1, · · ·n} do:

1. Given Fi : F2mq → Fm2 the NBCA defined by rule fi, com-
pute Bi = Fi(C)

2. Send share Bi to player Pi

Adopting the point of view of OA, The second initialization step cor-
responds to the phase where the dealer chooses one of the rows of
the array whose first component is the secret. Additionally, the dealer
determines the remaining entries in the selected row by applying the
n CA F1, · · · , Fn over the initial configuration C. As explained in Sec-
tion 4.4, these entries are the shares to be distributed to the players.
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For the recovery phase, suppose that two players Pi and Pj want to
determine the secret. Let Bi and Bj respectively denote the share of Pi
and Pj. Since the orthogonal array is public, both Pi and Pj know the
CA linear rules fi and fj used by the dealer to compute their shares.
Hence, they adopt the following procedure to recover S:

recovery phase

initialization :

1. Compute the Sylvester matrix M by superposing the tran-
sition matrices of the CA Fi and Fj

2. Determine the inverse matrix M−1

reconstruction :

1. Determine the vector y = (Bi||Bj) by concatenating the two
shares Bi and Bj

2. Reconstruct the secret by computing C = (S||R) =M−1y>

output : Return the first half of C as the secret S

For a perfect authentication code, a possible protocol based on lin-
ear bipermutive CA that exploits Theorem 30 is the following:

authentication code

initialization :

1. Alice and Bob establish a set of linear bipermutive rules
f1, · · · fn over Fq of diameter d such that the correspond-
ing polynomials are pairwise coprime

2. Alice and Bob agree on a key K ∈ F2mq , where m = d− 1,
which they keep secret.

signing phase : Given a message i ∈ {1, · · · ,n}, Alice computes
the authenticator a = Fi(K), where Fi : F2mq → F2m2 is the
NBCA defined by rule fi, and sends c = (i,a) to Bob

verification phase : Bob checks whether Fi(K) = a. If so, he
accepts the message as legitimately sent by Alice. Otherwise,
he rejects the message as being altered by an adversary.

As a concluding remark, observe that both the (2,n)–threshold
scheme and the authentication code described above require the de-
termination of a set of n pairwise coprime polynomials over Fq with
degree d− 1 and nonzero constant term. For practical purposes, one
could settle for a set of n irreducible polynomials of degree d − 1,
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since they are clearly pairwise coprime and all of them have nonzero
constant term (see [107]). The advantage is that there are several effi-
cient algorithms described in the literature for generating irreducible
polynomials (see for instance [166]).

13.2 counting coprime polynomial pairs

By Theorem 30, one can generate a set of n MOLS of order qm

through linear CA of diameter d by finding n pairwise relatively
prime polynomials of degree d − 1. The problem of counting the
number of pairs of relatively prime polynomials over finite fields has
been investigated in several papers (see [152, 10, 80]). However, notice
that determining the number of pairs of linear CA inducing orthogo-
nal Latin squares entails counting only specific pairs of polynomials,
namely those whose constant term is not null. This is due to the re-
quirement that the CA local rules must be bipermutive.

To the best of our knowledge, this particular counting problem has
not been considered in the literature, for which reason we address
it in this section. For simplicity, we limit our investigation only to
polynomials over F2, since this represents the most useful case for
practical applications. Hence, a linear bipermutive rule f of diameter
d = n will correspond to a monic polynomial Pf(x) of degree n and
constant term equal to 1.

In the rest of this section, we first formally state the counting prob-
lem of our interest. We then present two possible approach two solve
it: the first is based on an equivalence relation on polynomial pairs
induced by Euclid’s division algorithm. However, this method proves
itself to be inconclusive for achieving our goal, since it relies on a con-
jecture about the proportion of coprime and non coprime polynomial
pairs over F2 which still seems to be open in the literature. We thus
shift to a different method, based on a recurrence equation, through
which we finally solve the counting problem and, in turn, the conjec-
ture induced by the equivalence relation approach. The closed form
of this recurrence equation turns out to generate an integer sequence
which is known in the OEIS for several other facts not related to
polynomials, Latin squares or cellular automata. Finally, we present
a construction for a set of k-MOLS based on linear CA (i. e. , a con-
struction for sets of pairwise coprime polynomials), and conclude by
conjecturing its maximality.

13.2.1 Problem Statement

Let n ∈N be a positive integer, and define f,g ∈ F2[x] as follows:
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f(x) = 1+ a1x+ · · ·+ an−1xn−1 + xn , (158)

g(x) = 1+ b1x+ · · ·+ bn−1xn−1 + xn , (159)

where ai,bi ∈ F2 for all i ∈ [n− 1]. In other words, f and g are poly-
nomials with coefficients over the finite field F2, both of degree n and
with nonzero constant term. Denote by P1,1

n the set of all pairs (f,g)
of such polynomials. We are interested in the following problem:

Problem 3. Define C1,1
n and NC1,1

n as the sets

C1,1
n = {(f,g) ∈ P1,1

n : gcd(f,g) = 1} , (160)

NC1,1
n = {(f,g) ∈ P1,1

n : gcd(f,g) 6= 1} . (161)

What are the cardinalities of C1,1
n and NC1,1

n ?

Stated otherwise, we want to count the number of coprime and
non-coprime pairs of polynomials in P1,1

n .
In what follows, we will also make use of the following notation:

• P1,0
n : set of pairs of polynomials of degree n where the first

polynomial has nonzero constant term while the second not.

• P0,1
n : set of pairs of polynomials of degree n where the first

polynomial does not have constant term while the second does.

• C1,0
n ,NC1,0

n : respectively the set of coprime pairs and the set of
non-coprime pairs in P1,0

n

• C0,1
n ,NC0,1

n : respectively the set of coprime pairs and the set of
non-coprime pairs in P0,1

n

Additionally, in order to avoid burdening the notation, we will refer
to a set and its cardinality with the same symbol.

13.2.2 Equivalence relation based on Euclid’s algorithm

Notice that Problem 3 has already been solved for the general case
where there are no constraints on the constant terms, i. e. f and g

are just two polynomials of degree n (see [152, 10]). Denoting by Cn
and NCn respectively the sets of coprime and non-coprime pairs of
polynomials of degree n with any constant term, it holds that

Cn = NCn = 22n−1 , (162)

i. e. there are exactly as many coprime pairs as non-coprime pairs of
degree n. The idea behind the proof reported in [10] (which can be
generalized to any finite field Fq) is that for each non-coprime pair
(f,g) ∈ NCn one can construct a coprime pair (f ′,g ′) ∈ Cn in the
following way:
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1. Apply Euclid’s algorithm to the pair (f,g). Since f and g are
non-coprime, the last remainder will be 0.

2. Replace the last remainder with 1, and reverse Euclid’s algo-
rithm using the same sequence of quotients computed for (f,g).

3. By construction, the pair (f ′,g ′) obtained at the end of the re-
verse algorithm will be coprime.

Observe that, if we apply this procedure to a non-coprime pair
(f,g) ∈ NC1,1

n , the polynomials f ′ and g ′ in the new coprime pair will
not have nonzero constant terms in general, even though not both of
them will have null constant term (otherwise they would have a factor
x in common).

We thus need to analyze more in detail Euclid’s algorithm, in order
to see how changing the last remainder affects the constant terms of
the intermediate remainders and, in turn, those of f ′ and g ′.

Suppose that ri and ri+1 are two intermediate remainders pro-
duced by Euclid’s algorithm at step i. In particular, we assume that
r0 = f and r1 = g are the initial polynomials which form the original
pair. Then, at step i+ 1 it holds that

ri(x) = qi+1(x)ri+1(x) + ri+2(x) . (163)

Remark that if both ri and ri+1 have null constant terms then ri+2
will have null constant term as well, independently of the quotient
qi+1. Since Euclid’s algorithm consists of iteratively applying Equa-
tion (163) at each step, it follows that if we start from a pair (f,g)
where both f and g have null constant terms then all intermediate
remainders in the algorithm will also have null constant terms. Con-
versely, if we start from a pair (f,g) where at least one of the two
polynomials have a nonzero constant term, then both constant terms
of all subsequent adjacent remainders pairs ri, ri+1 will not be null
at the same time.

More formally, for all steps i in Euclid’s algorithm we can interpret
the presence/absence of the constant terms in ri, ri+1 as the state
(ci, ci+1) of a finite discrete dynamical system. In particular, ci and ci+1
respectively denote the constant terms of ri and ri+1. Since we are
interested in pairs where both polynomials have nonzero constant
term, we can rule out the possibility that (ci, ci+1) = (0, 0). Hence,
we have that (ci, ci+1) ∈ (F22)

∗ = {(1, 1), (1, 0), (0, 1)} for each step i.
Denoting by Xi+1 ∈ F2 the constant term in qi+1, we can de-

rive the transition function δ : (F22)
∗ × F2 → (F22)

∗ which maps a
pair (ci, ci+1) to the next (ci+1, ci+2) using Equation (163), to assess
the presence/absence of the constant term in ci+2. Table 18 reports
the transition function δ for all possible (22 − 1) · 2 = 6 inputs in
(F22)

∗ × F2. The whole dynamical system can also be considered as
a finite state automaton (FSA), whose transition graph is depicted in
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(ci, ci+1) Xi+1 δ((ci, ci+1),Xi+1)

(1, 1) 0 (1, 1)

(1, 1) 1 (1, 0)

(1, 0) 0 (0, 1)

(1, 0) 1 (0, 1)

(0, 1) 0 (1, 0)

(0, 1) 1 (1, 1)

Table 18: Truth table for the transition function δ

Figure 48. Consider now a pair of polynomials (f,g) ∈ P1,1
n . The se-

quence of quotients q1,q2, · · · yielded by Euclid’s algorithm induces
a path on the FSA graph starting from state (1, 1), which is labeled by
the constant terms of the quotients. The final state at the end of the
path will be either (1, 1), (1, 0) or (0, 1).

What happens if we change the final state to one of the remaining
two states, and invert the process with the same sequence of constant
terms, reading them in reverse order? Observe from Table 18 that the
FSA is a permutation automaton, meaning that if we take two distinct
states and read the same quotient constant term Xi+1, then the two
output states after applying δ will be distinct as well. Formally, for all
distinct pairs (ci, ci+1) 6= (c ′i, c

′
i+1) and Xi+1, it holds that

δ((ci, ci+1),Xi+1) 6= δ((c ′i, c ′i+1),Xi+1) . (164)

A simple induction argument shows that this permutation property
stands also for sequences of constant terms. Thus, if we start from
two different initial states and apply the same sequence of constant
terms, the final states will be different as well. Clearly, this fact also
holds for the inverse automaton, i. e. the FSA with the same transition
diagram as that of Figure 48 but with inverted arrows.

11

1001

1

0

0/1

0

1

Figure 48: Transition graph for the finite state automaton realizing δ.
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As a consequence, from a polynomial pair (f,g) ∈ P1,1
n we can

build two pairs (f ′,g ′) ∈ P0,1
n and (f ′′,g ′′) ∈ P1,0

n as follows: the
former having f ′ without constant term and g ′ with constant term,
and the latter having f ′′ with constant term and g ′′ without constant
term. These pairs are constructed by changing the constant terms of
the last remainders of (f,g) and then by inverting Euclid’s algorithm
with the same sequence of quotients in reverse order.

In particular, assuming that ck−1, ck ∈ F2 are the constant terms of
the last remainders pair (rk−1, rk) of (f,g) in Euclid’s algorithm, the
other two pairs (r ′k−1, r ′k) and (r ′′k−1, r ′′k) respectively of (f ′,g ′) and
(f ′′,g ′′) can be computed as follows:

(r ′k−1, r ′k) =


(1+ rk−1, rk) , if (ck−1, ck) = (1, 1)

(rk−1, 1+ rk) , if (ck−1, ck) = (1, 0)

(1+ rk−1, rk) , if (ck−1, ck) = (0, 1)

, (165)

(r ′′k−1, r ′′k) =


(rk−1, 1+ rk) , if (ck−1, ck) = (1, 1)

(1+ rk−1, 1+ rk) , if (ck−1, ck) = (1, 0)

(1+ rk−1, 1+ rk) , if (ck−1, ck) = (0, 1)

. (166)

Consequently, the set of quotients sequences together with the last
pairs of remainders without constant terms induce an equivalence re-
lation, where each equivalence class is of size 22 − 1 = 3 and con-
tains respectively a pair (f,g) ∈ P1,1

n , a pair (f ′,g ′) ∈ P0,1
n and a

pair (f ′′,g ′′) ∈ P1,0
n . Thus, this equivalence relation partitions the

set P = P1,1
n ∪ P0,1

n ∪ P1,0
n containing polynomial pairs of degree n

where at least one of the two polynomials has a nonzero constant
term. Moreover, we can conclude that each equivalence class of size 3
contains exactly one non-coprime pair, since only one pair can have a
path ending in (1, 0), due to the permutation property of the FSA.

13.2.3 Counting (non-) coprime pairs

The problem with the equivalence relation described in the previous
section is that, unfortunately, it does not tell us which of the three
pairs of an equivalence class is coprime. However, we can remark the
following facts:

• The cardinality of each set P1,1
n , P1,0

n and P0,1
n is 22(n−1), since it

just consists of all pairs of vector coefficients (a1, · · · ,an−1) and
(b1, · · · ,bn−1) which describes the two polynomials composing
the pair.



13.2 counting coprime polynomial pairs 169

• Consequently, the cardinality of the support set P of the equiv-
alence relation is 3 · 22(n−1), since the three sets P1,1

n , P1,0
n and

P0,1
n are clearly disjoint.

• From the remark above, we thus have the following equation:

NC1,1
n +C1,1

n = NC0,1
n +C0,1

n = NC1,0
n +C1,0

n = 22(n−1) (167)

• Additionally, we can derive the following system from the equiv-
alence relation: 

C1,1
n = NC0,1

n +NC1,0
n

C1,0
n = NC1,1

n +NC0,1
n

C0,1
n = NC1,1

n +NC1,0
n

(168)

• Finally, if the order of the polynomials in a (non-)coprime pair
(f ′,g ′) ∈ P1,0

n is swapped, then (g ′, f ′) ∈ P0,1
n . As a consequence,

we also have that NC1,0
n = NC0,1

n

C1,0
n = C0,1

n

(169)

• Thus, putting together (168) and (169) we get

C1,1
n = 2 ·NC1,0

n (170)

Therefore, we need to determine the size of the set NC1,0
n of non-

coprime pairs of degree n where the first polynomial has a nonzero
constant term while the second not. A possible way is to express
NC1,0

n in terms of the size of NC1,1
n . In particular, by conducting some

experiments with the MAGMA computer algebra system, the follow-
ing conjecture seems to hold for any n > 2:

Conjecture 2. Let NC1,0
n denote the number of non-coprime pairs of poly-

nomials (f,g) over F2 of degree n > 2 where only f has nonzero constant
term, and let NC1,1

n be the number of non-coprime pairs of polynomials of
the same form except that both f and g have nonzero constant term. Then,

NC1,0
n = NC1,1

n − 1 . (171)

As far as we know, there are no results in the literature that prove
Equation (171). However, since Conjecture 2 seems to be confirmed
by our computer experiments, let us take it for granted for the time
being. In the next section, we will formally prove it using a different
method. Combining Equations (167), (170) and (171), one finally gets
the following system:C1,1

n = 2 · (NC1,1
n − 1)

NC1,1
n = 22(n−1) −C1,1

n

(172)
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which yields

C1,1
n = 2 · 2

2(n−1) − 1

3
, (173)

NC1,1
n = 2 · 2

2n−3 + 1

3
. (174)

Notice that Equation (173) counts all ordered coprime pairs of polyno-
mials in P1,1

n . To get the number of distinct coprime pairs DC1,1
n one

simply needs to divide it by 2, thus obtaining

DC1,1
n =

22(n−1) − 1

3
=
4n−1 − 1

3
. (175)

In the next section, we prove the same formula in Equation (175) us-
ing a different method, which does not rely on Conjecture 2.

13.2.4 Counting (1, 1) coprime pairs by recurrence

We now solve Problem 3 using a recurrence equation.
First of all, observe that the number of pairs in P1,1

n can be ex-
pressed as follows:

P1,1
n = C1,1

n +NC1,1
n = C1,1

n + S1,1
n +DNC1,1

n , (176)

where S1,1
n and DNC1,1

n respectively denote the number of symmetric
pairs (f, f) and the number of distinct non coprime pairs in P1,1

n .
Clearly, it results that S1,1

n = 2n−1, since we just need to count
the central coefficients a1, · · · ,an−1 ∈ F2 of f. On the other hand, if
gcd(f,g) 6= 1, then the greatest common divisor of f and g has form

h(x) = 1+ h1x+ · · ·+ hd−1 + xd , (177)

where d ∈ {1, · · · ,n− 1}. This means that

f(x) = h(x) · p(x) (178)

g(x) = h(x) · q(x) (179)

where (p,q) ∈ C1,1
n−d, that is, p and q are coprime polynomials of

degree n−d both having nonzero constant term. Since there are 2d−1

greatest common divisors for each degree d ∈ {1, · · · ,n−1}, it follows
that the number of distinct non-coprime pairs DNC1,1

n of degree n
is determined by the sum of all coprime pairs C1,1

n−d having degree
n−d ∈ {1, · · · ,n− 1}, where each term is multiplied by 2d−1. In other
words, it results that

DNC1,1
n =

n−1∑
d=1

2d−1 ·C1,1
n−d . (180)
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Since P1,1
n = 22(n−1), Equation (176) can be rewritten as:

C1,1
n = 22(n−1) − 2n−1 −

n−1∑
d=1

2d−1 ·C1,1
n−d . (181)

By Equation (181), the difference between C1,1
n and C1,1

n−1 equals

C1,1
n −C1,1

n−1 = 2
2(n−1) − 22

n−2
− 2n−1 + 2n−2−

−

n−1∑
d=1

2d−1 ·C1,1
n−d +

n−2∑
d=1

2d−1 ·C1,1
n−1−d . (182)

Extracting the first term from the first sum in (182) yields

C1,1
n ��

��−C1,1
n−1 = 2

2(n−1) − 22
n−2

− 2n−1 + 2n−2������
−20 ·C1,1

n−1−

−

n−1∑
d=2

2d−1 ·C1,1
n−d +

n−2∑
d=1

2d−1 ·C1,1
n−1−d . (183)

Then, by reorganizing the terms of the two sums in (183) one obtains

−

n−1∑
d=2

2d−1 ·C1,1
n−d +

n−2∑
d=1

2d−1 ·C1,1
n−1−d =

− 21 ·C1,1
n−2 − 2

2 ·C1,1
n−3 − · · ·− 2

n−2 ·C1,1
1 +

+ 20 ·C1,1
n−2 + 2

1 ·C1,1
n−3 + · · ·+ 2

n−3 ·C1,1
1 =

= −

n−2∑
d=1

2d−1 ·C1,1
n−1−d . (184)

which means that Equation (183) can be rewritten as

C1,1
n = 22(n−1) − 22

n−2
− 2n−1 + 2n−2 −

n−2∑
d=1

2d−1 ·C1,1
n−1−d . (185)

If one iterates the above procedure by subtracting Cn−2,Cn−3, · · · ,C1,1
1

from C1,1
n , the following result is finally obtained:

C1,1
n = 22(n−1) −

n−2∑
i=0

22i − 2n−1 +

n−2∑
i=0

2i . (186)

The two sums in Equation (186) evaluate to the following expressions:

n−2∑
i=0

22i =
4n−1 − 1

3
(187)

n−2∑
i=0

2i = 2n−1 − 1 (188)

(189)
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Hence, the number of coprime pairs C1,1
n corresponds to:

C1,1
n = 4n−1 −

4n−1 − 1

3
− 2n−1 + 2n−1 − 1 =

= 4n−1 − 1−
4n−1 − 1

3
= 2 · 4

n−1 − 1

3
. (190)

Dividing by 2, one finally obtains the number of distinct coprime
polynomial pairs:

DC1,1
n =

4n−1 − 1

3
, (191)

We summarize the above discussion in the following theorem:

Theorem 31. The number of distinct coprime pairs of polynomials (f,g)
over F2 of degree n where both f and g have nonzero constant term, or
equivalently the number of pairs of orthogonal Latin squares having order
2n−1 that are generated by linear bipermutive CA of diameter n+ 1 is:

DC1,1
n =

4n−1 − 1

3
. (192)

Let a(n) be the integer sequence defined by Equation (192). Then,
the first terms of this sequence for n > 1 are:

a(n) = 0, 1, 5, 21, 85, 341, 1365, · · · (193)

which is a shifted version of OEIS sequence A002450 [84], defined by

b(n) =
4n − 1

3
. (194)

In particular, it is easily seen that b(n) = C1,1
n+1, i. e. b(n) corresponds

to the number of coprime pairs of polynomials of degree n+ 1 over
F2 where both polynomials have nonzero constant term. Sequence
A002450 is known for several other facts that are not related to poly-
nomials or orthogonal Latin squares arising from linear CA, such as:

• The Collatz function [103] applied to one of the terms of b(n)
reaches the periodic point 1 after 2n iterations.

• b(n+ 1) is the number of steps performed when generating all
n-step walks starting from the origin of the square lattice Z2,
where the possible directions are ↑, ↓,←,→.

• b(n) corresponds to the Lucas sequence Un(5, 4) [11].

For the number of distinct non-coprime pairs DNC1,1
n , one has first

to remove the symmetric pairs (f, f) from Equation (191) and then
divide the result by 2, which yields

DNC1,1
n =

1

2

(
4n−1 − 1

3
+ 1− 2n−1

)
=

=
22n−3 − 3 · 2n−2 + 1

3
=

(2n−1 − 1)(2n−2 − 1)

3
. (195)
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Notice that Equation (195) corresponds to the Gaussian binomial coef-
ficient

(
n−1
2

)
2

[149]. In the general case, the integer sequence corre-
sponding to

(
n
2

)
2

for n ∈N equals

c(n) =

(
n

2

)
2

=
(2n − 1)(2n−1 − 1)

3
, (196)

which corresponds to OEIS sequence A006095 [86]. Comparing with
Equation (195), it follows that c(n) = DNC1,1

n+1 for all n > 0, i. e. c(n)
is the number of non-coprime pairs of polynomials of degree n+ 1

over F2 where both polynomials have nonzero constant term.
Finally, observe that one can also compute C1,0

n using Theorem (31).
The only difference is that there are no symmetric pairs for the case
(1, 0) (hence the term 2n−1 is not present in the recurrence equation).
In particular, this yields

C1,0
n = 4n−1 −

4n−1 − 1

3
, (197)

from which one can deduce that

C1,0
n −C1,1

n = 1 , (198)

or equivalently,
NC1,0

n = NC1,1
n − 1 , (199)

which also proves Conjecture 2 reported in the previous section.

13.3 mols based on linear ca

In the literature related to Latin squares, a natural question is to de-
termine the maximum number of MOLS for a given order. In this
section, we tackle this question for MOLS generated by linear CA
over Fq, thus generalizing the counting problem addressed in the
previous section for q = 2. Given n ∈N we consider in particular the
following two problems:

Problem 4. What is the maximum number Nn,q of linear bipermutive CA
over Fq of diameter n + 1 whose Latin squares are mutually orthogonal?
As shown in Section 13.1, this actually amounts to compute the maximum
number of monic pairwise coprime polynomials of degree n and nonzero
constant term over Fq.

Problem 5. How many maximal sets of Nn,q MOLS generated by linear
CA do there exist?

In the remainder of this section, we present a construction for sets
of MOLS based on linear CA defined by pairwise coprime polynomi-
als over Fq, conjecturing its optimality by empirical observations.
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13.3.1 MOLS from Irreducible Polynomials

To formalize our discussion, let

Sn,q = {a0 + a1x+ · · ·+ an−1xn−1 + xn : ai ∈ Fq,a0 6= 0} , (200)

i. e. Sn,q is the set of all degree n monic polynomials f ∈ Fq[x] with
nonzero constant term a0. Moreover, let

Mn,q = {An,q ⊆ Sn,q : ∀f 6= g ∈ An,q, gcd(f,g) = 1} . (201)

In other words, Mn,q is the family of subsets of Sn,q of pairwise co-
prime polynomials. In order to solve Problem 4, we have to determine
the maximal cardinality of the subsets in Mn,q, that is

Nn,q = max
An,q∈Mn,q

{|An,q|} . (202)

On the other hand, for Problem 5 we want to count how many sets in
Mn,q have cardinality Nn,q:

Tn,q = |{An,q ∈Mn,q : |An,q| = Nn,q}| (203)

We begin by considering the set In,q of irreducible polynomials of de-
gree n over Fq, all of which are trivially pairwise coprime. Hence,
In,q is included in all subsets having maximum cardinality Nn,q.
Gauss’ formula [68] can be used to count the number of irreducible
polynomials of degree n:

In,q = |In,q| =
1

n

∑
d|n

µ(d) · q
n
d , (204)

where µ denotes the Möbius function. Let d = ρα11 ρ
α2
2 · · · ρ

αk
k be the

prime factorization of d ∈N. Then, d is called square-free (s.f.) if αi =
1 for all i ∈ {1, · · · ,k}, i. e. if d is not divisible by any prime power
with exponent higher than 1. The Möbius function of d is defined as:

µ(d) =


1 , if d is s.f. and has an even number of prime factors

−1 , if d is s.f. and has an odd number of prime factors

0 , if d is not s.f.
(205)

We thus have that
Nn,q > In,q . (206)

In order to refine this lower bound, we have to determine how many
other (reducible) polynomials of degree n one can add to In,q so
that the resulting set only includes pairwise coprime polynomials.
Consider the following construction:

construction-irreducible(n , q)



13.3 mols based on linear ca 175

initialization : Initialize set Pn ,q to In ,q

loop : For all 1 6 k 6
⌊
n
2

⌋
do:

1. Build set P ′k ,q by multiplying each polynomial in Ik ,q

with a distinct polynomial in In−k ,q

2. Add set P ′k,q to Pn,q

output : return Pn,q

Hence, set P is constructed by first adding all irreducible polynomials
of degree n, then by adding the set of all irreducible polynomials of
degree 1 multiplied by as many irreducible polynomials of degree
n− 1, the set of all irreducible polynomials of degree 2 multiplied by
as many irreducible polynomials of degree n− 2, and so on. One can
see that all polynomials added to P in this way are pairwise coprime,
since they all have distinct irreducible factors.

13.3.2 Lower Bounds on Linear CA-based MOLS

Remark that the procedure Construction-Irreducible can be iter-
ated only up to k 6

⌊
n
2

⌋
, because by symmetry the irreducible poly-

nomials of degree n− k with k >
⌊
n
2

⌋
correspond to those of degree

k 6
⌊
n
2

⌋
. Notice also that, when n is even, the last step of the proce-

dure consists of squaring all irreducible polynomials of degree n2 .
Hence, we have shown that the set P which is generated by proce-

dure Construction-Irreducible is indeed a member of the family
Mn,q. The cardinality of such set is given by

Cn,q = |Pn,q| = In,q +

bn2 c∑
k=1

Ik,q . (207)

As a matter of fact, beside the initial step when one adds all irre-
ducible polynomials of degree n to P, in each iteration k of the loop
the number of polynomials that one can obtain by multiplying two
irreducible factors is bounded by the number of irreducible polyno-
mials of degree k, which is Ik,q. We have thus obtained the following
result, which gives a more precise lower bound on Nn,q:

Theorem 32. The maximum number of pairwise coprime polynomials of
degree n over Fq with nonzero constant term is at least Cn,q:

Nn,q > Cn,q . (208)

A natural question arising from Theorem 32 is whether the above
construction is optimal, i. e. if the maximum number of pairwise co-
prime polynomials Nn,q is actually equal to Cn,q. Experimentally, we
verified this hypothesis by exhaustively generating all maximal sets
of pairwise coprime polynomials for q = 2 up to degree n = 6. Hence,
this leads to the following conjecture:
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Conjecture 3. The maximum number of MOLS generated by bipermutive
linear CA with local rule of diameter n+ 1, or equivalently the maximum
number of pairwise coprime polynomials of degree n over Fq with nonzero
constant term is Cn,q, that is,

Nn,q = Cn,q . (209)

We now consider how many sets of pairwise coprime polynomi-
als of degree n one can obtain through the above construction. As
observed before, the set In,q of irreducible polynomials of degree n
is included in each An,q ∈ Mn,q having maximal cardinality. Hence,
this set does not yield any choice from the combinatorial point of
view. Additionally, remark that for all steps k ∈

{
1, · · · ,

⌊
n
2

⌋}
the set

P ′ is constructed by multiplying each irreducible polynomial f(x) in
Ik,q with a distinct irreducible polynomial g(x) in In−k,q. Since the
sequence {Ik,q}n∈N is monotonically non-decreasing [107], this means
that In−k,q > Ik,q for all n ∈ N and 1 6 k 6

⌊
n
2

⌋
. Consequently, the

number of possible choices for the subsets of irreducible polynomials
of degree n− k to be multiplied with the irreducible polynomials of
degree k is

P ′k,q =

(
In−k,q

Ik,q

)
(210)

Observe that for distinct degrees k1,k2 ∈
{
1, · · · ,

⌊
n
2

⌋}
the choices

for building the sets P ′k1,q and P ′k1,q are independent. This means
that each P ′k1,q can be combined with each P ′k1,q, so the number of
possible choices in this case is

R ′k1,k2 = P
′
k1,q · P ′k2,q . (211)

Combining Equations (210) and (211), one finally obtains that the
number of maximal families of pairwise coprime polynomials of de-
gree n over Fq with nonzero constant term is:

Dn,q =

bn2 c∏
k=1

P ′k,q =

bn2 c∏
k=1

(
In−k,q

Ik,q

)
. (212)

In conclusion, one also obtains the following result for Tn,q:

Theorem 33. The number of maximal families of pairwise coprime poly-
nomials of degree n over Fq with nonzero constant term is at least Dn,q,
i. e.

Tn,q > Dn,q . (213)

13.4 conclusions

In this chapter, we undertook an investigation of orthogonal Latin
squares generated through CA, motivated by the design of threshold
secret sharing schemes and perfect authentication codes.
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First, we proved that the global rule of any bipermutive CA of di-
ameter d and length 2(d− 1) can be used to generate a Latin square
of order N = qd−1, with q being the size of the state alphabet. We
then focused on orthogonal Latin squares generated by linear biper-
mutive CA, showing a characterization result based on the Sylvester
matrix induced by two linear local rules. In particular, we proved that
two linear bipermutive CA generate orthogonal Latin squares if and
only if the polynomials associated to their local rules are relatively
prime. Next, we described a (2,n)–threshold scheme and a perfect
authentication code based on this characterization results.

In the second part of the chapter, we addressed the problem of
counting the number of linear CA pairs over F2 generating orthogo-
nal Latin squares, i. e. the number of coprime polynomial pairs (f,g)
of degree n over F2 where both f and g have nonzero constant term.
We presented two approaches to solve this problem, namely an equiv-
alence relation based on Euclid’s algorithm and a recurrence equation.
In particular, the former approach relies on a conjecture about the
number of non-coprime polynomial pairs which we finally proved
with the recurrence equation approach. Moreover, we remarked that
the integer sequence generated by the closed-form formula of the
recurrence equation correspond to A002450, a sequence which is al-
ready known in the OEIS for several other facts not related to poly-
nomials or orthogonal Latin squares.

In the last part of the chapter, we presented a construction based on
irreducible polynomials which gives a lower bound on the number
of MOLS generated by linear CA over Fq. In particular, computer
search experiments for q = 2 seem to confirm that this lower bound
is always satisfied with equality, for which reason we conjectured its
optimality. Finally, we also derived a lower bound on the number of
maximal families of MOLS induced by the proposed construction.
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O RT H O G O N A L L AT I N S Q U A R E S B A S E D O N
N O N L I N E A R C A

In Chapter 13 we investigated the conditions under which linear CA
generate orthogonal Latin squares, motivated by the goal of design-
ing a (2,n)–threshold scheme. However, remark that secret sharing
schemes based on linear constructions (i. e. where the secret is deter-
mined by a linear combination of the shares) are vulnerable to cheaters.
In particular, suppose that a dishonest player submits a fake share
during the recovery phase. Clearly, all the other players in the pro-
tocol will obtain an incorrect value of the secret. On the other hand,
if the scheme is linear then the cheater can recover the real secret
for himself by using the incorrect value obtained during the recovery
phase and the original share received from the dealer. Secret sharing
schemes which are resilient toward this kind of attack are also called
cheater-immune [181]. In the case of a (2,n)–threshold access struc-
ture, such schemes are equivalent to orthogonal Latin squares based
on nonlinear constructions.

For this reason, in this chapter we investigate orthogonal Latin
squares induced by nonlinear bipermutive CA. In particular, we adopt
both a combinatorial methodology to enumerate all pairs of bipermu-
tive local rules which generate OLS up to diameter d = 6 and classify
them with respect to their nonlinearity, and a heuristic approach to
evolve such pairs of local rules with diameter d = 7, 8 through Ge-
netic Algorithms (GA) and Genetic Programming (GP).

Beside the cryptographic motivation of cheater-immune SSS, the
goal of this research is twofold: first, we aim at understanding the
mathematical structure of OLS generated by nonlinear bipermutive
CA, and in particular determine which kind of conditions character-
ize them. This could have possible applications also in coding theory,
especially in the design of nonlinear MDS codes. Second, as far as
the authors are aware, there have been no attempts in the literature
to apply evolutionary computation (EC) algorithms for the design of
OLS. The closest example one can find is a work by Safadi et al. [160]
where GA were used to evolve. Ashlock [4] also used GA to gener-
ate other kinds of combinatorial designs, but not OLS. The reason for
this gap in the literature could lie in the difficulty of designing a suit-
able encoding for the feasible solutions handled by EC algorithms.
Indeed, it is not simple to optimize the orthogonality of two Latin
squares while simultaneously preserving their row-column permuta-
tion property using stochastic operators like crossover and mutation.
As a consequence, evolving OLS based on nonlinear bipermutive CA

179
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could also be an interesting benchmark problem for heuristic opti-
mization algorithms like GA and GP.

In particular, for the optimization problem of evolving CA-based
OLS we leverage on the fact that bipermutive rules of d variables are
defined by generating functions of d − 2 variables. Hence, the geno-
type of each individual in the population represents a pair of gener-
ating functions, thus ensuring that the corresponding phenotype of
the candidate solution is a pair of bipermutive CA producing two
Latin squares. Consequently, we can focus the optimization effort of
GA and GP on the orthogonality and nonlinearity properties of the
solutions, without checking the row-column permutation constraint.

The rest of this chapter is organized as follows. In Section 14.1 we
first prove that the basic reflection and complement operations on
local rules preserve the orthogonality relation of the resulting Latin
squares. Then, we show that two bipermutive local rules giving rise
to orthogonal Latin squares must be pairwise balanced, which basically
means that the four pairs (0, 0), (1, 0), (0, 1) and (1, 1) must occur
an equal number of times in the superposition of their truth tables.
Additionally, we prove that pairwise balancedness is a property pre-
served from the generating functions to the corresponding bipermu-
tive rules, but not vice versa. In Section 14.2 we derive a formula
for the number of pairwise balanced bipermutive rules, and apply a
combinatorial algorithm to enumerate all such pairs. Next, we clas-
sify the pairs resulting in orthogonal Latin squares with respect to
their nonlinearity values. Section 14.3 presents the four encodings for
the genotype of the candidate solutions used in GA and GP, and de-
scribes the ad-hoc genetic operators for pairwise balanced generating
functions. Section 14.4 describes the experimental setting adopted for
our GA and GP algorithms and discusses the obtained results. Finally,
in Section 14.5 we sum up the contributions of this chapter.

14.1 combinatorial approach

Since the problem of characterizing pairs of bipermutive CA which
generate orthogonal Latin squares has already been solved in Chap-
ter 13 when the underlying local rules are linear, we now consider
the more general case of nonlinear bipermutive CA. In order to tackle
this problem, in this section we prove some results that allow us to
reduce the search space of all bipermutive functions pairs. Then, we
use these results to enumerate all pairs of bipermutive CA generating
orthogonal Latin squares up to d = 6 variables and to evolve them
through GA and GP for d = 7, 8.
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14.1.1 Invariance Under Reflection and Complement

Let Bd be the set of all pairs of bipermutive Boolean functions of d
variables. As bipermutive functions are defined by their generating
functions of d− 2 variables (see Section 2.3), for all d > 2 it follows
that |Bd| = |Gd|, where Gd = {(ϕ,γ) ∈ Fd−2 × Fd−2}. Since the cardi-
nality of Fd−2 is 22

d−2
, the size of Gd is 22

d−2 · 22d−2 = 22
d−1

, which
means that the set Gd is isomorphic to Fd−1, i.e. the space of Boolean
functions of d− 1 variables.

Clearly, if two bipermutive CA induced by a pair of local rules (f,g)
give rise to orthogonal Latin squares, then the CA defined by the
swapped pair (g, f) will generate the same orthogonal Latin squares
in reverse order. We now show that the basic transformations of re-
flection and complement mentioned in Section 12.2 preserve the or-
thogonality relation as well:

Lemma 19. Let F,G : F
2(n−1)
2 → Fd−12 be two bipermutive CA respec-

tively defined by local rules f,g : Fn2 → F2 of d variables, and let SF,SG
be the associated Latin squares of order 2d−1. Additionally, let FR,GR and
FC,GC be the CA respectively defined by the reverses fR,gR and the comple-
ments fC,gC of f,g, and let SFR ,SGR and SFC ,SGC be the corresponding
Latin squares. Then, the following hold:

• SF and SG are orthogonal if and only if SFR ,SGR are orthogonal.

• SF and SG are orthogonal if and only if SFC ,SGC are orthogonal.

Proof. Since both reflection and complement are idempotent transfor-
mations, it suffices to show only one direction of the implications, i.e.
assuming that SF and SG are orthogonal. This means that

(F(x||y),G(x||y)) 6= (F(x ′||y ′),G(x ′||y ′))

for all distinct pairs (x,y), (x ′,y ′) ∈ Fd−12 ×Fd−12 , since the mapping
φ which associates binary vectors of length d− 1 to positive integers
in the range {1, · · · , 2d−1} is bijective.

Let us now consider the CA FR induced by the reflected local rule
fR. Then, for all (x,y) ∈ Fd−12 × Fd−12 with x = (x1, · · · , xd−1) and
y = (y1, · · · ,yd−1), it follows that

FR(x||y) = (fR(x1, · · · , xd−1,y1), · · · , fR(xd−1,y1, · · · ,yd−1)) =

= (f(y1, xd−1, · · · , x1), · · · , f(yd−1 · · · ,y1, xd−1)) =

= F(yR||xR)R ,

i.e., the output value of the reflected CA FR is obtained by comput-
ing the reflected output of F evaluated on the reflected input yR||xR.
Analogously, the same fact holds for GR with respect to G. Since for
all (x,y), (x ′,y ′) ∈ Fd−12 × Fd−12 such that (x,y) 6= (x ′,y ′) one has
that (yR, xR) 6= (y ′R, x ′R), it follows that

(F(yR||xR)R,G(yR||xR)R) 6= (F(y ′R||x
′
R)R,G(y ′R||x

′
R)R) ,
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which means that SFR and SGR are orthogonal Latin squares.
Next, let us consider the CA FC induced by the complemented local

rule fC. The output value of FC over x||y is

FC(x||y) = (fc(x1, · · · , xd−1,y1), · · · , fc(xd−1,y1, · · · ,yd−1)) =

= (1⊕ f(x1, · · · , xd−1,y1), · · · , 1⊕ f(xd−1,y1, · · · ,yd−1)) =

= 1⊕ F(x||y) ,

where 1 = (1, · · · , 1) ∈ Fd−12 . Similarly for GC, one has GC(x||y) =

1⊕G(x||y). Given two pairs (x,y), (x ′,y ′) ∈ Fd−12 × Fd−12 such that
(x,y) 6= (x ′,y ′), it clearly holds that (1⊕ x, 1⊕ y) 6= (1⊕ x ′, 1⊕ y ′),
from which it follows

(1⊕ F(x||y), 1⊕G(x||y)) 6= (1⊕ F(x ′||y ′), 1⊕G(x ′||y ′)) .

As a consequence, the Latin squares SFC and SGC are orthogonal.

14.1.2 Pairwise Balancedness

We now turn to analyze the truth tables of bipermutive rules whose
CA generate orthogonal Latin squares. As an example, consider the
pair of functions f,g : F32 → F2 defined as f(x1, x2, x3) = x1 ⊕ x3 and
g(x1, x2, x3) = x1⊕ x2⊕ x3, namely rules 90 and 150 using Wolfram’s
numbering convention. The Latin squares of order d = 4 induced by
the corresponding bipermutive CA F,G : F42 → F22 are orthogonal,
since by Theorem 29 f and g are linear and their associated polyno-
mials Pf(x) = 1+ x2 and Pg(X) = 1+ x+ x2 are coprime. The truth
tables Ω(f),Ω(g) ∈ F82 are the following:

Ω(f) = (0, 1, 0, 1, 1, 0, 1, 0) , (214)

Ω(g) = (0, 1, 1, 0, 1, 0, 0, 1) . (215)

Placing side by side these truth tables, one can see that there are
23−2 = 2 occurrences of each of the four pairs (0, 0), (1, 0), (0, 1) and
(1, 1). We define this property as pairwise balancedness:

Definition 34. Two Boolean functions f,g : Fn2 → F2 of d variables
are pairwise balanced if the (n, 2)-function (f,g) : Fn2 → F22 defined
as (f,g)(x) = (f(x),g(x)) is balanced, that is |(f,g)−1(y1,y2)| = 2d−2 for
all (y1,y2) ∈ F22.

We now prove that pairwise balancedness is a necessary condition
for a pair of bipermutive local rules whose CA generate orthogonal
Latin squares:

Lemma 20. Let F,G : F
2(n−1)
2 → Fd−12 be bipermutive CA respectively

induced by local rules f,g : Fn2 → F2, and suppose that the associated Latin
squares SF, SG are orthogonal. Then, f and g are pairwise balanced.
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Proof. Let H : Fd−12 ×Fd−12 → Fd−12 ×Fd−12 be the function defined
as H(x,y) = (F(x||y),G(x||y)) for all (x,y) ∈ Fd−12 × Fd−12 . Since SF
and SG are orthogonal, it follows that H is bijective.

Consider two vectors c,d ∈ Fd−12 and suppose that their first com-
ponents, namely c1 and d1, are fixed. We want to compute the num-
ber of preimages (x1, · · · , xd−1,y1) ∈ Fn2 which map to (c1,d1) under
(f,g). In order to do so, we evaluate the ratio d/M, where:

• d is the number of input pairs (x,y) ∈ Fd−12 × Fd−12 such that
the first components of the respective output pairs H(x,y) equal
(c1,d1).

• M is the number of input pairs (x,y) ∈ Fd−12 × Fd−12 where x
and the first component of y are fixed.

In this way, we count the total number of preimages of H which map
to (c1,d1) and normalize it by the number of preimages where the
first d components of H are fixed, thus determining the number of
preimages of (c1,d1) under (f,g).

As H is bijective, d corresponds to the number of pairs of binary
vectors of length d−1where the first components are fixed, which are
2d−2 · 2d−2 = 22(n−2). On the other hand M = 2d−2, since we only
have d− 2 free variables in the input configuration of the CA. Hence,
it follows that |(f,g)−1(y1,y2)| = N/M = 22(n−2)/2d−2 = 2d−2.

In the next Lemma, we show that pairwise balanced generating
functions induce pairwise balanced bipermutive CA:

Lemma 21. Let ϕ,γ : Fd−22 → F2 be pairwise balanced generating func-
tions of d− 2 variables, with d > 2. Then, the corresponding bipermutive
rules f,g : Fn2 → F2 induced by ϕ and γ are pairwise balanced.

Proof. Let (y1,y2) ∈ F22. One has that |(ϕ,γ)−1(y1,y2)| = 2d−4, since
the generating functions ϕ and γ are pairwise balanced. Additionally,
for all x̃ = (x2, · · · , xd−1) ∈ (ϕ,γ)−1(y1,y2), let (x1, x̃, xd) denote the
vector (x1, x2, · · · , xd−1, xd). Then, by Equation (12) it follows that
(0, x̃, 0) ∈ (f,g)−1(y1,y2) and (1, x̃, 1) ∈ (f,g)−1(y1,y2). Similarly, for
all vectors x̃ ∈ (ϕ,γ)−1(ȳ1, ȳ2) where ȳ1 = 1⊕ y1 and ȳ2 = 1⊕ y2,
it holds that (1, x̃, 0) ∈ (f,g)−1(y1,y2) and (0, x̃, 1) ∈ (f,g)−1(y1,y2).
Since the fiber of (y1,y2) under (f,g) is given by

(f,g)−1(y1,y2) = {(0, x̃, 0) : x̃ ∈ (ϕ,γ)−1(y1,y2)} ∪
∪ {(1, x̃, 0) : x̃ ∈ (ϕ,γ)−1(ȳ1, ȳ2)} ∪
∪ {(0, x̃, 1) : x̃ ∈ (ϕ,γ)−1(ȳ1, ȳ2)} ∪
∪ {(1, x̃, 1) : x̃ ∈ (ϕ,γ)−1(y1,y2)} (216)

and since the four sets in Equation (216) are disjoint and have the
same cardinality of (ϕ,γ)−1(y1,y2), we can finally conclude that

|(f,g)−1(y1,y2)| = 4 · |(ϕ,γ)−1(y1,y2)| = 4 · 2d−4 = 2d−2 . (217)
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Remark that the converse of Lemma 21 does not hold. As a matter
of fact, for d = 4 variables there already exist several instances of
bipermutive functions pairs which produce orthogonal Latin squares
(and hence are pairwise balanced) but whose generating functions
are not pairwise balanced. An example is given by the two following
linear rules:

f(x1, x2, x3, x4) = 1⊕ x1 ⊕ x3 ⊕ x4 ,

g(x1, x2, x3, x4) = x1 ⊕ x4 .

The generating function of g in this case is the constant function de-
fined as γ(x) = 0 for all x ∈ F22. Hence, the pairs (0, 1) and (1, 1)
never occur when superimposing the truth tables of the two generat-
ing functions of f and g.

14.2 combinatorial enumeration of pairwise balanced

bipermutive rules

In this section, we enumerate all bipermutive rules pairs generating
orthogonal Latin squares up to d = 6 variables and we classify them
according to their nonlinearity.

14.2.1 Counting Pairwise Balanced Bipermutive Rules

The space of pairs of pairwise balanced generating functions is eas-
ily characterizable from the combinatorial point of view. In fact, for
d > 2, each pairwise balanced pair ϕ,γ : Fd−22 → F2 can be repre-
sented by a string s of length 2d−2 over the alphabet A = {1, 2, 3, 4},
where each symbol in s corresponds to the decimal encoding of one
of the possible four pairs (0, 0), (1, 0), (0, 1) and (1, 1) occurring in the
superposition of the truth tables. Since ϕ and γ are pairwise balanced,
the string s must be balanced as well, meaning that the number of oc-
currences of each of the four symbols of A must be 2d−4. Hence, the
number of pairwise balanced pairs of generating functions of d− 2

variables equals

#BalGd =

(
2d−2

2d−4

)
·
(
3 · 2d−4

2d−4

)
·
(
2d−3

2d−4

)
. (218)

As a matter of fact, to construct a balanced quaternary string of length
2d−2 one has first to select the positions of the 2d−4 occurrences of the
first symbol, which can be chosen in

(
2d−2

2d−4

)
different ways. Next, the

2d−4 occurrences of the second symbol must be chosen among the
2d−2 − 2d−4 = 3 · 2d−4 remaining positions, which can be done in(
3·2d−4
2d−4

)
different ways. Finally, for the 2d−4 occurrences of the third
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Figure 49: Graph representation of the pairwise balanced bipermutive rules
90 and 150.

symbol one has to choose among 2d−2 − 2 · 2d−4 = 2d−3 remaining
positions, corresponding to

(
2d−3

2d−4

)
possible choices. At this point, the

occurrences of the fourth symbols are fixed.
However, we saw at the end of Section 14.1 that pairwise balanced-

ness is not a necessary condition on the generating functions to obtain
pairwise balanced bipermutive rules. Consequently, by enumerating
all balanced quaternary strings of length 2d−2 one only explores a
subset of the space of pairwise balanced bipermutive rules of d vari-
ables, and thus in turn a subset of the space of bipermutive CA pairs
generating orthogonal Latin squares of order 2d−1.

We thus have to resort to a combinatorial characterization of pair-
wise balanced bipermutive functions. To this end, we adopt the graph
representation of bipermutive rules, originally introduced in [105]. Given
d ∈N, consider an undirected graph G = (V ,E) where V = Fn2 . Two
nodes v1, v2 ∈ V are connected by an edge if and only if they dif-
fer either in their leftmost or rightmost coordinates, while they agree
on the remaining ones. Thus, G is composed of 2d−2 connected com-
ponents, and each connected component is composed of 4 nodes all
having degree 2. A Boolean function f : Fn2 → F2 can be represented
as a labeling function lf : V → {0, 1} on the nodes of G. If f is biper-
mutive, then the labels of adjacent nodes must differ, while the labels
of two nodes separated by a path of length 2 must be equal.

Given a pair of bipermutive functions f,g : Fn2 → F2, we can still
represent them on the graph as a labeling function lf,g : V → {0, 1}2

on the nodes, where the labels are pairs specifying the outputs of the
two functions. Assume that f and g are pairwise balanced: then, each
pair (y1,y2) ∈ F22 occurs 2d−2 times as a label on G. As an example,
Figure 49 depicts the graph representation of rule 90 and 150, which
are pairwise balanced. Additionally, due to the property of different
labels on adjacent nodes, it follows that exactly half of the connected
components contain all (0, 0) and (1, 1) labels, while the remaining
half contain all (1, 0) and (0, 1) labels. Since there are only two types
of connected components with respect to the labels ((0, 0)/(1, 1) and
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(1, 0)/(0, 1)), it means that we can choose them in
(
2d−2

2d−3

)
different

ways. Moreover, let C = {v1, v2, v3, v4} be a connected component
where (v1, v2), (v1, v3), (v4, v2), (v4, v3) ∈ E, and assume that the la-
bels on the nodes are either (0, 0) or (1, 1). Then, the labels can be
arranged in two different ways, namely (lf,g(v1), lf,g(v4)) = (0, 0)
and (lf,g(v2, v3)) = (1, 1) or otherwise (lf,g(v1), lf,g(v4)) = (1, 1) and
(lf,g(v2), lf,g(v3)) = (0, 0). In the same way, the labels on the nodes of
a connected component of the type (1, 0)/(0, 1) can be placed in two
different ways. As a consequence, each of the

(
2d−2

2d−3

)
ways for choos-

ing the connected components with labels (0, 0)/(1, 1) and (1, 0)/(0, 1)
gives rise to 22

d−3 · 22d−3 = 22d−2 pairwise balanced bipermutive func-
tions. We have thus proved the following result:

Lemma 22. The number of pairwise balanced pairs of bipermutive Boolean
functions f,g : Fn2 → F2 of d variables is:

#BalBd =

(
2d−2

2d−3

)
· 22d−2 . (219)

14.2.2 Exhaustive Search Experiments

We now use the results discussed in the previous section to perform
an exhaustive enumeration of all pairwise bipermutive rules pairs up
to diameter 6 that orthogonal Latin squares. Table 19 reports the sizes
of the search spaces for the sets of all pairs of bipermutive functions,
the set of pairwise balanced generating functions and the set of pair-
wise balanced bipermutive functions of up to d = 7 variables.

One can notice that for d > 7 the resulting search space is too
large to be exhaustively searched, even by focusing on the subsets
of pairwise balanced generating functions. For this reason, we enu-
merated the set of pairwise balanced bipermutive functions BalBd
only up to d = 6 variables. To this end, we implemented an algo-
rithm by Knuth [99] to generate all balanced binary strings of length
2d−2, where the positions set to 0 and 1 respectively correspond to
the (0, 0)/(1, 1) and (1, 0)/(0, 1) connected components. Then, for each

Table 19: Sizes of the search spaces for the different types of sets of biper-
mutive functions pairs of up to d = 7 variables.

d #Bd #BalGd #BalBd

3 16 0 8

4 256 24 96

5 65536 2520 17920

6 4294967296 63006300 843448320

7 ≈ 1.84 · 1019 ≈ 9.96 · 1015 ≈ 2.58 · 1018
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Table 20: Distribution of CA-based orthogonal Latin squares up to d = 6.

d LS_size #total #lin #nonlin nl_dist

3 4× 4 1 1 0 –

4 8× 8 9 5 4 (4, 4, 4)

5 16× 16 213 21 192 (4, 4, 96),

(8, 8, 96)

(4, 4, 512),

(8, 8, 4020),

(12, 12, 17992),

(16, 16, 28388),

6 32× 32 66685 85 66600 (20, 20, 14384),

(4, 12, 8),

(8, 16, 160),

(12, 20, 128),

(16, 24, 88)

balanced combination of connected components we generated all pos-
sible 22

d−2
arrangements of the labels, constructed the resulting pairs

of bipermutive functions, and computed their respective nonlinearity
values. Finally, we generated the associated Latin squares of order
d = 2d−1, and checked for their orthogonality.

We remark that the enumeration of BalB6 is a computationally
intensive task, since it took approximately 22 hours to complete under
our Java implementation on a 64-bit Linux machine with 40 Intel Xeon
cores running at 2.4 GHz.

Table 20 reports the distribution of linear and nonlinear pairs of
orthogonal Latin squares. For each value of d, the corresponding size
of the Latin squares is reported, along with the number of linear and
nonlinear pairs of bipermutive functions generating orthogonal Latin
squares. Additionally, in the last column we report the distribution of
nonlinearity values in triplets (nl(f),nl(g), #num) where nl(f) and
nl(g) respectively denote the nonlinearity values of f and g, while
#num is the number of pairs generating orthogonal Latin squares
that achieve those values. Notice that all numbers are divided by 8,
since we have to consider the pairs with swapped order, which halve
the resulting sets, and the reflection and complement transformations,
which by Lemma 19 additionally reduce them to a quarter.

As a qualitative remark on the distributions reported in Table 20,
one may observe that linear pairs become more sparse as the number
of variables d increases, while the majority of the pairs are nonlinear.
Moreover, one can see that for d = 6 there are pairs with functions
of different nonlinearities. This finding falsified our initial belief that
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two bipermutive functions inducing orthogonal Latin squares must
have the same value of nonlinearity, an empirical observation which
held up to d = 5 variables.

14.3 heuristic optimization approach

It has been remarked in Section 14.1 that finding nonlinear bipermu-
tive CA rules generating OLS can be reduced to the search of the
corresponding pairs of nonlinear generating functions ϕ,γ. In fact,
we already know by Lemma 17 that the bipermutive functions f,g
corresponding to ϕ,γ give rise to a pair of Latin squares when used
as local rules of two CA. Therefore, by representing the genotype of
the candidate solutions as pairs of generating functions, we can focus
the optimization efforts of GA and GP only on the nonlinearity and
orthogonality properties, without having to consider the row-column
permutation constraints of the squares generated by the CA.

In this section, we first describe the two fitness functions that we
used to evaluate the phenotype corresponding to a pair of generating
functions (ϕ,γ), i.e. the Latin squares generated by the CA F,G with
bipermutive local rules f,g defined by (ϕ,γ). Then, we proceed by
describing the GA and GP encodings that we adopted in our exper-
iments. Finally, we discuss the experimental settings and the results
obtained by GA and GP on this optimization problem.

14.3.1 Fitness Functions

Since we are interested in obtaining pairs of OLS, the fitness functions
used by GA and GP must in the first place measure the deviation of
two Latin squares generated by a pair of generating functions from
being orthogonal. The most natural approach is to count the number
of repeated ordered pairs in the superposition of two Latin squares. The
optimization task is thus to minimize such quantity, since having zero
repeated pairs in the superposition means that each pair of symbols
occurs exactly once (i.e. the two Latin squares are orthogonal). Since
the exhaustive search results presented in Section 14.2.2 showed that
most of the OLS are generated by pairs of nonlinear CA for d > 4,
we decided not to check the nonlinearity property in our first fitness
function, which is formally defined below.

Let ϕ,γ : Fd−22 → F2 be a pair of generating functions of d − 2

variables, and let f,g : Fn2 → F2 be the corresponding bipermutive
functions of d variables. Denote by LF and LG the Latin squares of or-
der [N] = 2d−1 induced by the CA F,G : F

2(n−1)
2 → Fd−12 with local

rules f and g. Let SupLF,LG : [N]× [N]→ [N]× [N] be the superposition
function of LF and LG defined as

SupLF,LG(i, j) = (LF(i, j),LG(i, j)) (220)
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for all (i, j) ∈ [N]× [N]. Then, the value of the fitness function fit1
evaluated on the individual (ϕ,γ) is given by:

fit1(ϕ,γ) = |rep(LF,LG)| , (221)

where rep(LF,LG) is the set defined as:

rep(LF,LG) =
{
(x,y) ∈ [N]× [N] :

∣∣∣Sup−1LF,LG(x,y)
∣∣∣ > 1} . (222)

Remark that the range of fit1 is {0, · · · , 22(n−1)}, since the two Latin
squares LF and LG have order 2d−1. In particular, an optimal solution
has fitness value 0, hence the objective is to minimize fit1.

In addition to fit1, we tested a second fitness function that also
takes into account the nonlinearity of the generating functions, to
ensure that an optimal solution corresponds to a pair of OLS which
is generated by nonlinear bipermutive CA. In particular, given two
generating functions ϕ,γ : Fd−22 → F2 the value of the second fitness
function fit2 computed over (ϕ,γ) is:

fit2(ϕ,γ) = fit1(ϕ,γ) +NlPen(ϕ,γ) ·N2 (223)

where d = 2d−1 and NlPen(·, ·) is a penalty factor defined as follows:

NlPen(ϕ,γ) =


0 , if Nl(ϕ) > 0 AND Nl(γ) > 0

1 , if Nl(ϕ) = 0 XOR Nl(γ) = 0

2 , if Nl(ϕ) = 0 AND Nl(γ) = 0

(224)

In other words, the penalty factor is 0 if both generating functions are
nonlinear, 1 if only one of them is linear, and 2 if both functions are
linear. Considering what we said about the range of fit1, from (223)
and (224) it follows that the range of fit2 is {0, · · · , 3 · 22(n−1)}. As for
fit1, the optimization objective in this case is to minimize fit2.

14.3.2 Single Bitstring Encoding

The first representation for the genotype of GA solutions encodes
a pair of generating functions as a single bitstring. Given two gen-
erating functions ϕ,γ : Fd−22 → F2 respectively with truth tables
Ω(f),Ω(g) ∈ F2

d−2

2 , the chromosome which represents the pair (ϕ,γ)
is defined as c(ϕ,γ) = Ω(f)||Ω(g), where || denotes the concatenation
of two strings. Hence, the chromosome is a bitstring of length 2d−1

whose first half corresponds to the truth table of ϕ, while the second
half is the truth table of γ.

Under this encoding, we apply the standard variation operators
used in GA, namely one-point crossover and bit-flip mutation. Re-
mark that one-point crossover always produces offspring whose left
or right half is inherited from one of the two parents, except when
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the crossover point happens to be exactly in the middle of the two
parents chromosomes (in which case the first child inherits the left
half from the first parent and the second half from the second par-
ent, and vice versa for the second child). From the point of view of
the phenotype, this means that both children inherit one of the four
Latin squares from their parents, or two if the crossover point is in
the middle of the parents.

14.3.3 Double Bitstring and Double Tree Encodings

In the second encoding that we used in our experiments, we con-
sidered each individual as composed of two independent parts that
represent a pair of generating functions. In particular, in the case
of GA each chromosome consists of the two bitstrings representing
the truth tables of length 2d−2 of the generating functions. Formally,
given ϕ,γ : Fd−22 → F2, the associated GA chromosome is defined
as c(ϕ,γ) = (Ω(ϕ),Ω(γ)) ∈ F2

d−2

2 ×F2
d−2

2 . Then, one-point crossover
and bit-flip mutation are applied independently on the two compo-
nents of the chromosomes. Notice that in the case of crossover, con-
trary to the single bitstring encoding, the Latin squares of the off-
spring always differ from those of the parents, since the two generat-
ing functions are recombined independently.

We used a similar double encoding for the candidate solutions
evolved by GP. In particular, each chromosome in this case is repre-
sented by two Boolean trees which encode the algebraic expressions
of the generating functions. Analogously to the GA case, under this
encoding we apply the standard tree crossover and mutation opera-
tors of GP independently on the two Boolean trees of the generating
functions.

14.3.4 Balanced Quaternary String Encoding

We exploited the pairwise balancedness property mentioned in Sec-
tion 14.1.2 to devise a third encoding for the candidate solutions of
GA. In particular, given two generating functions ϕ,γ : Fd−22 → F2

of d − 2 variables, in this encoding the chromosome represents the
superposition of the truth tables of ϕ and γ as a quaternary string of
length 2d−2 over the set Q = {1, 2, 3, 4}, by associating the four pairs
of F22 to the elements of Q as follows:

(0, 0)→ 1; (1, 0)→ 2; (0, 1)→ 3; (1, 1)→ 4 .

Under this encoding, the pairwise balancedness constraint is equiv-
alent to require that each number from 1 to 4 occurs 2d−4 times in
the string. Consider again the example described in Section 14.1.2 of
the two generating functions ϕ,γ : F32 → F2 respectively defined by
the truth tables Ω(ϕ) = 01011010 and Ω(γ) = 01101001. Table 21



14.3 heuristic optimization approach 191

Table 21: Example of balanced quaternary string encoding.

x 000 100 010 110 001 101 011 111

ϕ(x) 0 1 0 1 1 0 1 0

γ(x) 0 1 1 0 1 0 0 1

c(ϕ,γ) 1 4 3 2 4 1 2 3

reports the superimposed truth tables of ϕ and γ along with the cor-
responding quaternary chromosome c(ϕ,γ). From the example, one
can observe that each number from 1 to 4 in the chromosome column
appears 23−1 = 2 times.

Clearly, applying classic one-point crossover and mutation opera-
tors to balanced quaternary chromosomes does not guarantee that
the produced offspring will be balanced as well. Therefore, we de-
signed ad-hoc operators in order to preserve the pairwise balanced-
ness property so that GA searches only the constrained space instead
of the whole set of pairs of generating functions.

Our crossover operator is loosely inspired from the operator de-
scribed in [123] for balanced Boolean functions and the operator pro-
posed in Chapter 9 for the Walsh spectra of plateaued functions. More
precisely, our operator employs four counters to keep track of the
multiplicities of the four values in the child chromosome. Given two
quaternary chromosomes p1,p2 of length d, a child chromosome c is
generated as follows:

1. Set the four counters cnt1, cnt2, cnt3 and cnt4 to 0.

2. If the number of positions where p1 and p2 have equal values
is greater than d/2, then randomly choose p1 or p2 and apply
the following permutation to each of its loci:

1→ 3; 2→ 4; 3→ 1; 4→ 2 .

3. Determine the positions where p1 and p2 have equal values and
copy them in the child c.

4. Pick a random position i ∈ {1, · · · ,N} among those which have
not already been selected and such that p1[i] and p2[i] have
different values. Then, the value of c[i] is determined by one
of the following cases, depending on the values of the counters
cntp1[i] and cntp2[i]:

a) If the values of cntp1[i] and cntp2[i] are both below the
threshold 2d−4, randomly copy p1[i] or p2[i] in c[i], and
increase the corresponding counter.

b) If only one of the two counters has reached 2d−4, then
copy the value corresponding to the other counter in c[i],
and increase such counter.
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c) If both counters reached 2d−4, copy one of the two remain-
ing values v1, v2 in c[i] by applying again cases (a) and (b)
to cntv1 and cntv2 .

5. Return to step 4 until all positions in the child have been filled.

It can easily be seen from the above procedure that if both parents
are balanced quaternary strings, then the generated offspring will
be balanced as well. Since this crossover operator produces only one
child, we apply it twice for each pair of parents. Notice also that step
(2) is performed in order to avoid producing offspring which is too
similar to the parents (a similar strategy was also adopted in [123]).

On the other hand, for mutation we adopted a simple operator
where each value in a locus to be mutated is swapped with the value
in another locus, chosen in a random way. Thus, the balancedness
property is preserved since swaps do not change the number of oc-
currences of the symbols in a string.

14.4 experimentation

We tested our GA and GP on the sets of bipermutive functions pairs
of d = 7 and d = 8 variables, which are the smallest instances of this
optimization problem which are not amenable to exhaustive search.
In fact, the corresponding search spaces of generating functions pairs
of d− 2 = 5 and d− 2 = 6 variables have sizes 264 and 2128, respec-
tively. From the point of view of the phenotype, d = 7 corresponds
to Latin squares of size 64× 64, while d = 8 to Latin squares of size
128× 128.

In the remainder of this section, we describe the experimental set-
tings adopted for GA and GP, and we discuss the obtained results.

14.4.1 Experimental Settings

As mentioned in Section 14.3.3, the GP encoding uses elementary
Boolean functions to build a tree representing each of the two generat-
ing functions, whereas the corresponding Boolean variables are used
as terminals. The function set in our experiments comprise functions
AND, OR, XOR, XNOR, which all take two arguments, and function
NOT which takes a single argument. Additionally, we included the
function IF, which takes three arguments and returns the second one
if the first one evaluates to true, and the third one otherwise. Finally,
we set the maximum tree depth to 5. A lower bound on the size of the
tree space with such parameters can be estimated using the method
described in [58]. In particular, considering only the four binary op-
erators, a tree can be composed of at most 15 internal nodes and 16
leaves. Since each internal node can take 4 different values while the
terminal on the leaves are Boolean values, Table 1 of [58] reports a
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total of 1.82 · 1014 possible trees, a quantity which is not amenable
to exhaustive search. Moreover, as mentioned above, this is a lower
bound since we are ignoring the ternary IF operator.

Regarding the population size, in the case of GP we set it to to
500. On the other hand, for GA we set the population size to 30 in-
dividuals. In fact, the preliminary experiments that we performed
for parameter tuning showed that bigger populations do not produce
better results with GA.

For the selection process, we employ a steady-state selection with a
3-tournament operator for both GA and GP, that in each iteration ran-
domly selects three individuals for the tournament and eliminates the
worst one. A new individual is created immediately by crossing over
the remaining two from the tournament, which then in GP undergoes
mutation with probability of 0.5. The variation operators used for GP
are simple tree crossover, uniform crossover, size fair, one-point, and
context preserving crossover [148] (selected at random) and subtree
mutation. For GA, the variation operators are one-point crossover and
bit-flip mutation in the case of single and double bitstring encodings,
while we adopt the balanced crossover and swap mutation opera-
tors described in Section 14.3.4 for the quaternary string encoding. In
the GA experiments, after an initial phase of parameter tuning we
observed that setting the crossover and mutation probabilities respec-
tively to 0.95 and 0.2 yielded the best results.

Common parameters for all the experiments include the termina-
tion condition of 300000 fitness evaluations. We chose this particular
bound because our preliminary tests showed that optimal solutions
are mostly found before reaching this amount of evaluations, both for
GA and GP. Finally, each experiment is repeated 50 times.

14.4.2 Results

For GA, we performed a total of 6 experiments, given by the combi-
nations of 3 encodings and 2 problem instances. In particular, with
GA we used only the first fitness function fit1 which counts the num-
ber of repeated pairs, since we observed that adding the nonlinear-
ity constraint did not modify the performances in a significant way.
On the other hand, with GP we performed a total of 4 experiments,
given by the combinations of 2 fitness functions and 2 problem in-
stances. In what follows, we compactly denote a GA experiment as
(GA,n, enci), where d is the number of variables of the bipermutive
functions (which thus can be either 7 or 8), while enci represents the
encoding adopted. In particular, enc1 stands for single bitstring, enc2
for double bitstring and enc3 for balanced quaternary strings. Like-
wise, we denote a GP experiment as (GP,n, fiti), where d still stands
for the number of variables, while fiti denotes the fitness function.
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Table 22: Best solutions found by GA and GP.

Exp. avg std #opt #lin #nlin

(GA, 7, enc1) 520.32 360.16 12/50 0 12

(GA, 7, enc2) 565.44 389.03 15/50 0 15

(GA, 7, enc3) 392.64 328.47 18/50 0 18

(GA, 8, enc1) 4165.44 604 1/50 0 1

(GA, 8, enc2) 4222.16 125.03 0/50 0 0

(GA, 8, enc3) 4696.48 135.51 0/50 0 0

(GP, 7, fit1) 0 0 50/50 50 0

(GP, 7, fit2) 0 0 50/50 0 50

(GP, 8, fit1) 0 0 50/50 47 3

(GP, 8, fit2) 0 0 50/50 0 50

Table 22 reports the results obtained in each experiment. In partic-
ular, for each combination we show the average fitness and the stan-
dard deviation computed on the best solutions generated over all 50
runs, along with the number of optimal solutions found and their dis-
tribution as linear/nonlinear pairs. In general, one can observe that
GP has a clear advantage over GA, since it always converges to an
optimal solution in each experimental run for both d = 7 and d = 8

variables. On the other hand, GA only manages to generate OLS for
d = 7 variables (except for a single optimal solution of d = 8 vari-
ables found under the single bitstring encoding). Moreover, even in
the case of d = 7 variables it can be seen that the success rate of
GA in generating OLS is remarkably lower than that achieved by GP.
One can additionally remark that the balanced quaternary encoding
gives a slight advantage to GA over single and double bitstrings, with
respect to the number of optimal solutions found.

Interestingly, one can notice that the optimal solutions produced
by GP under fitness function fit1 are mostly given by linear pairs.
More precisely, under fit1 GP managed to find only 3 nonlinear pairs
of d = 8 variables which generated OLS. The addition of the non-
linearity penalty factor with fit2 however solved the issue, since in
this case all optimal solutions found are given by pairs of nonlinear
generating functions. On the other hand, it can be observed that all
optimal solutions found by GA with fitness functions fit1 are non-
linear. This difference could be explained by the fact that the set of
operators used for GP trees include also the XOR, which is a linear
operator. Hence, when the optimization criterion is just the minimiza-
tion of the repeated pairs, it could be easier for GP to find pairs of
generating functions whose trees are composed only of XOR, which
correspond to linear solutions. Since the number of linear functions
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is much smaller than the total number of Boolean functions, it could
be that GP finds very quickly an orthogonal solution by sticking to
linear pairs. On the other hand, there is no clear relationship between
the truth-table based encodings used by GA and the nonlinearity of
the generating functions, which could explain why GA always find
nonlinear optimal solutions, even if with much more difficulty.

Considering the nonlinear optimal solutions found by GA and GP,
we can additionally remark an interesting fact. First, all the optimal
bipermutive rules found using the single and double bitstring repre-
sentations with GA and the double tree encoding with GP satisfy the
pairwise balancedness property introduced in Section 14.1.2. Since
these encodings do not enforce pairwise balancedness as a constraint
(like with quaternary strings on the generating functions), this find-
ing seems to support the conjecture that all bipermutive rules pairs
inducing OLS must be pairwise balanced, a fact that we experimen-
tally assessed by exhaustive search up to d = 6 variables.

14.5 conclusions

In this chapter, we investigated orthogonal Latin squares generated
by nonlinear bipermutive CA. We first proved that all pairs of biper-
mutive rules inducing orthogonal Latin squares must be pairwise bal-
anced, meaning that the superposition of their truth tables must yield
an equal number of occurrences of the four pairs (0, 0), (1, 0), (0, 1)
and (1, 1). We then used a combinatorial algorithm to enumerate all
pairwise balanced Boolean functions of up to d = 6 variables, finding
those which generate orthogonal Latin squares and classifying them
with respect to their nonlinearity values. The results of our computer
search showed that, as the number of variables of the local rules in-
creases, most of the orthogonal pairs are nonlinear.

Next, we addressed the problem of designing nonlinear CA-based
orthogonal Latin squares using GA and GP. Specifically, we formu-
lated the optimization problem as the search of pairs of nonlinear
generating functions inducing OLS. We experimented three different
encodings for the candidate solutions of GA, namely single bitstring,
double bitstring and balanced quaternary string, introducing ad-hoc
crossover and mutation operators for the last one. On the other hand,
with GP we adopted a double tree representation. We tested the two
metaheuristics on the problem instances of d = 7, 8 variables, remark-
ing that GP is always able to converge to an optimal solution in both
problem instances, while GA manages to generate OLS with a lower
success rate only for d = 7. On the other hand, we also observed that
GP mostly finds linear solutions when the fitness function counts only
the number of repeated pairs, while the solutions found by GA are
always nonlinear.
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C O N C L U S I O N S A N D O P E N P R O B L E M S

In this final chapter, we summarize the research lines investigated
throughout the thesis and discuss several directions for future de-
velopments on the subject of Boolean functions and combinatorial
designs generated by cellular automata.

In particular, for each contribution we first summarize the results
presented in the corresponding chapter, and then we describe a series
of open problems and possible ideas for further research.

15.1 heuristic optimization of boolean functions

15.1.1 Discrete Particle Swarm Optimization

In Chapter 8 we designed a discrete version of Particle Swarm Opti-
mization which explores the set of balanced Boolean functions, using
the truth table representation. The main feature of this algorithm is
the update operator for the particle positions, which swaps different
values in the truth table of a candidate solution in order to main-
tain its Hamming weight. We tested our PSO on 6 problem instances,
namely the sets of balanced Boolean functions from n = 7 to n = 12

variables, by adopting three fitness functions. Each of the three fitness
functions, in particular, optimized a different combination of nonlin-
earity, correlation immunity and propagation criterion.

The experimental result showed that under the first fitness func-
tion our PSO algorithm is able to produce solutions with similar or
better combinations of cryptographic properties than other heuristic
methods already published in the literature. On the other hand, for
the other two fitness functions we observed that the performances
of PSO do not scale beyond n = 7 variables, which suggests that
further parameter tuning is needed for the remaining problem in-
stances. Nonetheless, in the instance with n = 7 variables our al-
gorithm was able to find a plateaued Boolean function with profile
(7, 2, 4, 56), which is the best possible trade-off among nonlinearity,
algebraic degree and resiliency order which is allowed respectively
by Siegenthaler’s and Tarannikov’s bounds.

There are several venues for future developments on the subject.
One possibility is to test our PSO with other fitness functions, such
as the one adopted in [43] for Simulated Annealing, which measures
how flat the Walsh spectrum of a Boolean function is. Another inter-
esting direction of research would be to modify the Update-Bal-Pos()
procedure in such a way that only the swaps which increase nonlin-
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earity or decrease the deviation from k-th correlation immunity are
performed. This could be accomplished, for instance, by integrating
the Hill Climbing step inside the update procedure, instead of per-
forming it after the particles positions have been modified.

15.1.2 Genetic Algorithms and Spectral Inversion

In Chapter 9 we investigated the performances of a Genetic Algo-
rithm at optimizing the cryptographic properties of Boolean func-
tions through the spectral inversion approach set forth in [42]. The
main idea is to represent a candidate solution as a permutation of
a Walsh spectrum already satisfying the desired cryptographic prop-
erties, such as high nonlinearity and resiliency order. Then, the op-
timization task becomes minimizing the deviation of the resulting
pseudoboolean function that results by applying the inverse Walsh
transform to such a spectrum. We designed a specific crossover and
a mutation operator that preserve the constraint on the Walsh spec-
trum, and adopted the same fitness function defined in [42] which
measures the deviation from the nearest Boolean function.

We tested our GA over the spaces of pseudoboolean functions of
n = 6 and n = 7 variables, with the optimization goal of finding
plateaued Boolean functions whose profile is defined by the minimal
index that does not result in bent functions (the latter being unbal-
anced, and thus not directly usable for cryptographic purposes). We
then compared the obtained results with those achieved by the Sim-
ulated Annealing algorithm proposed in [42]. The results show that
for n = 6 our GA outperforms SA with respect to the number of op-
timal solutions found per number of optimization runs. On the other
hand, for the instance with n = 7 variables neither technique was able
to produce an optimal solution, even if SA scored an average better
value for the fitness function.

The obtained results suggest that our GA does not scale well for
n > 7, the likely reason being that it gets stuck in local optima. A pos-
sible way to overcome this drawback is to combine the global search
capabilities of GA with a local search technique. A straightforward
method to investigate this idea could be the integration of our GA
inside the SA algorithm of [42], using for example the Genetic Anneal-
ing framework [197]. The obvious downside to this solution, however,
would be the significantly higher amount of computational resources
required to carry out a single optimization run.

An alternative solution could be to add a Hill Climbing optimiza-
tion step in our GA, similarly to the strategy proposed in [123] which
we adopted for our PSO algorithm in Chapter 8. In the context of our
GA, a Hill Climbing optimization step would require characterizing
the pairs of Walsh coefficients which, if swapped, would decrease the
deviation of the resulting pseudoboolean function.
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An additional direction for further research would be to consider
different cryptographic properties other than nonlinearity, algebraic
degree and resiliency. For example, the heuristic search of Boolean
functions satisfying only propagation criterion PC(l) could be done
using the same basic spectral inversion method of [42]: in this case, it
would suffice to evolve through our GA the autocorrelation spectrum
instead of the Walsh spectrum of the candidate solutions. However,
remark that considering properties related to both the autocorrelation
and Walsh spectrum at the same time would require modifying the
representation of the candidate solutions. This is due to the fact that
a valid swap on the Walsh spectrum could induce an invalid swap on
the autocorrelation function (and vice versa), because of the Wiener-
Khintchine theorem.

15.2 cryptographic and coding-theoretic analysis of ca

15.2.1 Preimages Period in Surjective CA

In Chapter 10 we addressed the problem of computing the period
of preimages of spatially periodic configurations (SPC) under the ac-
tion of surjective CA. As a matter of fact, it is well known (see [57])
that in surjective CA every preimage of a SPC is spatially periodic
as well. However, little or no work has been carried out in the litera-
ture to actually characterize the periods of such preimages. Beside its
theoretical interest, this problem also turns out to be equivalent to de-
termining the maximum number of players allowed in the CA-based
secret sharing scheme proposed in [112].

In the first part of the chapter we considered the periods of preim-
ages in generic surjective CA. In particular, we develop an algorithm
based on the de Bruijn graph representation which computes the peri-
ods of all preimages of a SPC surjective CA, along with their multi-
plicities. Next, we narrowed our focus on the specific class of linear
bipermutive CA over finite fields. In this case, the problem can be re-
duced to the study of concatenated linear recurring sequences (LRS),
for which we provided a complete characterizations of their periods
and multiplicities. Finally, we further extended this analysis by con-
sidering also linear CA defined over a finite ring as the state alphabet.

There are several directions along which this contribution can be ex-
tended and improved. As a matter of fact, Chapter 10 addressed two
extreme cases of the preimages periods problem: the most generic one
dealing with surjective CA, for which some facts and bounds can be
derived, and the case of linear and bipermutive CA over finite fields,
about which every major question can be settled by leveraging on the
theory of LRS.

Still, one can consider several intermediate classes between surjec-
tive CA and LBCA, one of the most interesting being bipermutive
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CA equipped with nonlinear local rules. Notice that the affine case can
be still solved using the tools of concatenated LRS. Specifically, let
F : FZ

q → FZ
q be a bipermutive CA with affine local rule f : Fdq → Fq

of radius d, i.e. f is a linear combination of the neighborhood cells
plus a constant a ∈ Fq, meaning that the k–th order LRS associated
to the inverse permutation f−1R,z is inhomogeneous. In particular, a k–th
order inhomogeneous LRS can be expressed as a (k+ 1)-th order ho-
mogeneous LRS, which allows one to apply all the results proved in
Chapter 10 about concatenated LRS to the affine case as well. From
the CA point of view, this means that an affine local rule of diame-
ter d can be seen as a linear rule defined on a larger neighborhood,
namely {i, · · · , i+ d}.

Clearly, the above procedure cannot be applied to nonlinear rules,
where the preimages are generated by a Nonlinear Feedback Shift Reg-
ister (NFSR) disturbed by the LFSR which generates the spatially pe-
riodic configuration. We note that this case is interesting also for an-
other cryptographic application other than CA-based secret sharing
schemes, since the concatenation of a NFSR and a LFSR is the main
primitive upon which the stream cipher Grain is based [77]. Hence,
developing a method to study the periods of preimages in nonlinear
bipermutive CA could also be useful for cryptanalyzing this cipher.

Successively, one could also consider classes of surjective CA more
general than bipermutive CA. The openness property could be an in-
teresting starting point to investigate, since configurations of open
CA have a constant number of preimages, which can be viewed as a
weaker condition than bipermutivity [102]. Hence, the openness prop-
erty could induce some regularities on the structure of the u-closure
graph that could simplify the analysis.

Concerning generic surjective CA, we also remark that the upper
bound about the time complexity for the construction of the u-closure
graph via DFS given in Chapter 10 is not tight. As a matter of fact,
the worst case mentioned in Section 10.1 cannot occur in surjective
CA due to their balancing property, which implies that the DFS tree
associated to a vertex can be balanced only up to a certain depth.
Taking into account this fact, one could derive a better upper bound
on the time complexity of the graph construction procedure.

15.2.2 CA-Based S-boxes

In Chapter 11 we undertook an investigation of the cryptographic
properties of S-boxes defined by finite CA, both in the no boundary
and periodic setting. We started our theoretical analysis by consider-
ing the algebraic degree of such S-boxes, showing that it corresponds
to the algebraic degree of the CA local rule. This is due to the fact that
the degree of a S-box is defined as the maximal degree among all its
coordinate functions, and each coordinate function corresponds to the
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CA local rule applied to the relevant neighborhood. Next, we proved
two upper bounds respectively on the nonlinearity and differential
uniformity achievable by CA-based S-boxes, always relating them to
the corresponding properties of the underlying local rules. In partic-
ular, for the nonlinearity of periodic boundary CA we observed that
our upper bound coincides with the Sidelnikov-Chabaud-Vaudenay
bound only when the local rule diameter equals the CA length, which
corresponds to the case of rotation symmetric S-boxes.

In the experimental part of this chapter, we applied a Genetic Pro-
gramming algorithm to evolve rotation symmetric S-boxes featuring
an optimal combination of nonlinearity and differential uniformity.
More specifically, we considered the problem instances of 4× 4 up to
8× 8 S-boxes sizes, since under our GP tree encoding even the 4× 4
case is not amenable to an exhaustive search. The experimental results
show that our GP is always able to produce optimal solutions up to
size 7 × 7, with the exception of the 6 × 6 case where our evolved
S-boxes remain slightly suboptimal with respect to differential uni-
formity. In the 8 × 8 problem instance, on the other hand, our GP
algorithm does not come even close to the theoretical optimal values,
and its performances are consistently worse than those achieved by
algebraic constructions or other heuristic methods.

Finally, we used the truth table representation to perform an ex-
haustive search of all bijective S-boxes defined by CA rules up to size
5× 5, observing that only a small fractions are optimal with respect
to their cryptographic properties. Next, we carried out a classification
of all CA-based S-boxes of sizes 3× 3 and 4× 4 up to affine equiva-
lence. In particular, we observed that there exist 4 equivalence classes
of such S-boxes for sizes 3 × 3, among which one of them is opti-
mal with respect to nonlinearity and differential uniformity. On the
other hand, for the 4× 4 case we found 19 equivalence classes, four
of which are optimal as per the classification presented in [104].

There are several options to consider for further research on the
subject. From the theoretical side, a possible direction is to investigate
lower bounds on the nonlinearity and differential uniformity of CA
S-boxes based on specific subclasses of local rules, such as plateaued
Boolean functions. We note that this question has already been inves-
tigated in Mariot et al. [113] for permutive local rules. In particular,
computer searches performed on small input sizes suggest that per-
mutive rules always satisfy with equality the bound on nonlinearity
given in Theorem 25, an example of which is the rule χ used in the
Keccak S-box. However, the authors of [113] later observed a mistake
in the proof of this fact, and they are currently investigating either
how to fix it or to disprove it.

Another interesting option would be to study more in detail the
inverses of bijective S-boxes defined by CA. As we remarked in Chap-
ter 2, if a periodic boundary CA is invertible for certain array sizes,
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then the corresponding infinite CA is not reversible in general. This is
the case, for instance, with the χ local rule used in Keccak, which re-
sults in a permutation for every odd size of the cellular array, but not
for even sizes. The consequence is that the inverse of such a CA can-
not be described by a local rule as well, even though the global rule is
shift-invariant. Hence, an interesting problem would be to character-
ize subclasses of CA rules which result in permutations for every size
of the cellular array. We note that the reversibility problem has been
thoroughly investigated in the CA literature, due to its many connec-
tions with reversibility of physical systems (see for instance [180, 49]).
Consequently, a possible idea could be to consider some classes of re-
versible CA already known in the literature (such as marker CA [45],
which are a generalization of complementing-landscape CA to which
rule χ belongs to), and analyze them with respect to their crypto-
graphic properties.

Regarding our experimental results with GP, the most obvious di-
rection for further research is to focus on the 8× 8 size and try to
improve the values of cryptographic properties. Of course, in Chap-
ter 11 we concentrated only on a small set of cryptographic properties,
so one could include other relevant properties like algebraic degree
in the fitness function. An interesting open problem in this context is
the design of APN functions of maximal algebraic degree. As noted
in [25], the upper bound on the algebraic degree of (n,n) APN func-
tions is n. However, up to now there are no known examples of such
S-boxes. Notice that, by Lemma 11, the bound on the algebraic degree
of (n,n) bijective S-boxes defined by CA is still n, since it corresponds
to the case of rotation-symmetric S-boxes. Hence, a possible direction
for future research is to use GP to see if it is possible to evolve n-bit
APN rotation symmetric S-boxes with algebraic degree n.

As it can be seen in Table 31, for the 4× 4 and 6× 6 sizes the best
obtainable nonlinearity still equals the quadratic bound respectively
when d = 3 and d = 5. Hence, it would be interesting to investigate
whether in these cases our heuristic approach based on GP is still
able to evolve S-boxes with optimal nonlinearity with d = n− 1, i. e.
where the local rule depends on all input variables except one.

For our classification results presented in the last part of the chap-
ter, a first direction for further improvement is to classify 3× 3 and
4 × 4 S-boxes defined by CA under more general equivalence re-
lations, like Extended Affine (EA) equivalence and Carlet-Charpin-
Zinoviev (CCZ) equivalence. As we remarked in Chapter 5, in fact,
S-boxes which are affine equivalent may not be EA or CCZ equiva-
lent. Hence, the goal here is to determine whether S-boxes defined
by CA correspond to other vectorial functions already known in the
literature under these equivalence relations, or if they are new. Fi-
nally, a further direction for future research would be to extend the
affine equivalence classification of CA-based S-boxes for size 5 × 5.
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Here, the number of equivalence classes is too huge to be exhaus-
tively searched. A possible idea to overcome this obstacle would be
to limit the classification to specific classes of S-boxes, as done for
example in [22] for quadratic permutations.

15.2.3 Resiliency and Asynchrony Immunity

In Chapter 12, we continued our investigation of the cryptographic
properties of CA by considering the resiliency criterion, which is rele-
vant in the design of Pseudorandom Number Generators (PRNG) for
stream ciphers. Specifically, we proved that the global rule of every
bipermutive CA is always at least 1–resilient, thus lifting the result
proved in [105] for bipermutive local rules. Then, we uncovered an
interesting equivalence between linear CA and linear cyclic codes, re-
marking that the transition matrix of the former corresponds to the
generator/parity check matrix of the latter. In particular, we showed
how the encoding and decoding processes of a linear cyclic code cor-
respond respectively to the computation of a preimage of the null
vector 0 and the application of the global rule of a linear CA. Further,
we observed that the resiliency order of a linear CA determines the
minimum distance of the associated code. We then summarized this
discussion by showing how the (7, 4, 3) cyclic Hamming code can be
implemented by a linear CA with diameter d = 5.

In the second part of this chapter, we introduced a new crypto-
graphic property for CA which could be of relevance in the design of
side-channel countermeasures, namely Asynchrony Immunity. After
formally defining the property, we proved that the basic operations
of reflection and complement preserve asynchrony immunity. We fi-
nally performed a computer search of all (3, 10)–asynchrony immune
CA by classifying them with respect to their nonlinearity, remarking
that all their local rules are center permutive.

Some possible future directions of research on the topic are the
following. First, about the coding-theoretic part of our investigation,
cyclic codes form a broad class including for example BCH and Reed-
Solomon codes [117]. Hence, it could be interesting to investigate how
to implement these codes through CA by elaborating on the method
presented in Chapter 12.

As we mentioned in Chapter 4, MDS codes are also employed to
design the diffusion layers of block ciphers, such as the MixColumns

operation of Rijndael, the encryption algorithm which constitutes the
AES standard (see [53]). Thus, another direction of research worth
exploring is to consider the design of MDS codes by means of linear
CA for lightweight implementations of diffusion linear layers.

Regarding asynchrony immunity, the fact that all CA rules found
by our computer search are center permutive suggests that center-
permutivity is a necessary condition for asynchrony immunity, a prop-



206 conclusions and open problems

erty that would greatly reduce the search space for possible AI candi-
dates with interesting cryptographic properties. For future research,
we thus plan to investigate Conjecture 1.

Another possible direction to explore is related to the maximum
nonlinearity achievable by local rules of asynchrony immune CA. For
instance, an interesting question could be to verify if it is possible
to design an infinite family of asynchrony immune CA whose local
rules are bent or plateaued. A preliminary step to accomplish this
task could be to see whether it is possible to characterize asynchrony
immunity by using the Walsh spectrum of the CA global rules. We
suspect that this characterization can indeed be obtained, due to the
fact that resiliency and asynchrony immunity have very similar defi-
nitions.

Finally, a fact which could be useful for computer search of AI cellu-
lar automata is that an infinite CA is surjective if and only if its finite
counterpart is balanced for all lengths n ∈ N, as remarked in Chap-
ter 2. Thus, it would make sense to limit the search only to surjective
CA, by adapting for instance Amoroso and Patt’s algorithm [3].

15.3 combinatorial designs and cellular automata

15.3.1 Orthogonal Latin Squares from Linear CA

In Chapter 13 we began investigating the connections between combi-
natorial designs and cellular automata, namely focusing on the gener-
ation of Orthogonal Latin Squares (OLS) using linear CA. In particu-
lar, we showed that any bipermutive CA with diameter d and length
n = 2(d− 1) can generate a Latin square of order qd−1, with q being
the size of the CA state alphabet. Successively, we characterized the
pairs of linear bipermutive CA generating OLS as those whose asso-
ciated Sylvester matrix is invertible. This led us to conclude that two
linear bipermutive CA generate a pair of OLS if and only if the poly-
nomials associated to their local rules are relatively prime. We then
used this result to describe a (2,n)–threshold secret sharing scheme
and a perfect authentication code based on linear CA.

In the subsequent part of the chapter we focused on counting pairs
of coprime polynomials, or equivalently counting pairs of OLS in-
duced by linear CA. The peculiarity of this problem, which makes
it different from all other counting results regarding coprime poly-
nomials already published in the literature, is that both polynomials
composing the pair must have a nonzero constant term, in order to
ensure the bipermutivity property of the resulting CA local rules.

We presented two approaches to solve this counting problem over
the finite field F2. In particular, the first approach is based on an
equivalence relation over polynomial pairs induced by Euclid’s algo-
rithm. However, in order to prove the counting formula for the num-
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ber of coprime polynomials with this method, we relied on a con-
jecture about the proportion of non-coprime polynomial pairs which
seemed to hold from the experimental point of view. Then, in the
second approach, we tackled the counting problem by solving a re-
currence equation, whose closed-form formula determines the num-
ber of coprime polynomial pairs of our interest as well as it proves
the conjecture raised in the first approach. Interestingly, the integer
sequence associated with this recurrence equation turned out to be
already published in the OEIS as sequence A002450, which is known
for several other combinatorial and number-theoretic facts that are
not related to polynomials or OLS.

Finally, in the last part of the chapter we presented a construc-
tion for sets of linear CA-based Mutually Orthogonal Latin Squares
(MOLS) based on irreducible polynomials. In particular, the computer
search which we performed up to degree 6 made us conjecture that
this construction is optimal.

There are several opportunities for further improvements on the
results presented in this chapter.

A first direction for future research would be to extend our inves-
tigation to orthogonal arrays of the form t− (v,k, 1)–OA generated
by linear CA, with t > 2. A characterization result for such kind of
OA would allow one to design a general (t,n)-threshold secret shar-
ing scheme based on CA, or equivalently to design linear MDS codes
through CA. A possible idea to achieve this result would be to first
characterize which subclass of bipermutive CA generate Latin hyper-
cubes, i. e. the generalization of Latin squares to higher dimensions.
From there, the next step would be to characterize sets of linear CA
inducing Orthogonal Latin Hypercubes (OLH), which are equivalent
to orthogonal arrays [92]. We suspect that such kind of k–dimensional
orthogonal hypercubes can always be obtained by sets of n linear CA
whose associated polynomials are k-wise relatively prime, i. e. every
subset of k polynomials out of n does not have any common factor.
However, we note that there are no straightforward ways to general-
ize the concept of resultant to more than two polynomials [69]. As a
matter of fact, some of the existing generalizations involve matrices
which do not correspond to those related to hypercubes generated
by CA. To the best of our knowledge, the only resultant matrix for
several polynomials that most resemble the CA hypercube case has
been defined in [54], which could thus represent a starting point for
future work on the subject.

A natural open problem regarding the count of coprime polynomi-
als is to generalize our formula for polynomials over a generic finite
field Fq, with q > 2. Then, it would be interesting to verify if the re-
sulting integer sequences are already reported in the OEIS, like in the
q = 2 case with sequence A002450. Additionally, another idea is to
further develop the connection between the number of non-coprime
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pairs in P1,1
n and the Gaussian binomial coefficient. In particular, since(

n−1
2

)
2

corresponds to the number of subspaces of dimension 2 of
Fn−12 (see [29]), an interesting question is whether it is possible to
describe a bijection between these subspaces and the non-coprime
polynomial pairs in P1,1

n .
Finally, two additional open problems concern either proving or

disproving Conjecture 3 about the optimality of our construction for
sets of MOLS based on linear CA, as well as deriving a better lower
bound for the number Tn,q of such families.

15.3.2 Orthogonal Latin Squares from Nonlinear CA

In Chapter 14 we generalized our investigation of CA-based orthog-
onal Latin squares by considering nonlinear bipermutive CA, mo-
tivated by the design of cheater-immune secret sharing schemes (SSS).
In the context of threshold acces structures, in particular, cheater-
immune SSS are equivalent to orthogonal arrays arising from non-
linear constructions.

We tackled this investigation by adopting both a combinatorial and
a heuristic approach. In the combinatorial approach, we first showed
some basic invariance properties of orthogonal Latin squares gener-
ated by CA. In particular, we showed that if two bipermutive CA
induce orthogonal Latin squares, then the Latin squares of the re-
flected and complemented CA are orthogonal as well. Successively,
we introduced the definition of pairwise balancedness, proving that it
is a necessary condition satisfied by every pair of bipermutive CA
generating OLS. Additionally, we showed that pairwise balancedness
is a property preserved from the generating functions to the corre-
sponding bipermutive rules, but not vice versa. We then focused on
determining the number of pairwise balanced generating functions
and the number of pairwise balanced bipermutive rules. In the latter
case, we used a graph-based representation of bipermutive functions
which allowed us to encode a pair of pairwise rule as a special label-
ing on the nodes of this graph. Finally, we employed a combinatorial
algorithm to explore the space of all pairwise bipermutive rules up
to d = 6 variables, retaining only those that generate OLS, and we
classified them with respect to their nonlinearity.

In the heuristic approach, we adopted Genetic Algorithms and Ge-
netic Programming to evolve pairs of OLS generated by nonlinear
bipermutive CA equipped with rules of diameter d = 7 and d = 8,
which are the smallest problem instances not amenable to exhaustive
search. More specifically, we experimented with three different encod-
ings for GA and with a single encoding for GP. The third GA encod-
ing, in particular, is based on a characterization of pairwise balanced
generating functions as quaternary strings. We then defined two fit-
ness functions, the former taking into account only the orthogonality
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property of the candidate solutions and the latter also considering
their nonlinearity. Our experiments showed that GP is always able to
find optimal solutions, but under the first fitness function all result-
ing OLS arise from linear CA. On the other hand, using the second
fitness function all optimal solutions found by GP are nonlinear. GA,
on the contrary, always manages to find OLS generated by nonlin-
ear CA, even under the first fitness function. However, GA performs
consistently worse than GP in the d = 8 problem instance.

Concerning the future directions of research for the combinatorial
approach, we plan to investigate sufficient conditions that two non-
linear bipermutive CA must satisfy in order to generate orthogonal
Latin squares. Another direction worth investigating is to analyze the
pairs of nonlinear rules found in this chapter by exhaustive search
from the perspective of pseudorandom number generation, and compare
them with others stemming from different classifications, like those
presented in [63, 106].

Regarding the heuristic approach, it would be interesting to com-
pare the performance of GA and GP with other optimization algo-
rithms. Since the objects we are dealing with in this optimization
problem are Boolean functions used as CA rules, one could lever-
age on the research about the heuristic optimization of Boolean func-
tions with good cryptographic properties, a problem which we also
addressed in this thesis. A possible idea would be to explore both
population-based approaches like the discrete PSO discussed in Chap-
ter 8 and Cartesian GP [142, 143], as well as local search methods
such as Simulated Annealing [43]. A different comparison perspec-
tive worth exploring would also be to adapt algebraic constructions
of Boolean functions evolved through GP [141] in order to generate
orthogonal Latin squares.

Another interesting experimental direction to investigate would be
to increase the number of variables of the generating functions, to
assess up to which dimension of the problem GP is able to produce
optimal solutions. Finally, one could also consider the natural exten-
sion of evolving kMutually Orthogonal Latin Squares (MOLS) based on
CA. In this case, the encoding is a straightforward extension of the
double tree representation, since it suffices to represent a candidate
solution with k independent trees. The fitness function can also be
easily modified by summing the number of repeated pairs in each
superposition of the k Latin squares.
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